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Fractional Calculus
(Generalized integral and derivative)

.F‘
Katsuyuki Nishimoto Coll.of Engng.of

Nihon University

Chapter 1. Fractional derivative and integral

of the function of single variable.

§ 1. Introduction ‘

Bertram Ross (Prof. of Univ. of New Haven) made a very useful
chronological list (with short comments for each paper), and this
list is shown in the volume "The Fractional calculus" of K.B.0Oldham
and J.Spanier (Academic Press, 1974).

An international conference (Director is Prof. Bertram Ross) for
fractional calculus was held June 15 and 16, 1974 at the University
‘ of New Haven, and this conference had 22 participants and 72 attend-
ees. All reports in this conference were published as the Lecture
Note in Mathematics Vol. 457 (Edited by Bertram Ross), the title of
which is "Fractional Calculus and 1ts Applications", by Springer-
Verlag. ‘

McBride, A.C. published a volume, the title of which is "Fraction-
al Calculus and integral transforms of generalized functions" (Re-
search Notes in Mathematics Series. Pitman Press), in 1979. Proba-
bly this volume is the newest book for fractional calculus at the
present time (Oct. 20th, 1979) [ 36].

§ 2. Some definitions for fractional differintegration of the
single variable. . |
There are many papers, in which the fractional derivative and inte-
gral of the fuﬁction of single variable are discussed (see Refer-
ences). And many definitions on the fractional integral of the
function of single variable are reported. .Some of them are. shown as
follows.

By Riemann-Liouville [1]:‘ Fractional integral of order «

£F (2, x) = ﬁ%ﬂgz £(t)(x - £)%7 at  (right hand), = (1)

£7 (x, b) = “ﬂ“jﬂ §P e(e) (v - x)% " at  (left hana), (2)
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#here ax< b, ®>0 and Fis the Gamma function.
FPractional derivative of order o

f+u (a, x)=v§% f1tu (a, x) (right hand), (3)
o (%5 1o)=—c-{’E £7_ (%, b) (left hand), - (4)

where a {x<b and 1> & 0.
By Weyl [2]: Fractlonal integral of order &

fa (=00, x)= gy $ 2, £(6)(x - )% at, (5)
fa (x, +00)= 7y §7 2(6) (5 - ™71 at, (6)

where f(t) is a periodic function and its mean value for one period

is zero. But above formulae (5) and (6) are used as the definition

of the &K -th integral without any condition, at the present time,
By Erdélyi [3J: Fractional integral of order «

Iy £(x)= way §5 (- 9% 2(v) at, 12 £(0)= £(x) (7)
K £00= gy §y (¢ = 071 £(5) av, K2 £(x0)= £(x) (8)

By Kober [4]1: Fractional integral of order o (using Erdélyi's
notation)

1% (=T T a0, 12 © £(x) = £(x) (9)
K2 £(x)=x? Ky x7 7" % £(x), k¥ ° £(x) = £(x) (10)
By Okikiolu L5J: Fractional integral of order «
o () (=ghy S 2(e) L=l a, (11)
K, (f)(x)—*—m S_m £(t) 1t - =% as, | (12)
where ? ()= ZTWd) sin T& .

2
By Saxena [6]: Fractional integral of order (X
I[f(x)]— I[_o;, g%, m; £(x)]

?(—1;_‘&78}{ Fl, p+ m3p;0)t° £(t) dt, (13)

RIE(x)]=R[, g, 5, m5 T(x]]

m g Iy P 8 e £ BT s(das, (1)

where F(«, 8 ; ¥ ; x) is the ordinary hypergeometric function, and « ,
- ps» ¥, § are complex parameters. And if m=0, these are reduced to
the Kober's fractional integral.

By Kalla and Saxena [7]: Fractional integral of order «

T [e(x)]=1 [, p05 m, p,7, a5 £(x)]
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= A 5y § oF (e, g+ m; x;‘%f) ' £(t)at, (15)
RIE(x)]= R[&, 8,¥ 5 myu, 5, a; £(x)]
~5-1

00 M
-y ST R s O T (as, ()

where o, 3, %, %, & and a are complex parameters.
By M. Riesz [8]: Fractional integral of order
00
falx) = §_, £06) 1x - ¢1%7" at (0< < 1) (17)

By T. J. Osler [93 Fractlonal derlvatlve of order a.of f(z) is

D“ if(Z)=-11%:tll S(z+)f(é)(é )—u 1dé (ol + negative integer), (18)

where he made a branch cut from z to a, and 1ntegral curve is an
open contour which starts at a and encloses z in the p031t1ve sense,
and return to a. '

By B. Ross [10l1: Practional derivative order ¥ of f(z) 1s

47 o(gy= PO+ 1) §(+(é), .,

o1 - Z)Vrl (19)

where he made a branch cut from z to infinity through the origin,
~and integral curve C is an open contour which encloses z in the

positive sense and z does th on C (th@t is, C is an integral curve
along that cut). '

- § 3, Definitions of the fractlonal derivative and integral of
the function of single variable

Definition 1. (Derivative): If f(z) is an analytic function and
it has no branch p01nt(1ns1d§ of C a?g)on C, and
P - (v + 1 il
glv_gfy( z) , 2ni SC’ (¢ - )y+1 as (1)
/;*Zy - \arg(é-z)s'n:

ky# -n, n=Iinteger >0
T ¢ Gamma function

B R Y (S S O

27l

£ =dfv(z)= f_(z_.i'__l). ¢ -(—é—f_(_—é—;)w;-r ds (3)

2971
$¢Z,O<a@($ez)<2%)
\¥ =% - n, n=Iinteger >0

- I(yz'jﬁj')"g(:” 7—(‘}“) (z +7)dz, (3 - z=2), (4)
G-lg o) ), (5)

where C and g are the integral burve which are shown in Fig. 1 and
Fig. 2 (that is, C is a curve along the cut joining points z and - o
+ iIm(z), and ¢ is a curve along the cut jJjoining points z and o0 +
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iIm(z)), them f,= £, (2) (v>0, c={C, g}) is the fractional deriva-
tive of order . ‘

-n-—-—/
~ootilm = 3 @ o0 +iIm (2
'—w—\ :
c

c
-+

Fig. 1. Fig. 2.. ,
Definition 2 (Integral). f,Cv{:O) is the fractional integral of
order |v¥|. That is, the derivative of fractional order -y(y:>0) is
the fractional integral of order v [11]1[123.

§ 4. TFormal unification of derivative and integral of the
function of single variable
Theorem 1. If f(z) is the analytic function and it has no branch
point inside of C and on C (C={¢, g}), and

fv=dfv={gfv’ng} (1)
then
derivative for v >0
f, is { original for v=20 (2)
integral for v <0
for real v, and _ o
derivative for Re(v) >0 }
f,, is { original for ~ =0 (%)
integral for Re(®)< O R

for complex w.

And in case of Re(¥) =0, fyAis only formal differintegration
regardless of Im(s¥) Z 0. That is, we have no derivative and inte-
gral for ¥Y=pure imaginary. ’

Proof: It is clear by Definition 1 and 2 in §3.

