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A GENERALIZATION OF FRACTIONAL CALCULUS AND

ITs AppLicATIONS TO EuLER-DARBOUX EQUATION

Megumi Saico *

1. Introduction,

The fractional calculus has been investigated by many mathe-
maticians. (see [141) In their works the Riemann-Liouville oper-
ator (R-L) was most central, while Erdélyi and Kober defined their
operator (E-K) in connection with the Hankel transform. (see [8])
Thereaftef various generalizations have been made; (see [131])

Here we shall define a certain integral operator involving the
Gauss hypergeometric function. (cf. Definition 1) Such an inte-
gral was first treated by Love [9] as an integral equation.
However, if we regard the integral as an operator with a slight
change, it contains both R-L and E-K as its special cases owing to
reduction formulas for the Gauss function by restricting the para-
meters. The more interesting fact is that for our operator two

kinds of product rules may be made up by virtue of Erdélyi’s
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formulas (see [3]), which were first proved by using the method of
fractional integration by parts in the R-~L sense. From the rules,
of course, the ones for R-L and E-K are deduced. Moreover, our
operator is representable by products of R-L’s, from which it is
possible to obtain the integrability and estimations of Hardy-
Littlewood type [6]. We shall also define, in parallel, another
integral operator on the interval (x, ), which is an extension of
operators of Weyl and another Erdélyi-Kober. (cf. Definition 2)
Then the formula of integration by parts with respect to our inte-
gral operators is obtained. | Section 3 is devoted to define the
fractional derivative corresponding to the above fractional inte-
grals and to investigate several formulas.

The fractional calculus has been applied to various problems in
analysis. (see [131]) ‘For instance, it is known that the calculus
is valuable in the theory of equations of mixed type or hyperbolic
type with degéneration. NahuSev [11] posed a problem for the

degenerate hyperbolic equation

(l.l) Y 7 = = 01 (m>0)l

in y > 0 imposing boundary conditions, one of which is a linear com-
bination of fractional derivatives of the solution on both charac-
teristics. Then many results for various similar problems have
been published. (see [12], [2], [22], [23] etc.) In their works,
however, the calculus is of the sense of R-L and the orders of

the derivatives are fixed to some numbers. The rest of this report,
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Sections 4~ 8, is devoted to discuss boundary value problems for

the Euler-Darboux equation

3%u B du o 2u
: v - 3% o ’ + ,
(1.2) e %y 5% t ®-y 3y 0, (a>0, B>0, a+B<1)

in the domain {0<x<y<1l} as applications of our fractional calcu-
lus. Note that the equation (1.2) implies the equation (1.1) (a=
B =m/(2m+4)) or some other degenerate hyperbolic equations being
expressed by the characteristic coordinates. The values of the
solution of (1.2) on its characteristics x=0 and y=1 are repre-
sented by our fractional integrals. Then we set Problem I for
(1.2) with such boundary conditions that the generalized fractional
integrals or derivatives of the solution on x=0 and y=1 are equal
to some given functions. Orders of the fractional integrals or
derivatives in these conditions are chosen between some positive
and negative numbers depending on o and B. This problem is
regarded as a generalization of the Goursat problem, i.e. the
characteristic initial wvalue problem. Problem I is reduced to a
dominant singular integral equation with the Cauchy kernel, and
the expression of the solution is given by virtue of the theory
of singular integral equations [5]. In that place, the wvalidity
of the HOlder continuity of the fractional integrals and deriva-
tives of HOlder continuous functions is necessary;

Problems I and III are NahusSev’s type problems stated above.
The boundary conditions are to assume the value of.the solution

on the non-characteristic boundary x =y and the value of a linear
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combination of the generalized fractional integrals or derivatives
of the solution on both characteristics. Problem I differs from
Problem II in coefficients of their second boundary conditions.
That is, while that of Problem II are constants, Problem II in-
volves some powers of x and 1l-x. Then in calculations and for
the solvability different methods are required. In Problem II,
the reduced integral equation is the dominant type similar to the
case of Problem I, and then the solution can be represented explic-
itly. But Problem II is reduced to a singular integral egquation
containing the logarithmic kernel together with the Cauchy kernel.
The solvability is discussed on weighted Lp spaces by refering to
the theory by Hvedelidze [7], where we need to ask for the aid of
Lipschitz spaces in Lp in order to ensure the integrability of our
fractional integrals and derivatives, which are discussed in Sec-
tion 8. |

For detailed results and calculations of this report, see [15],

(161, [17], [181, [191, [20] and [21].