Chapter 2. Fractional derivative and integral
of the function of many variables

§ 1. Introduction
On the fractional derivative and integral of the function of many

variables, there are few papers ([13]1~[181). And some definitions
of fractional integral of the function of many variables are shown
as follows. ’ N

Riesz's fractional integral £ (P) of order » is given by
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-1 ’ -
L®=Ey 3 e £(@) 4, (1)
where \Hn’—"’tn/z Zyr(%) {T‘(n 5 v)}-l (2)

E denotes all of Euclidean n-space, and rPQ denotes the distance
betweenPand Q (81, 1181).
And by G. V. Welland, following representatlon is used.

t, 0= § mHHa—a  (0<v <), (3)

En
where x and t denote points (xX;, Xz, «-+, Xn) and (t, 3 tz, ceey ta)

Ix -
of n-dimensional Euclidean space, and Ixl=( 2= £ k ) [17]

§ 2. Definitions of the fractional derivative and integral of
the function of many variables _
Definition 1 (Derivative): If f(z,, 22, ..., Zn) is an analytic
function and it has no branch point inside of C, and on C, for all
Zy and

'Fy, ,,\J 'FC T c '{:yiy’-o-)\/ (Z,,ZZ:-°°’ Zn) (1)
n

n-1"""* %1 71, T2,

n .
.n._
= k=1 r(yk+1) S ¢ e o g f(gl, gz’...’ é'n) dsl dsz .“dsn’(Z)

(i)™ ,
¢ Cn i (5 - 2 )VK+1
| k=1

where f—mk = V}%:"il'r'lmk ka (mk=integer >0, K=1%23,---,n) (3)°

o ={c, ¢} St 7 (4)
and -mgarg($y, - z )&m for C =¢C , . (5)

Ogarg($, - z,)<2™® for C=¢ o - (6)

then
Ty, 5 var -+ 3wy ¥k >0) is the fractional partial derivative of order
~, for z,

Definition 2 (Integral): fu,,wvas+«+)va &/ <0, K=12,--:n) is the
fractional integral of order I‘/k | for Do s That is, fractional de-
rivative of order - vk(vk >0) is the fractional integral of order
>, for zy [113.

Chapter 3. General properties of dfy

§ 1. On convergence of f_ = oIy

Theorem 1. If f(z) is an analytic function, and if M(= const.>0)
and ®K (= const. »0) such that
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| £(z + r)] <Me™*F (1)
exist, then C,fy(C=={g, Q}) converges absolutely for Re(v)< 0, where
+ sign for ¢ and - sign for C.
Theorem 2. If f(z) is an analytic and periodic function, we have
then

T OO_’ - .
() ¢t T’T}QTSO{EB T e} £z - s)as (2)
. kil Y TSN
0 et £ - o o

for -1< Re(v)< 0, where T 'is the period of function f(z).

§ 2. On (f/u)v= f/u+v'
" Theorem 1. If f(z) is an analytic and one valued function, we have

then : _ \
(=1, (1)

for u and ~ such that ‘ Tr(/uq(u/u{)k ;(: 1)1) ;éM(const.).

And (1) is called as "index law" [11]1[121.

Proof: €u==éfﬂ(z):= F(éﬁz 1) § (éfggg)ﬂ+]d§ - (for ¢ =C) (2)

Therefore we have

((50), = o[ 45, (=), = ,”“221”5 AEY a7 (using (2))

— [ftv + 1), fﬂbu + 1) S f(é)dé S o

1
291 )/b(f1 (72 - z)v*1 a7 (3)

Rﬁﬁﬁg?-—z=wami$-z= =£&¢ (s,4: real, $%0), we have
then

¢ 1 g(0+) 1 put w= pu,

QBT Y, T ( -ig ) (4)

then u—se
= _p~ (1) S(i;) D ot G (forig)</2)  (5)
___p—gu+v+1) F%51+F%L1j'(;+:)1) (6)
for [#]<T/2 and - Re(u + 1)< Re(®@)<O.
Substituting (6) into (3), we have then
g(_d.f,u(z)) SEAYS (=) d§=

() NG

o7 D (T T ) AFIFT
for |¢|<T™/2 and - Re(/u + 1)< Re(v)< 0.
In the same way, we have
Q(gfg(z)lv ¢ £y (2) , (8)
for /2 <|¢l<T and - Re(w+ 1)< Re®)< 0. :
6
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Therefore we have

C(ijb)v B cf,u+y , C"“{Q’ ?.} (9)

in general for - Re(u + 1)<Re(+)< 0, from (7) and (8).
And this relationship of (9) holds good for w and » such that
[T +v + 1)/ T+ 1) T + 1)]< M(const. ),
by the analytical continuation. Consequently we have this Theorem 1.
Theorem 2. If f(z) is an analytlc and one valued function, we have
then
(L) = <‘fy),t (10)

§& 3. Linearity

Theorem 1. If f(z) is an analytic and one valued function, we
have then ) , v
(af), = afy (f = £(2)), (1)
where a is a constant. o

Theorem 2. If u(z) and v(z) are analytic and one valued functions

respectively, we have then '

(au + bv)...,auy + by, (2)

where a and b are constants.

§ 4. PFractional differintegration of product uv
Theorem 1. If u(z) and v(z) are analytic and one valued functions
respectlvely, then
fractional derivative of product uv for Re(v) > 0.

{UVLI is { original of product uv for v=0. (1)
fractional integral of product uv for Re(v)< O.
where {u VL,=={(U v)ys (v u)y}, (2)
(v v)y= 2 2(¥ , )u,_, v, | (3)
(v uh =22 P(v , n)v,__ u_, (4)
and Pv, ) =T+ 1)/ T(+¥-n+ D) (n+ 1) [19] (5)
Proof: Through the author's definition, we have
N e DTN
= [+ 1 ($) ds_, 1 ) d
o )Sc(é -z 2ﬂlg;,7;§‘—?fv | L

g+, C,={C,, Q,} -tgarg((-3)KT for C¢,, O<arg(§-46)K 2ﬂ'f'or$l)
]"(y + 1) »>—-——, S U(é) as S V(g) dé ) ‘ (8)
(omi )2 =0 > -1+ c'(g _ Z)n+1 , :

> Fy . / &
=0 ['(~/-mn+ g)/j(ﬂ?+ Ty Y-n* 'n \ for &=

i<1) (9)
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=Z3 P(v, n)uy__n. v, = (u v)y, | (10)

In the same way, we have

§:§1<1) (11)

{u v}y={v u.}v=§:6 P(v, Y})Vy_n U = (v ), (for,-

£ -z |
-2

s
{ u v

But, in case of

- O3
~—

= - 2—s P(v, n)u,_ .v (12)

<1, we have
v n=-1 -n°"'n

-— D
—

and {u VL,= {v ul, = - %;;T Piv, n)Yv—n w, . v - (13)

Formulae (12) and (13) become zero because of existence of MNn +

1) in their denominator. This means the fractional and integer
order's derivative of all products uv are zero. Therefore we can
not adopt them, we have then ' .

{uvh={vuli={@ v, v} (14)
as the fractional differintegration of product uv, through (10) and
(11). This result holds good for ¥Y=m=integer, of course, and if
v =m=1integer >0, (14) coincide with the Leibniz rule for products.
And in case of v=-m(m=-integer >0), 1lim {u vi= {u v}_,m means m

times integral of product uv. Yo

§ 5. Convergence of (u vy
Theorem 1: If wu,_,<I(const.), | v ] <M(const.) and ,Vq'éN (const)
then (u v),, converges for

>1. {217 (1)

f
Iuv—nvn/qy—n—1vn+ﬂ

§ 6. Properties of fractional differintegration of products
Theorem 1. We have following relations.
(1) (uw v), =(vu), for v=m=integer, ‘ (1)
(ii) (u v), £(v u)y for v #m=integer, (2)
where u=%v. : ‘
Theorem 2. We have
f,=(f 1)y (£=1(2)) - (3)
for v #integer. | /
Note 1. ©Some interesting papers concerning the fractional
derivative of products are reported by Profeséor T.J.0sler [22].7‘
And in his paper, a brief historical survey on the fractional de-
rivative of products and a new proof for the formula '

=— [T (x + 1) ﬁ“—rﬁn u Py (4)
N=—oo [(x =y - n+ 1) (r+n+1) , 4

D% uv =
Z

(where K#=integer <0) which is fractional derivative of product uv

8



are shown.

But, in T.J.Osler's definition, the starting and end point of
integral curve have finite distance from the origin (his all results
are obtained by the integral curve which has the origin as starting
and end point), that is,his definition is a type of Riemann-
Liouville's definition, therefore by his treatment we can not obtain
the above author's results. Author's definition is a type of Weyl.

Note 2. We must notice that

(u v), +#(v u),, for ~ #integer,

(uv), =(v u)y for ¥ =integer
and fy =(f-1)y for v ¥ integer,
which are mentioned in § 6.

§ 7. Some properties of regular function (I)
Theorem 1. If}fy(z)lszconst.), we have then

(1) (ﬂzvﬂ"yzj(ﬂzk;gﬂ Z_iﬁ%%ﬂggq (1
(ii) (ﬂzb+2_l%%é(ﬁzb+1+(V+1;§/+2)(ﬂzb
=102 + 2 4 1)§y + 2) Loy (2)

z
for arbitrary v and z 0, where (fez),=(f(2z)-2z), and £,=1,(z).
Theorem 2. If |fu(z)l< M(const.) , we have then following relation-
ships for arbitrary v, fu#+0 and for z #0.

(fe2)y

(ii) (_7;——-)/“ i =—-u£i—\f—':(%;-§"—+-l)/u (for pFinteger £0) (4)

fy,_1 f\/ _ fg__f fy - Y+ 1 _ (f' Z)\/
g T2 dZ—-(”_(_fy z )_1 = Vi z VT (5)

(for ¥#0. Omitting the constant of integration.)
. d
(iv) 37 (\(f-z)‘,' f,,} = ((f-_z)y' fv),]

=2zf f + o, f, 0+ (v ()2 (6)

(iidi).

v v+
. 2 ~
(v) g(szyf‘jH VL, G, (V4 1)(82)2) dz =(£e5),- £,
(Omitting the constant of integration) (7)

Theorem 3. If |f,(z)l <M(const.), we have then following equality
and inequalities for real z(#0),~ and for fuv+0.

(1) fy'_jfwr1=(f,,)2 <= (e(—f'fz)”)1=1 for ¥%0 (8)
(1) £, 357 = (E2) ¢ ror vso (9)

9



(1) 1,5, >(£)7 = (L2

R T )1>1 for ¥<0 (10)
f’ N
- 5 H(féz)i)'1>1 for v >0 (11)
(i11)  f,_ £, . <(fy)° > ¥
V-=1"v+1 l(f'z)'
: : (‘Tﬁ‘g)1 < 1 for wv<O0 (12)
VvV

Theorem 4. If |f,(z)|< M(const.), we have then following ine-
quatities

W (BEse (W), 0300 R o3Rg (3
i i Ly (£ 2z)y 0] f V>0 1
(1) ( (11?*3/+‘>< ° ( R 20 for V<0 %12%

for real v, 230, £, 40 and for yinteger £0.
Theorem 5. We have following relationships for | fy(z)| <& M(const.)

. : gf'Z)y_ T —_~1
(1) '}i% 7,0 7 for &i% o F:M(oonst ), (17)
.. . f-. . fy-1 7T
(ii) gi%( fi i)1 =1 for -}i% (% ;Z I M(const.), (18)
(iii)  1im (£ %f"—i) , =z for linm (£:2)v | _M(const.). (19)
Y

[vl>eo\ [v|>o0 "fv

Where z+0, v=*+0 and fy=+0.

§ 8. Some properties of regular function (II)
In this paragraph, some properties of the regular function which

are obtained through the fractional differintegration of product
are described.

Theorem 1. If u=u(z) and v=v(z) are one valued regular

functions respectively, we have then
(i) S vy dz=(uv)y - ((uw),dz (1)
(i1) Cup ) dz=(ud), + §(uit),az (v+0). (2)

Theorem 2. If u=u(z) and v=v(z) are one valued regular

functions respectively and uv+0, we have then

(i) 1im LE—EQ¥-=V for 11m- Kl<IVI(const ) (k=integer >0 ) (3)
v Uy Y=o

(ii) 35% i—1—1——‘11——11111 um=u for limju <M(const.) (k=integer >0) (4)

v V>0 V30! v-K

Chapter 4. Fractional differintegration
of constant and of transcendental functions

§ 1. Exponential function [12]

Theorem 1. (e_az)v:=e—lﬂy aY e78% (for a£0). (1)

10
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(eaz)’,z.-ay e?? (for a £0). - (2)

N
.

Theoremn

§ 2. Hyperbolic function

Theorem 1. (cosh azk,::(—iaf’ cosh(az + iz 1Ty) (for a0). (1)

Theorem 2. (sinh azk,::(—iaf) sinh(az +L%v) (for a=0). (2)

§ 3. Trigonometric function [12]

Theorem 1. (cos az%,::ay cos(az + %N) (for a==0) (1)
Theorem 2. (sin aZ)yzzay sin(az +-gy) (for a#0) (2)

Proof: .We have .
. -iag
==(%(e1az + e ))

(cos az), ‘:%‘{(eiaz)V + (e-iaz)y}

=a¥ cos(az + %v)
with using the Theorem 1 and 2 of § 1.
. 1 i -1 ] v .
(sin azL,=v§Z {(elaz)v - (e laz)y§==a 81n(az+§y)
Another proof of Theorem 1.

(cos az), ==d(cos az%,::]j@ézl) § ngi)gfi ag (c={c, Q})

(O+) $ -z=4, and we have

q:oo N 49, garg B < 27 for g
::[1Qﬁt_l {(cos az)qg(o+) - +1) cos a?d?

(o+)

- (sin az) S 7_6V+1) sin a{d?} (3)

Using C for Re(a) »0 (that is, |arg akﬂ%) and ¢ for Re(a) <0
(that is, %‘<|arg a|<®), we have

g(;.;),z'_(v_*_/])cos an’Z —_(ﬁl—j a cos \J (ggi g é};‘egy)<0\) (4)

g(o+)?-év+1)

Foo

. L 2Wi Ly for -1< Re(¥ )< 1)
sin apdh = fTFIT7'a sin %;v (for a0 / (5)

by contour integration. ,
Substituting (4) and (5) into (3), we obtain

(cos az)y::d(cos az) ;:ay{cos az-cosf%y - sin az.sin_%gv}
PRV e for -1< Re(¥)< 0 ) |
=a¥ cos(az +'§J) (for' a0 / (6)

11



12
In the same way we can obtain Theorem 2.
And these theorems hold good for arbitrary v by the analytical

continuvation.

§ 4. Power function [20]

Theorem 1. If ;£¥%:éjél~<wﬂconst.), we have then

ay _ =ity [(¥ - a) _a-V¥
(z%)y =e ) 2
§ 5. Fractional differintegration of 1
Theorem 1. We have 1y =(1)y =0
for ¥ #-m, where m=integer =0.
Proof: 1In case of a=0, we have 7z2=2%=1.

Therefore we have above Theorem by Theorem 1 of §4, for v=*-m.

Consequently, we see that the constant 1 has the integer order'

integral only, by the above Theorem.
And by direct computation we have (1)y=0, for V¥ >O0.

§ 6. Logarithmic function (I) [191[20]

We have the following theorem for fractional derivative of the
function log asz.