2, Definitions of Fractional Integrals and Their Properties.

Definition 1. Let 00>0, B and n be real numbers. The inte-

0,B,n
IOx

interval (0, ), is defined by

gral operator , which acts on certain functions f£(x) on the

~a-8
o,B,n _ X

X a-1 t
(x-t) F(a+8,—n;u;l—-§4 f(t)dt,
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where I' is the gamma function, F means the Gauss hypergeometric

series

© (a)_ (b)

n n _n
(2.2) F(a,bic;z) = Z e ? ¢ lzl<1,

n=0 n

and (a%1= I'(a+n) /T (a).
Definition 2. Under the same assumptions in Definition 1, the
integral operator Jz;B’n is defined by
l (o]

(2.3) JS‘(O'OB'” £ =

( o—-1,-o0-B x
T () Jx (e-x)" ~t F(a+B,-n;o;1- ) £(£)dt.

Remark 1. When 00+8=0 or =0, I and J are reduced to the

following integral operators:

X
o,=0,n _ 1 -l _ .a
(2.4) 10! £ = v(q) Io' (x-t)* 7" £(v)at = Ry £,
(Riemann-Liouv.ifLe)
(2.5) 1% 0mg o x 21 x(x—tfrq'fnf(t)dt = g% "¢
: 1h4 T (a) 0 0x ’
(Endélyi-Kober)
o,=0,n _ 1 ® _a=1 '
(2.6) 37 £ = ¥75) L (t-x)*"" £(e)de = W £, (Weyt)
‘n [e o]
a,0,n _ X _oo=1l_ -a-n _ 0,
(2.7) JXoo f = T (o) L{(t x) t f(t)dt = KXoo f.

(Endblyi-Kober)

Theorem 1. The 50&00{){@ formulas are valid:

o,B,n _ .-o-B-n _o,-a-n,-a=RB
(2.8) IOX f =x IOX f,
OMB,H 8"” _ aran
(2.9) Iox x £ =TI, £,
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(2.10) %8s o¥fn o oa,-a-n,-a-B £,

Xoo Xoo
(2.11) g B g o yNTR 0B
X oo Xoo

Lp denotes the usual class of p-th power integrable functions
on the interval (0, =) with the norm | - llp for 1<p< o, and L
essentially bounded functions with | - Ilm . If we combine results

of Hardy and Littlewood [6], Kober [8] and Flett [4], we obtain

Lemma 1. let 1<ps<gs e, a<l-1/p and b >a-1/p. 14 gunctions
f(x) and g(x) satisgy xafELp and xbgeLp , and oo>1/p=~-1/q, where
o may be equal to 1/p - 1/q except the cases l=p<g< o and L<p<g

—OO,

then x1/P ~1/a -ota R(())Lx £ and x1/P~1/a-o+b Wiw g belong to Lq

and there hofd the estimations

, 1/p-1/gq~o+a _o a
(2.12) = ROxf"q < Clix fllp ’
v 1/p~-1/q~-o+b _a b
2.13 W < C .
( ) | Il x %0 I Ilq < Clx gllp

Definition 3. Let 1<p<gs< . The condition A;(a,B,n;a;p,q)
means that the members satisfy (1°) a<min(0,-f+n) -1/p+1, (2°)
(i) a>-B+1/p-1/r=>1/p-1/q for p<r<g, or (i) oz2z-n+1l/p-1/r
>1/p-1/9g forpéqu. (If 1=p<g< o or 1l<p<g= o, one of
the equal signs in (i) and (il) should be excluded.) If, instead
of (1°), we assume (1°)' b > —min‘.(s,n) - 1/p, then that is called |

the condition A (o,B,n;b;p,q).
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Theorem 2. let 1<ps<qgs o, Assume the conditions A, (o,B,n;a;

1/p-1/q +B+a I%c},(s,n £ and

O,OB,n g belong to Lq gorn any gunctions f(x) and g(x)

p,a) and A, (o,B,n;b;p,q), then x

xl/p -1/q+8+b J;x{

with x%fe Lp and xbg € Lp , and there hold the estimations

l/p-1/g+B+a _a,B8,n . a
(2.14) I x IOX £ llq < Clx fllp p
- +B+
(2.15) 1x2/P T L/AHBER G0, Ban oy Py
Xoo g p