Theorem 1. If |[J"(¥)] <M(const.), we have then

-1 Y
(log az), = - e AT ')z (for a#+0).
az az 0 Lo
Proof: log az::& 4t =S dt S e ds (Re(t) >0, a#0)
1 1 o} ‘
% ~az -5 -azs
=‘§ ‘S e TS4t ds = Sme = ds  (for Re(az)>0)
o 1 o o

Therefore we have

MY + 1) log as as

(log azx,==g(10% azly = " oni o (5 - 27
-8 _ —aés_
v o+ 1)‘§ S:e S : ds iy
- 211 9. (; _ 'Z)\J+1 5
— - e™® I'(v + 1 0 1
-‘So g ds i ZW; )sg (¢ - z)v:rdg }
©q1 (T +1)c o3
- SO T ds { 2ﬂi+ Qg(i = z)V¥T’d§}
And we have seen (for Re(¥)>0) '
Ty + 1) 1 :
g(")v- 21 g(s - Z)v+1 dé:O

12

(1)

(1)

S

(1)

(2)

(3)

(4)

(5)

(6)
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_ 1Y+ 1) 0 1 B
Uy =0 59( Zy T ds =0 (7)
in the previous section, and
'y + 1)g o—ass , —imy v -asz (for larg al<:“72)
211 (S Z)yfi ds=e (as)"e see section 1 (8)

P(Y + 1)( e...‘a,sé —jmy vV —-as8sy for 1t/2<'arg al /r,r\
2ml 3 (5 - z)¥+1 as =e (as)”e (see section 1 }(9)

Substitutlng (6) and (8) into (5), we have then

00 .

(log az), =$(log az)y:: _So ?13— e~ T (as) 722535 (put azs=v)
#'-e_iwyav(az)_v‘Q:VV-1e—Vdv (for |arg az|<™2)
o =imy -v larg al < ®/2
= -e z (V) (;or larg az|<W/2 (10)

In the same way, we have (using (7) and (9))

-iwy _-v for W/2<larg al< T :
(1log azl,==g(1og az), = -e z o ['(V) ( for ]érg|az%<:572 )_(11)

Consequently we have Theorem 1, for Re(¥)>O0.

This theorem gives fractional derivative of order V(Re(¥)>0) of
the function log az, because (1)y=0 for Re(¥)>0. But this theorem
holds good for ¥ such that |T"(¥)|< M(const.), by the analytical
continuation. That is, we can not obtain (log az)_m
for m=integer >0, by this theorem.

§ 7. Logarithmic function (II) [21]
(I) Theorem 1:

(log 2),= Z r’(v—ngd)kzrz(m“)(“g z (z) +e ™ T =Y (1)

N +1-n" re-1) 2
Proof: 1In this case, we must start from the following relation.
(1log z)_1= z log z - z. (2)
We have then log = =(log z'2z - (z
(Log )IM_1 (Log z-z)y - (2)u, (3)

and

e ["(4+1)
(log z Z)u"%;; TOa=m4 1) T () (log Z)ﬂrﬂ (z) [20] (4)
by the theorem on the fractional differintegration of products (see

Chap.3 $§4). ' _
And we have (Zklzze‘lm“ l_%g(;_%% g1 M (5)

n,

by Theorem 1 of § 4. Substituting (4) and (5) into (3), we have
then

1T TQ“-EJ%JS%(mﬂ(log Zzu'_n'(z)n —em T | ;,7(4( 113 1~ /‘(6)

Putting # - 1= in (6), we obtain

(log 2)

1%
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oo T'(ve2) iy 1Y) -
(log Z)y*'%;g P(v-n+2)1ﬂ(n+1)(10g Z)v+1—n (Z)n+e 7*(-{%Z (1)
Corollary 1. If ¥ x-m(m=integer=0), (log z)y satisfies follow-
ing fractional differintegral equation. ‘
» —
(1log zl/+1 +-E-(log z)y =0. (2)

Corollary 2. If m=integer>0, (log z)_m satisfies following
differintegral equation.

m -1 m-1 _
(log Z)—m+1 —-E-(log z)_m - o7 2 =0 . (3)
Note 1. Solving (2) and (3), we have then
~iTy -V ‘
(log z)y =-e 1 [(V)z - (for ¥v=*integer<0), (4)
" and
1 n-1 (__1 m-k

_1.m m¥=3 . N
(log Z)-m"m!z }og 242 T (k) T (5K (for m=integer>1) (5)
respectively. '

Note 2. We can't find above results for (log z), in the volume of
A.Erdélyi et-al 1231, but in the volume of K.B.Oldham and J.Spanier
[24]1 we find :

q -q _
) - TG <Y -0 - 0]

And the same result is shown by Bertram Ross through the another
treatment from that of K.B.Oldham and J.Spanier, in the Lecture Note
vol 457 [25]. However, the starting point of this result is the
definition of Riemann-Liouville.

And in the paper of K.S.Miller (Riverside Research Institute), the
title of which is "The Weyl fractional calculus" [26], we can't
find (log z)y ' '

Chapter 5. Special function and
fractional differintegration _
§& 1. Application of fractional differintegration to the solu-
tion of Legendre's differential equation [27]

In this chapter, some results which are obtained through the appli
cation of Nishimoto's definition for fractional differintegration to
the solution of Legendre's differential equation are reported.

Legendre's differential equation is
‘ (1 —zg)wﬁ - 2zw' +v(V + 1)w=0, (1)
and a solution of this equation is

Pn(Z):'§ﬁ%Ejj é%ﬁ (z? - )" (Rodrigue's formula) (2)

=] ($* - )", (Sehl8fli's integral) (3)
PN (5= z)™t >

14
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for v =n=integer » 0.
Now we denote
L ,(2)E 5o (
W ESVEV 1) a2
2
e S VY (%2, o={d, ¢}), (4

and ¢={¢2, 22,58} , ¢={igrag,s¢}, where ¢ ={g, (G}(k=1, 2,3) is
the integral curves which are shown in Fig. 1. That is, all k¢ are

z _ 1) here, we use Nishimoto's defi-)
nition for fractional order

the integral curve along the cut joining z and -e + iIm(z), and
along the cut joining z and e + iIm(z) for g+ And (C surrounds

only one point z, o surrounds two points z and 1, and ;C surrounds
three points z, 1 and -1. ‘

**1:::::::::: K/ € %;:::::::::::~—
-— + 00 +1ilm (@)
-®-ilm @) ——n = //f:::::::_.——

(I) We have then

4 (st 1) o={, . Re(z)>0
1cLy(Z)‘ oY oms Sio"(é'b Z)y)-ri dsg ( |z _ji_ﬂ >19|Zf - ﬂe>Z§ >0

—g¥) S; {iﬂu}y%dr b °{(z+ge*® )21 }Vde &% -n) (5)

2T o[ 2Zpete |
where g(v)=1/{lﬂ(y + 1)!“(-v)}, a=-T, b=nand - (for double sign F)
for 4C and g(v)=e" ¥ /{ (v + 1)[“(—V)}, a=0, b=2% and + (for double
sign ¥) for 1Q.0n=intager>0

Putting p=fVEE:7 oF-1¢ (/Ef:7==SeL¢ 0. &, ¢, ¢: real), we have
then

() =ty Sl 2 e Ve - cosn(9- 1 0y (©)
1AY)

gLv(Z) —]q(y - 1)]ﬂ( —) S {z +z% - 1 oosh(%’— 1¢)z d¢p (7)
from (5), for z%241 and ¥ <0. '
And Heine's integral representation for Legendre's function of the

second kind is o
Qy(z)z-%»g_w{z + Vz2 - 1ocoshw?} aq, , (8)

therefore we have

V=TT Py ), (for ¢=0) (9)
e~ TV

1qL (z) = =TT 1)14( ) 2Qy(z) . (for ¢ =0) (10)

15
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and RN COE T VO (11)

That is, cLy(z) contains Legendre function of the second kind.
4

(II) Put =2z + ;122 -1 g, -sz_z_—:—fggelqs (12)
(5, ¢; real, z*+1) for Re(z) >0, we have then

ch(Z):zjci Szcgvgf_’zgii g (lz - 1< S <lz + 1])

== Sz + 127 = 1 cos(p - $)} ae, (13)

where a =-q, b=m for ,C, and a=0, b=2% for L.Q
And Laplace's first integral for Legendre function of the first

kind is
Pv(z)==é%-gj&z + Y2% - 1 cos @ }v de, (14)
therefore we obtain szy(z)zzPy(z)_ C{.Ly(z) (for ¢=0), (15)

for Re(z)> 0.

(III) 1In case z is a pure imaginary, if we put
é =z + $f (s =e9/y% + 1, where 0< ¥ <o and y—-Im(z))

for integral curve 305—{39, g}, we have

3 .
_ 1 ¢bg T s PR
3cLy(Z)"§ﬁ Saiz + V2% =1 sin(® - 1?); de (16)
where a=-%T, b=17 for ,C and a=0, b= 2% for 39_.
(IV) And the author want to make it clear that we must use

(i).((22_1)V)v::£ﬁi%;%ﬂﬂl S V2% =1 cos(6 - ¢D+z} de (17)
(v>0 (Re(¥)>0). Re(z)>0)
=2" (v + 1)Py(z) (for ¢=0)

for(fractional) derivative ef the function(z?® - 1)Y, because in case

of ¥<0, z=4+1 change to singular point (since the author's defi-
nition does not allow of the existence of singular point of the
function in the integral curve C and on C), and we must use

Y oo |
(ii) ((22- 1Y?y ==Tﬂ%33§_wﬁ-z-+yz%-1 cosh(?—i¢)F}d? (18)
V .
=P_(2—W'2Q('Z) | (i;’fg; ?gieﬁg<—1) (v<0 (Re(v)<0))

for (fractional) integral of the function (z? - 1)¥, by thé author's
definition for fractional differintegration (we must use (7) for
z(real) >1).

And Heine's integral representation for Legendre's function of the
second kind is shown as

16
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1 00 i v o
Qy(z)=:§{L“iz + ¥z - 1 cosh ?} aq¢ (for z >1)
in general. Therefore the form- v
Q (z)=%Sfoiz + sz - 1 cosh(¥ - i¢)}y a¥ (for z ++1) (19)

which is obtained by the author in (I) is the more general form of
Heine's integral representation.

§ 2. Some comments on treatment of § 1

(1) 1If we put \N==§c (¢ - z)Av(é)déb (1)
as a solution to the Legendre's differential equation, we have
(Y + 1)(g*2 - 1*1 _
(& - Z)v+2 o« =0 (2)

as a equation to determlne the integral curve C. The results men-
tioned in §1 mean that we can choose the integral curves which are

shown in Fig. 1 for unrestricted v.

(11) OnlyicLy(of the groupicLy,chy andscLy)contains the Nishimotds

fractional differintegration of order ¥ of the function
f(z)=(2%* - 1)¥. ©Next, we have

= 1
1§§ g‘v cy—Rﬁo 2”?6/+1)«Z _1))
for vy =n=integer 20. And L, contains Nishimoto's fractional de-
rivative for v >0. N

(IIT) T g § A8 = 1Y g (g7 te, gl Re(2)>0)

1y 2ol 5 (g - z)V+t lz + 1] >jz + 1] > ¢ =0

— 1 I 42 _ .
AN (‘12;1) S (é(—z)‘l‘)1 ds = 59 ll(y+1 ) ((22‘1 )y

—o+iIm(z)
is a solution to the Legendre's differential equation
2
(1 - zz)-%zg- 2z-%ﬂ-+-v(v + Dw=0. (3)
. _ 1 (.2 _ v
That is, we have WSSy R 1)62 'l))y ‘ | (4)
Putting u:=(22 - 1) (5)
- 1 B

we have then w-—2yr,(y Ty Uy (6)

and substituting this into (3), we obtain

(1 -z)u+2—22u + v(Y + 1)uy =0 . (7)

V41
This is a fractional order's differintegral equation. This result

is an important one. ‘

(IV) If the author's above treatment for Legendre's differential

equation was found in old time, perhaps the problem of fractional

calculus has been solved already. In this sense, the application

17
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which is shown in § 1 is very important.

(V) Keith B.Oldham and Jerome Spanier [24] Bertram Ross [28] and M.
A.A1 - Bassam [29] [30] applied their definition to the solution of
Legendre's differential equation. The author hopes all readers
compare author's above treatment with those of Oldham and Spanier,
Ross and A1l - Bassam etc.

§ 3. Representation of the Bessel function of the first kind
with use of fractional differintegration F
Theorem 1. Bessel function of the first kind Jy(z) is represented

as follows
R —Z't

<, ()" (2 2t
Jy(Z)z Z m! I—n(;+m+1)( )O‘t (82 )(y+2m) (Iarg 4 |<(‘-2I (1)

m=0

( Zt)
where 18 (v +2m) means fractional dlfferlntegratlon of order ¥+2m

(with respect to t) of the function eEt

§ 4. A representation of the Hermite function with use of
fractional differintegration
Theorem 1. The Hermite function Hy(Z) is represented as follows.

()= e mymL_*_on(l—'lf)"g/-(:fl +23n)) (822’5)0. . (e—ZZt) (v-2m) (l‘arg 'z.]<—125) . (1)

& 5. A representation of the Laguerre function with use of
fractional differintegration '
Theorem 1. The Laguerre function Ly (z) is represented as follows

Ly(z)=e%*(e™® zY), (v: arbitrary) ' (1)
where (e™? zy)y means fractional differintegration of order w(with
zZ Y ’

respect to z) of the function e 7 z

§ 6. Beta function and fractional differintegration of the
functions zP” | and (1 - z)q—1
For the Beta function, we have following representations.
Theorem 1.  If ![(zp—1)_q]z=1l:;M(const.), we have then

-imq . »

=& [(g) sin (p + q) ¢, p-"

B(p, q)= ST ED [z ) g) 5er (1)

for p 6= {(p )| p#m, q=m<0} (m=integer)

where (z°~ 1) means fractional differintegration of order ~-q of
p- 1

function z

Theorem 2. If iB1 - z)q—T)_éiz o < M(const.), we have then

18



V _.Iﬁ(n) sin w(p + q) T _\q-1 .
5(p, a)= e (G =27 L ]ass (2)
for D = !‘l(p,q D+m g0, q:g:m} (m=integer).
P,q

§ 7. Some contour integrael representations for Hypergeometric
function »
We have following contour integral representation for Hypergec-

metric function.

Theorem 1. If |zl >1 and

F(ﬂ) P,S'O((;l)3+1 ) < M(const.),

we have then‘
T, =¥+ 1:X=-B+ 1: 1/2) @

_anfexe-wb T(8) TM(o-8+1) 3,3-3'(1_4)2{_‘0;_1
= © " 2ni ] (&) Zdw+ig1m(z) CEDG ds . (1)

where ,F (&, &-¥+1: a~-B+1: 1/2) means ordinary Hypergeometric
function and we choose + sign for larg z| < %2, -sign for "/2<larg z|
<1, for double sign x .