Furthermone the §ollowing decompositions are valid:
Case (i) ;

o,B,Nn. _ _—oa-B-n_o+B N, =B . _ ,-B_-a-n_a+tf n-B
(2.16) IOx f = x ROx X Roxf = ROXX ROx ble f,

a,B,n _ .n-B _atf _-a-n_-B8 _ _-B _n_atB _-a-B-n
(2.17) JXoo g =x WXm X | WXoog = Wme ono X gr
Case (i) ;

o,8,n . _ _=a=B-n _a+n _B _-n _.N-B o _ =N _-0-B8 _a+n
(2.18) IOX f = x ROx X ROXX f = ROxx ROX £,

(2.19) Jic;B’n g = W;L:n x—a—sw;z gv = xn_B W;:XB Wz:n x_OL“B_n g.
Theorem 3. Llet 1<ps< oo, l<qgs< o and 1/p+1/g=1. Suppose
that constants a, b, o, B and n satisgy the conditions: a <min(0,-B+n)
-1/p+1, a+b=1—1/p—1/ci+6 and (i) a2-B+1/p-1/r=21/p+1/q
-1 fon p<r=<qg/(g-1), 0{1 (ii) ocz—n+l/p—l/r21/p+l/q—i '60/1 P
<r=<q/(g-1). (I 1=p<g<> o1 1¥q<p<w, one of the equal signs
in (i) and (ii) should be omitted.) 1§ XafELp and xngLq , then

there holds the equality
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(2.20) ‘L g (x) 13;5'” £ dx = ‘L £ (x) Ji;s’r]g dx.
(The generalized gractional integration by parts)

Theorem 4, Let o>y >0. Under the same assumptions in Theorem 2,

Ztherne hold the following decompositions:

o,B,n _ <Y:8,n La-y,B-8,v+n
(2.21) Iox f IOX‘ Iox £

= IOL—YIB_(SIT]+Y+6 I'YIGIT]_B"'(S £,
0x 0x

0,B8,N - o=Y,B-S8,y+tn .v,8,n
(2.22) %BMg = g0 SASARAE

= JYI(SIT]_B+6 JOL"Y:B‘S,H'*'Y"‘Sg R
Xoo Xoo

Further properties of I and J are found in [15].

3, Generalized Fractional Intearal and Derivative.

Definition 4, Let >0, B, n and a be real numbers. We
define the integral

a8, _ (x-a)” -l L x-t
(3.1) Iax f = _W— ,'J(a (x~t) F (a+B, T],O(.,——X_a) f(t) dt

for a real valued and continuous function f(x) defined on (a, «)
having order O((x—afc) near x=a with k >max(0,8-n) - 1. When
0<0, by letting n be a positive integer such as O<a+ns<1l, we

define

n
Iarﬂmf — _d__ Ioc+n,8—n,n-nf,

ax n ~ax
dx

(3.2)
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if the right hand has a definite meaning.

The expressions (3.1) and (3.2) are understood as generaliza-
tions of the fractional calculus of Riemann~Liouville, and (3.1)
also contains the Erdélyi-Kober fractional integral, which are

noted in Remark 1.

Another fractional integral (and derivative) are as follows:
Definition 5. Let >0, B, n and b be real numbers. We define

-a-8 (b
a8,n, _ (b-x)"% _oye-l L t=x
(3.3) be f = W JX (t-x) F(o+B, T],Ol,,b_x) f(t) dt,

where f(x) 1is a real valued and continuous function defined on
(- o ,b) having order O((b—x9<) near x=b with k >max(0,R-n) - 1.

When 0 <a+n<1 for positive integer n, we define

n

a,B/ne _ (12 d a+n,f-n,n-n
(3.4) I b f = (-1) = be £,
: dx
if the right hand side has a definite meaning. If B=-a, we write
Qr,=0,M - 10
(3.5) I b £ L -

By changing the parameters in (2.21) we have the following

product rules:

a,B,n ;Y,8,04n _ qoty,B+6,n
r

(3.6) IaX ax ax (G‘IY > O)I
a,B,Mn +Y,8,n=B-y=8 _ _aty,B+5,n-y-§ ~
(3.7) I I x = I.4 ’ (a,y>0).
These are still valid for negative o. It is easily seen that
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Igéo’n is the identity operator for any n, then the inverse oper-
ator of IOL’B’n is given by
ax
a,B,n-1 _ _-a,=-B,0+n
(3.8) (IT.°") " =1 ,
which follows from (3.6) or (3.7). The same formulas as (3.6) ~

(3.8) hold true also for the operator J defined by (3.3) and (3.4).
Let Hk[a,b] be the class of functions which are Holder contin-

uous on the interval [a,b] with the HOlder index k, where 0<k< 1.