§ 8. Relationship (zﬁ_x (1 - z)("u_1)ﬂ_1 and Hypergeometric
function
(I) We have following Theoren.

then
(Zﬂ'r (1 - Z)K-“_1)ﬂ_1

_ i@} — F‘E;(Zeﬁ) 2% B (X, ®=F+ 1: 0= g+ 1: %) (1)

CS) ' »
: i - < . &
Theorem 1 If jzi>1 and (ﬁ—17]“(d-ﬁ+7) M(const.), we have

where we choose (+) sign for |arg z|<®2 and (-) sign for T/2<|arg z|
<T for double sign + . -
(II) Some comments

(i) Through the above results we see that the fractional differ-

integrated function (zp—7(1 - z)ﬁ_“—1)P_1 is a solution to Gauss'
Hypergeometric differential equation
a?w , 1 dw _
2(1 - 2) gzz+ {T- (0+p+ 1)z} g5 - agw=0. (2)
Therefore, putting =27 (1 - z)f_«_1 , (3)
we obtain follbwing fractional order's differintegral equation for u
1 —
z(1 - z)up+1 + {q‘— (ot +8+ 1)ZIUP - dpup_1-—0 , (4)

from (2), because @ is arbitrary and

B=T(q — )T~ (5)

w=up__1=(z Bt .

19
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That is, u=z is a solution of the fractional
order's differintegral equation (4). '

ﬁ-b’m R Z)r --1

And we have the relationship 2F4 (o, EE ¥: z)= 2 (ﬂ LK ¥: z),
consequently we see that v==zu_Y(1 - g) ¥ : (6)
is a solution to fractional order's differintegral equation :
z( 1 —z)vu+1~F{T— (upr+ 1)z}v«-dpvm_1==0, ~ (7)
too.
(11)Twept w=§ (&- 2 v(das (8)
L

as a solution to the Hypergeometric differential equatioﬁ (2), we
have [$# 570 - T % g 5P T] =0, ' (9)

as a equation to determine the integral curve L. The results

mentioned in §7 mean that we can choose the integral curve L==C=%Q,g
Note. w=(-2)"" P (&, x- ¥+ 15 x- @+ 1; %) (10).

is a solution to Gauss' Hypergeometric differential equation (2).

Chapter 6. Some fractional order's linear ordinary

differintegral equations with constant coefficients

§1. Solutions of fractional order's differintegral equations
of type wylz) + xw(z)=0 ¥: real) :
There are some papers ( [24] [28] [31] BZ]) on the solutions of
fractional order's differintegral equation of type
wy(z) + »xw(z) =F(z) (N const. V: real), (1)

But all these treatments are discussed with use of infinite serieg
The author will treat the solutions of the fractional differintegrél
equation (1) with use of complex integral [34].

(I) Firstly, we will solve the fractional order's differintegral
eguation of wy(z) + »w(z)=0, (2)
where wy(z) denotes Nishimoto's fractional order's differintegral of

function w(z).
That is,

wlz)= guy(z)= B €Wl g, (3)

where  C={C, Q}. Consequently
(1) and (2) are differential equation for V¥ >0,
and, (1) and (2) are integral equation for Vv<O0.

Now, we assume the solution of contour integral form

w(z) = fLeztvmdt, : (4)

20



21

where v(t) is undetermined function and L is an undetermined inte-

integral curve. We have then

m
w(z)= 1§ —prdt =M 21 22 A %' (5)
iﬂ(l“flK)},/y

m
==g;§ B, eZp\e (Bk==M RITLA, =const.) (6)

as the general solution of (2) by the residue theorem, where m is
determined according as ¥, that is
| m=Ffinite for V=rational number,
and m=infinite for v=irrational number,
Formula (6) gives the general solution of fractional order's dif-
ferential equation for ¥ >0, and gives the solution of fractional

order's integral equation for V¥ <O.

Table 1.
Y Differintegral equation ) Solution
1/2 W (2)+2w(2) =0 w(z) = By exp {z(1ei7)%}
1/3 wa(2)+20(z)=0 » w(z)=Byexp {z(2e'7)}}
23 weeyp(2) +iw(z)=0 w(2)=Bo exp {2(2¢'%)**} + By exp {z(2¢"*7)*?}
—2/3 | W(-2;5(2)+Aw(z)=0 w(z) = By exp {z(7¢')~%?} + B, exp {z(je*7)~3 "}
1 w’(y) +2w(z)=0 w(z) = By exp {2(1e7)} = Bye~ 2 -
2 w”(2)+2w(2) =0 w(z)= By exp {2(2€'7)1%} + B, exp {2(7e?)¥%)
=Byexp {iv' 2 2}+Bexp {—iV % z}
. X g
-2 w(_g)(z)+2w(z);q w(z)= B, exp (ﬁz>+B1 exp (lez>
- .t 2
» -—Boexp< N/lz>+Blexp<~/z z)
5/2 wes2(2) +iw(z) =0 w(2)= By exp {z(4e'7)*/%} + B, exp {z(2€?7)*3} + - - - + By exp {2(2e=)*/3}
—5/2 W—sy(2) +Iw(2) =0 w(z)= By exp {2(1e’=)"*/3} + B, exp {2(%e/3=)~2/3}
+ -+ -+ B, exp {2(2"7)~*/%}

Note. In case +=irrational number, f(t)::eZt/(ty+>Q has singu-
larities everywhere on the circle |t] =|%J1Al (radius of the circle),
so these singularities are not isolated. However, every singulari-
ties never overlap each other, consequéntly above result (6) is cor-
rect formally, since we choose a closed Jordan curve L such that it

encloses all singularities of f(t).

§2. Solutions of fractional order's differintegral equations of
type wy(z)+xw(z)=TF(z) (V: real)
(1) Case of F(z)= 2%
A particular solution of fractional differintegral equation

w(z) + xi(z) =e?” (1)
is given by w(z)= av—%—ifeaz ) (2)

for a¥ + X %0.
Consequently general solution of (1) is given as follows (with use
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of (2) and (6) in &1.
w(z)::%%% Bkexp[zikeiq(1+2k)}1A!] b 8% (a¥ + x=#0). (3)

a¥ + x
(II) Case of F(z)= cos az

The general solution of fractional order's differintegral equation

wy(z) + xw(z)=cos az. (4)
is given as follows. _
w(z)= %?g Bk exp[?{Aﬁi%(1+2k)}1A1
= +/\21 205 I {(a” cos %yﬂ\)cos az+(a’sin —'g—l’)sin az} (5)
for 2’ + 2xna” cos %—vy NG +0. (6)

§3. Solutions of fractional order's differintegral equation of
type w%u(z)+bwﬂ(z)¥xw(z)=:F(z) (M: real)
In this section, the solution of differintegral equation of type
wgﬂ(z) + bwﬂ(z) + aw(z)=F(z), (1)

where b and » are constants, and wx is real, is discussed. And wﬂ(z)
denotes Nishimoto's fractional order's differintegral of the funcfion
w(z) again [12].

(1) wzﬂ(z) + bwﬂ(Z) + xw(z)=0 (2)

is a differential equation for w>0,

and  is an integral equation for u<O0.

Using matrix, we have following general solution for (2).

W= :o 501,1: JOxZ 0y eHKZ} (for b2 - I\ +0), (3)
where ‘ .
4 b + BT 4N é%("b + YD*-4N) = §1e1¢' - giel"b’ . o127k (1)
== PO TAN
2 . 3 .
l%(—b - Yo EN) Eigze1¢.z:= g?l¢25912ﬂk (5)

for b2 - 4x+0, and

<= {%ei(% +2m<)\§1/;4 :9;11//1_ei(¢1 /n), 12/ )k

:gdkEGk (g:?;l/'u -ei(@'/#)’oj:ei(zm/#)’kzé;T12y"',m)(6)

S— { gei(¢:+271:k)} 1T _ gj//‘ i@/ | 1(2m/u)k

—nek=n, (nmgl ) B 01,2, (7)
respectively{ And m is determined according as u, thdt is
m=finite for pg=rational number
and m=infinite for ju=irrational number.
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(II) Case of F(z)=e2?