Theorem 5.  Let o(x) €5%(a,b], a%0 and n>B8-1. If 0<k+a

k+min(0,a)[a

<1, then (x-a)f 1278 Mg en ,bl. 1§ 0<k+min(0,-8) <1

k+min(0,oc,—6)[a

and o@(a) =0, zthen IZ}’{B’n @ €H ,bl.

Remark -2. Completely similar results to Theorem 5 remain valid
by replacing Igée’n by-JiéB’n, (x—a)B by (b-—x.)B and ¢(a) =0 by
¢(b) =0.

4, Boundary Value Problems for the Euler-Darboux Equation.
Let @ be the triangle OAB, where O= (0,0), A=(0,1) and B= (1,1).
We investigate the Euler-Darboux equation (1.2) in Q. It is well

known that a solution of (1.2) having conditions

. B ,ou ou
u(x,x) = 1(x), lim (y—X)OH (== - =) = v(x)
y>x oy 9xX
is given by the form
gy = B [E 1Bl oot ae
YD T T T (8 ), YT

- 10 -
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1
1-o-8 [ v [x+ (y-x) £t % (1-0) P at

0

I'(l-a-B)

* ST (I=a)T(1-8) Y~

and the values of the solution on two characteristic segments OA

and AB are written as

(o (L) [ (a+B) ;o,0,8-1

u(0,y) = T Toy T

Il

(y)

I(l1-a-g) ;1-B8,a+B-1,8-1

* ST (I-a) toy

0<y<1l, and

(4.1)
_ I'(a+8) JBIOIO‘_lT

(2)
u (x) T T (a) x1

u(x,1)

il

T (1-a-B) Jl—OL,on+B—l,oL—lV

t Sr - Yx1 '

0<x<1,

respectively, by making use of the generalized fractional integrals
(3.1) and (3.3).

Now we shall set three problems for the equation (1.2).

Problem I. Find a solution u(x,y) of (1.2) in Q satisfying

the boundary conditions

a,b,-a+s-1 u(l)

(1.1) on

= ¢1(y), 0<y<1, and

c,d,-cta=-1 _(2)
u

(1.2) JXl

(Dz(X), O<X<ll

where a, b, ¢ and d are constants such that-—u<<a‘<8, -a < atb < R,
B<c<a and -B<c+d <o, and o1 EHSI[0,1] (a-B+l <k; <1, @, (0) =0)

and mzeEsz[O,l] (c-o+1l <kp <1, @w,(1l) =0) are given functions.

Problem 1II, Find a solution u(x,y) of (1.2) in Q satisfying

the boundary conditions

- 11 -



"

(Ir.1) u(x,x) = ¢03(x), 0<x<1, and

a,b,—a+8—1_u(l)

a+u—B,c,—a+B—1.u(2)
0x

(Ir.2) AI +BJxl = @y (x), 0<x<1,

where A and B are non-zero constants, constants a, b and c fulfil
the inequalities -a <a<fB, -o<atb<p and -a <at+tc < B, and @3 €
Hk3[0,l] (max (a=-B+1,a+c-B+1) <k3 <1, ®©3(0) =@3(1l) =0) and @y €

Hk“[O,l] (a=B+1 <k, < 1) are given functions.

Problem IO Find a solution u(x,y) of (1.2) in Q satisfying

the boundary conditions

(II.1) u(x,x) = @s5(x), 0<x<1, and

(m.z) AXb+0"+B_l Ig’b'_a+8_lu(l)
X
+ B(l—xf*“*e'lJzI“‘B'C"a+B‘1u(2) = 0e(x), O0<x<1,

where A and B are non-zero constants, constants a, b and ¢ fulfil
the inequalities ~a<a<B8, -a<atb<pB and -o <at+c< B, and @s(x)

and @ (x) are given functions on the interval (0,1).

In Section 8, further restrictions on constants a, b and c, and

on functions s (x) and ¢s (X) in Problem IO will be imposed.