The general solution of fractional differintegral equation

az

wzﬂ(z) + bw#(z) + aw(z)=e Qu: real)

is shown as follows.

w(z)==:%: {C eGrZ 4 ¢ eHKZ} + ! e®?
' k=0 | "4k 2,k aZt + bal + X

for b%2 - 4> %0 and for a=z% Gy s aﬁFHk(a”/‘+ba/“+>\=(=0, axs).

(III) Case of F(z)=cos az
The general solution of

WZM(Z) + bwﬁ(z) + >w(z)=cos az (m: real)
m
is w(z)=L%;% {C1 X eUKZ | Ch i eHKZ}

. u
(a%ucosvw+baﬁcos %ﬂ+%)cos az+(a%

sin mutbatsin gﬁOSin az
4o

(azﬂcosmy+wacos %ﬂ+A)2+(a2ﬂsinW#+baﬂsin‘g#)z

for b2 - 4X*0 and %2 + p2:$0, where

& ==a2# cos Uy + baL"L cos'%w + X,
2m . ; . T
g =a7 sin «_n:)u + ba# sin SHe
(IV) Miscellaneous and some examples

Some examples.

(i) In case of b=-5 and x=4, equation (2) becomes

W, (z) - 5wu(z) + 4w(z) =0,
)1 7
and some solutions of which are shown in Table 1.
Table 1.
Erder | Differintegral equation Solution w
1/2 w;—5wy s+ 4w=0 C;, €'+ C; oe*
1/3 Wy 3—bwy 3 +4w=0 C1, €%+ Cs,0e?
1/4 Wy —5wy+4w=0 C1,067% - Cy, 06* :
23 W3~ w3 +4w=0 Cy,0e¥+C), 1 exp {8e72}+ Co,e* 4 Cs, exp {772}
3/2 wy—5ws2+4w=0 C,.oexp {4*72}+Cy,1 exp {4*3e' D=2} + C, o exp {431 D=z}
+Cs,06*+Cs 1 exp ' @72} +Cs 0 exp (€' 72)
1 w, 5w, +4w=0 Cy,06"+Cs 067
2 w,—5wa+4w=0 C1,06%+Cy,1exp (2672} +Ci,06*+C:,1 €xp {e'72}
—2/3 Wes;3—5Wgp3+4w=0 C1,0exp {(1/8)z} + Cy,1 exp {(1/8)e 372} 4+ C.,,e* + Ce 1 exp (e~ 372}
-3/2 W..3—Bw_g/e-+4w=0 C1.0exp (472} +Cy,1 exp (4723172} 4 C) s exp {47201z}
+Cs,v07 +Co,1 exXp {e" i D72} +Ca s exp {67733z}

(ii) In case of b =1, X=-2 and u=1/2, equation (2) becomes

w1(z) + w1/2(z) - 2w(z)=0.
And, (4) and (5) are reduced to

. 1 =612ﬁk
st=L(-11:5 +8) = {

23

23

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
(17)
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We have then 5= Gy —et4TE s Go=1 (for k =o)»
from (16), and S==Hk==22e:'L2ﬂEei4wk HO= 4ei2ﬂ=:4 (for k =0)
from (17). Therefore we obtain

w(z)= 1.0 e? + Cs0 42 (18)

as the general solution of (15). The same differintegral equation

with (15) is treated in the volume of K.B.0Oldham and J.Spanier [24],

but the author's above solution is different from their solution.
(iii) In case of b=0 and 2=¥, equation (2), (8) and (10) are

reduced to

wy(z) + aw(z) =0 (2)
wy(z) + aw(z) =e?? (8)
and w,(z) + xw(z)=cos az, (10) -

respectively. The solutions of these equations are obtained by (3),
(9) and (11) respectively, of ourse, in which b=0 and 2u=v. And
these solutions are coincide with those of previous section.

(iv) In the same way with (I), we can obtain the solution of
linear differintegral equation of type

v, +an_1w(n_1»‘+...+a1wﬂ+aOW'=O (u=fractional, n=in§eger >0),(19)

where an_1,---,a1 and'ao are constants, in general, if we can get
the characteristic value of following matrix A, we can obtain the

solution of above equation (19).

R
1 0 0 0 o0
0 1 0 0 o
A=| o 0 1 0 0
. . 0 .
. . P .
0 00 0 - 1 0!

For matrix A, we have following characteristic equation
[A - s'“Enl =0 ~ (E, =unit matrix of n-th degree), (20)

for characteristic value 8. And (20) is a n-th degree's equation
for &, consequently, in case of n 35, we can not solve (19) 1in
general. But in. special case we can obtain characteristic value for

n »5. Therefore in that case we can solve (19) for n »5.

Chapter 7. Orthogonality, norm and some properties of

some fractional differintegrated functions

§1. Orthogonality and norm of function (cos‘azk,[BSJ
(I) Orthogonality of function (cos az)y
Theorem 1. If ¥= M+ 2m + 1 (m =integer), we obtain
24
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Y 2a _ ’
J-1/2a wix Wy dz = (1)
for a=+0, where wg::(cos aZL, and v is real.
(II) VNorm of function (cos az),
e e e _“' N; ,_L:L_
Theorem 2. We have “wy“:'ﬂtwy, Wy)=a V2a (2)

as the norm of the function wy=(cos az),, for real a >0 and for realw.

§2. Orthogonality and norm of_fuhction (sin az),
(I) Orthogonality of function (sin az)y
Theorem 1. If w¥=pa+ 2m + 1 (m=integer), we obtain

S_zﬁ: W Wy dz =0 | (1)

for a=+0, where wy:z(sin az), and v is real.

v
(II) Norm of function (sin az)y

Theorem 2. We have ”wynzzy(wy, wy5:=ay'g% , (8)

as the norm of the function wy={sin az),, for real a >0 and for realw.

§3. Relationships of (cos az), and (sin az)y, [35]
We have following theorems through the results of §1 and §2.

Theorem 1. We have
H(cos 'az)'yﬂ = (sin az)y ”: a"y%% , (1)
for real a }O and real .
Theorem 2. We have
T T
g_é;ga (cos az)y (cos az)ydz ==S_é§3a (sin az), (sin azlydz (2)
— MY ig— cos éi v -0 (for a=0). (3)

§4. Differintegration (with respect to order v) of the fraction-
al differintegrated trigonometric functions (cos az)y and (sin az)y

357
| S |
'We have following functional relationships for (cos az)y, and (sin
az), , since they are regular functions for the order ¥. (for a=0).
Theorem 1.
(1) é%(cos az), = (cos az)ls log a - % (sin az)y (1)
(ii) é%(cos 7 )y = - %‘(sin 7 )y (2)
(iii) é%(sin az), = (sin az), log a + %—(cos az)y (3)
(iv) g%(sin z)y==%-(cos Z)y : (4)

Theorem 2.