5. Solution of Problem I.

If we note (4.1) and (3.6) and replace y by x, the conditions

(I.1) and (I.2) may be read as

- 12 -



5

I'(a+B) _ato,b,-a+p-1 T'(l-0-B) .a-B+1,b+a+B-1,-a+p-1
(5.1) T'(B) IOx Tt 2T (1-a) Tox v
= @ (x) and
I'(a+B) _c+B,d,-c+a-1 r(l-a-8) .c-o+l,d+a+B-1,-c+a-1
(5.2) Ty Jx1 T+ Sr-8) Ix1 v

= @5 (x), 0<x<1.

Operating (Ig;u,b,—a+8—l)-1= Iaz_m,_b'OH-B_l and (Ji‘{ﬁ,d,-c'l'a—l)-l
= J;i's'"d'“+5'l (see (3.8)) on both sides of (5.1) and (5.2),

respectively, and subtracting the obtained relations, we have

F'(a)T (1-0) ROH'B"]- Ll—OC"B v = @4 (x)

(5'3? VX)) - ey (I-e) Rox x1

where

2T (1-a) o+R-1 —a—oc,—b,on+8—l(p

5.4 @00 = oy Fox  Tox :
2T (o) T (1-a) o+B=-1 _-c-B,~d,o+B-1
T T(B)T(1-a-p) Rox  Ix1 ¢z .

It is well known (cf. e.g. [23]) the relation

-0 .0 sin ma 1 u,o 1
_— j (=) ®(u) du
0

(5.5) Ry, Ly ® = cosma o (x) + - < %

holds valid for 0<a <1, where the integral is taken in the sense

of the Cauchy principal value. Then, after changing the unknown
by u(x)==v(x)xl_a_8, (5.3) may be written in the form
tan B 1 u(u)
(5.6) px) - —— J ——— du = ®&(x), O0<x<1,
T o u-x
where

- 13 -
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sin To 1-0-B
cos TR sin 7 (a+B) >

(5.7) ®(x) = Do (x).

To solve the singular integral equation (5.6) we apply the
theory in [5]. Then we find that the solution of (5.6) is writ-

ten in the form

- 1
_ 1 tan 78 , x \1-B 1-u,l-8 1
(5-8) w(x) = g l0() + —=— (33 JO‘ w ) wex flwaul,

which is sought to be Holder continuous on the interval (0,1),
bounded at X = 0 and unbounded but having integrable singularity
at x=1. Here we have taken into consideration that ®(x) is
Holder continuous on the interval [0,1], whose fact is implied by

Theorem 5.

6. Solution of Problem II,

Substituting (4.1) into (II.2), using the product rule (3.6)

a-g+1,bro+B-1,-a+B-1 -1 _ j-a+8-1,-b-a=B+1,0
0x ToTox

(3.8)), we find the conditions (II.l) and (IL.2) can be unified in

and operating (I (see

the form
AT (1-R) -a+B-1,-b-a-8+1,0 _a-f+1,c+o+B-1,-a+B-1
(6.1) BT (1=0) vix) + I, Il SR
=Q0(X)I 0<x<1,
where

_ _ 2AT(1-B)T (0+B) o+B-1
(6.2) Qo(x) = BT (B) T (1-a-B) 10x @2

- 14 -
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-

_ 2T (1-B) T (a+B) I—a+8—l,—b-a—8+l;0
T'(a)T (1=-0-RB) 0x

a+a,c,—a+B—l(D

Jxl 3

+ 2T (1-8) I—a+6—l,—b-o¢—8+l,0m

BT (1-a-B) ~0x

The second term on the left hand side of (6.1) may be written

as
(6.3) I52+6_1'—b_a_8+l’0 J;IB+l,c+a+B—l,—a+B‘lv
= - Elﬁj%ﬁ:ﬁlx?+“+8_l L:ua_8+l(l—ufa_c_u(u—xfd'v(u)du
- cosw(a—B)xa+b+u(l—xfa-c_uv(x),

which is derived by using various formulas for the Gauss function.

(see also [211)

a—8+1(l_x)—a—c—

If we set u(x) =x OL\)(x) and use the relation (6.3),

we find that (6.1) is reduced to the singular integral equation

(6.4) P(x)u(x) + Jz-u—x u(u)du = Q(x), O0<x<1,
where
P(x) = mcotw(a-B) - sinﬁna-g) g?gizsg _a_b-a(l—xﬁ+c+“,
Q(x) = - Pt g 0.