25 s
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(i) §%§<Sin az)y (cos az)y}==2(cos az), (sin az), log a
+ %[i(cos az)y}2 - {(sin az)y}z] (5)
i \ ~ T N . Al
(ii) é%i(sin z), (cos z)yfz:% chos zb&z - i(sin zb}fj (6)
..y d J(sin az)v)_ 1l { (sin az)y)?_ 1 _2V}§ v -2
(111) 350 (cos azk |~ 21 * 1 Tcos azly | |~ 2 2 1(cos azlhyj (7)
. 4 [(sin z)v}_ 7 (sin z)y127_ @/ .. _2
(1v) Sifsinzh }2[1 - {etn o] |- Fceos 2)y ] (8)
Theorem 3 Omitting the constants of integration, we have then
(1) g(cos az),, d¥= 5 1 2{%(sin az), + C%?(cos az)log a}(9)
1+ (':,i log a)
(ii) S(cos z)ydv=7—% (sin z)y, (10)
(ii1) ((sin az), &Y =—- ! 2{-%(cos az), +(7%)2'(sin az)y log a}(ﬁ)
J 1+ (3% log a)
(iv) g(sin z)y A = w% (cos z)y . A (12)
Theorem 4. Omitting the constants of integration, we have
(i) 1log a-. S(cos az), dv - %1S(sin az)ydY =(cos azly (13)
(ii) 1log a- 5 (sin az)ydy + %—g(cos az)ydY = (sin azly (14)
(iii) 2 log a- g(cos az)y (sin az)y, d}./+—'2"E g{(ccs az)y}’-dy_g S{(Sih aZ)'y}zdy
=(sin az)y (cos az)y (15)
(iv) Si(cos zL}z dy - S{(sin z)y}z(il=r%(cos z)y (sin z)y (16)
1 2 (sin asz) |
(v) g{(cos az)y}fdv—ﬂ‘razy' (cos az):: (17)
. 1 _ 2 (sin z)y ~
(vi) g{(bos ing(hhn?gwcos Z)y - (18)
Theorem 5. (cos az), and (sin az), satisfy following differential
equations (19), (20) and (21), (22) respectively for a 0.
2
(i) %%—log a-%¥+(%’—)zw=—g- log a-(sin az)y (‘19)
P w T2
(i) g37 + ) w=0 (for a=t) (20)
2
(iii) -%32-- log aw%%-+ (%S’wc=%-log a+(cos az)y (21)
2 .
(iv) '%;% + (%azvr=0, (for a =1) (22)

where w—=(cos az), for (i) and (ii), and w =(sin az)y for (iii) and -

(iv).

§5. Some fractional differintegral equations satisfied with

R6
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(sin az)y and (cos az)y

Theorem 1. wy, =(sin az), satisfies following differintegral
equations.

(i) Vypo * a2wy==0, | (1)

+ azwy:=a2 (cos az)y (2)

(11)  wypp + awy,,
‘where a0, and ¥ is arbitrary.
Theorem 2. wy =(cos az)y satisfies following differintegral
equations.
. 2 :
(i) Wypp = @ wy =0 (3)
(11)  wy,, - awy 4 + a2wy:=a2 (sin az)y (4)

where a0, and v is'arbitrary.
Note 1. In case of v=integer, equations (1), (2), (3) and (4)
become integer order's differintegral equations. 7
Note 2. Equations (1), (2), (3) and (4) are fractional order's
differintegral equations with constant coefficients, hence we can

solve them with the method which is shown in Chapter 6.

§6. Some fractional differintegral equations satisfied with
(sin z-2),,
Theorem 1. w, =(sin z-z)v satisfies following fractional differ-
integral equations.
2 2

(i) v+ o1 z  + Y +.3’

LT Wy = - (cos z)y (1)
2

. 2
.. y+1 254z (V+2)+Y
(11) Wy oty g =5y ={ Z

+y}(cos z),-(sin z),.2 | (2)

V42 L) (v2) v(v+1) (V+2)

(iii) Wypom g Wyt T Wy =-z(sin z), - ‘= (cos z%,(B)

where ¥ is arbitrary and z 0.

§7. Some fractional differintegral equations satisfied with

(eaz Z)y

Theorem 1. w(z) =(e?? 2)(az=0) satisfies following fraction-
al differintegral equations.

-1

(1) wy(z) - & +X2——u(s) =0 (1)

.. a

(ii) wy+2(z) - awy+1(z) - EEFKTWV(Z)zzo .(2)

. Vv +2 + Y+

(iii) wy+2(Z) --~Z——‘w),+1(2) +‘(y—%i) w,(2)

=27t 3%,y Uy + 1) (v 4 2)eRP 1 (3)

Z
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for arbitrary ¥. That is, w=e"%z is the solution of fractional
differintegral equation of (1) and wy =(e®?z)y is the solution of
fractional differintegral equation of (2) and (3).

§8. Orthogonality and norm of function (e%%z),
(I) Orthogonality of function (e%%z),
Theorem 1., If
1 1
“z_‘(1 +S) /1:——(1 -s)
1 ’ 2 or 2 (1)
_ 1 , 1
[V-——z—(1~g) V= 2(14‘%)'
]
we have then 31WﬁWde =0 (2)
for a+0, where wy, =(e®?z)y and =1 + 4a%
That is, functions (e2? Z%{ and (2% 2z)y

are orthogonal on the interval [~1, 1], for 4 and y which are shownin
(1) and for .a#0. k

(II) Norm of function (e%? Z»{

Theorem 2. We have

uw}‘“: m =[a2_ﬂ-‘| {(1+21 ﬂﬁ+ﬂ—)51nh Ra + (214 1)cosh Za}]% (3)

as the norm of the function wu:=(e z )y for real a >0 and for real
M such that

-1 1
a {(1 t A e )31nh Ra + 5—(2# 1)cosh 2a}'}0.

In case of a=u, (3) is reduced to

o=

TAN Yol [(ME1=22) sinn 24 + (2 - 50 ocosn 24]]% (4)

]
for M%” 1 ;FAM 4—}2- 2#) sinh 2 + (2 --ﬁ) cosh 2/(})0.
W\ Z/f 7 i
And in case of /42-1 , (3) is reduced to
lwll='/1 + 1/4a* 4/sinh 2a (for real a>0). (5)
2
Chapter 8

§1. Table of fractional differintegrations of elementary
functions (by Nishimoto)
Following is a table of fractional differintegrations of elementa-

ry functions which is obtained by the author's definition for

fractional calculus.

28



Table 1 23

Nishimoto's Fractional differintegrations

of elementary functions

£(z) _ £,(3)
1. 1 | 6 (V+-m, m=integer >0)
2. e 2% (a%=0) aV 2%
3. o 2% (a==0) . e_ity a¥y e72%
L. cosh az  (a=%0) (-ia)” cosh(az + igi:/)
5. sinh az (a=20) (~ia)y,sinh(az + i%—)
6. cos az (a=0) a¥Y cos(az + %%W
7. sin az (a=%0) a¥ sin(az«+jlw
g .8 -1 F§V__) e J/lgv a}i M, M= const)
r'(-a) \T=a)| = J
-iny -Y | | = )
9. log az (ax=0)| - € [7(+)z (JT'(M)} €M, M=const.)
' m-] ' ym-k -
1 m LM S7 (-1)
10. log z —i? log z + 2 EES'K!{(m—K)!}(m—K)
(v=-m, m=1integer )1)
N}
27] %ﬂlﬁn(m 77T cos(p-$Pdd | Re(z) >0
v >0
Vv
1. (5% - 1) 2T (¥ + 1)Py(2) (¢ =0)

v

e AT | i (o LT o

v <0

>/
Tﬁéka-sz(_Z) (=0, z(real)<-1)

em{-o&(r-y-ﬂ} () 5~ %

VT o -v)
"
X F. (ot,x-¥+1: k=-y: —)
in v+12f(1_)voc1 271 z
/ + for ‘larg z}<%—, - for%{(;arg zi< \
\ for double sign & and |z|>1. ' )
Note. There are some tables for fractional integral or fractional

derivatives, for example, the tables of fractional integral by
A.Erdélyi et al. [23], and that of fractional derivative by T.J.Oslkr
et al. [25]. The author hopes that all readers of this paper com-

pare above results in Table 1 with that of another papers.
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