T sin 7w (a-B)

The solution of the equation (6.4) is represented by

P(x)Q(x) _ _ 2(x) Jl 0 (u) 1

(6.5) (x) = — A St S—
i Pz(x)+1T2 VP2 (%) +72 0Z(u)vVP2(u)+g2 UX

du,

where

- 15 -
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1 P(u) - i 4 }

1
_ 1
(6.6) 2(x) = eXP{m fOT-? 109 5wy + 1

Here the branch of the logarithm in (6.6) should be selected such
that the value at u=1 is equal to 2n(-a+B-1)i. The solution
(6.5) is obtained by applying the theory in [5] and it is HOlder
continuous on the interval {0,1), bounded at x =0 and unbounded
but having integrable singularity at x=1. To obtain the solu-
tion (6.5), the HOlder continuity of the coefficient P(x) and the
free term Q(x) have to be guaranteed, and the fact can be deduced
at+b+a

by multiplying the both sides of (6.4) by x and by using

Theorem 5.

7. Solution of Problem I,

By similar calculations to Problem I we have from (II.l) and

(IIr.2) the equation

AT (1-8)
BT (1-a)

-a+B-1,0,-b-a-B+1

a-pg+1,0,-a-c-a
J
0x

(7.1) <1

vix) +1I v =Ry (x),

where

_ _ 2AT(1-B)T (a+B) oo+B-1
(7.2)  Rolx) = BT (B) T (1=0-B) ~o0x ®s

_ 2r(-g)r(a+p) -a+g-1,0,-b-a-g+1 ja+ta,-a-p+1,-a-c-a

T() T (1-0-B) ~0x x1 @s

2T (1-8) 'I—a+s—1,o,—b-u—g+1

t BT (1-0-8) lox

(DG-

The second term on the left hand side of (7.1) is calculated

as

- 16 -
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~a+B-1,0,-b-0-p+1

a-p+1,0,-a-c-o
v
0x

(7.3) I <1

J

1
= J a_B+lcos m({a-g+1) v(x),

X
OKo(x,U)v(u)du + (Ijg)
where

(7.4) XKo(x,u)

_ I'(-b~a=-B+2) a-b-o0-28+2 b+o+p~2
= T(a—b-0-28+3)T (—a+g-1) * X

—a—-Cc-ao

(1-u)

x F1(—b—a—8+2;a—6+2,—c—a—8+l;a—b—a—28+3;£%,u), (0<u<x),

I'(=b-a—-B+2) a-B

_ -a-c-aq
= T(ma-b-orl)T(a-p+1) © (17W

X F1(—b—a—B+2;—a+B,—c—a—8+l;—a—b—u+l;%%,x), (x<u<l).

To obtain the relation (7.3), we have used several formulas for the
Gauss function and the Appell hypergeometric function F; by refer-

ring to [11, [10] and [20]. (see also [21]) Note that in case of

b=c, K¢(x,u) can be represented by means of the Gauss function.

Substituting (7.3) into (7.1) and changing the unknown by u(x)

=(l-xfa—c—av(x), we have the equation
(7.5) {g%%%;%% (1-x)27F*L cosnwa-g+1)xa‘8+l} 1 (x)
1
+ J K(x,u)p(u)du = R(x), 0<x<1l,
0
where
(7.6)  K(x,u) = (1-x) C7@B+L (q_y@¥ctay v,4)  ana

- 17 -
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—c-a-B+1

(7.7) R(x) = (1-x) Ro (x) .

The kernel K(x,u) for 0<u<x is also written in the form

_ T (-b-a~B+2) a-b-a-2p8+2
K(x,0) = F{a=p-0=28+3)T (-a+B-1) "
x xb+u+8_l(l—xfc—a—8+l Cbﬂnc+u+8—l(x—ufq'
u u(l-x)

X Fy(a-B+1l;-b+c,-c-a-f+lja-b-a-28+3;—- — 313

Then we can obtain the relation

(7.8) 1im (u-x)K(x,u) = - sin 7(a-B8+1) x

b
u+x-0

a-R+1

In case of x<u<1l, similar discussions imply

(7.9) lim (u-x)KX(x,u) = ;L-sin‘n(a-8+l) X

u>x+0 m

a-B+1

Thus if we separate the singular part from the integral term in

(7;5) by the use of (7.8) and (7.9), we have the equation

o) (1 1
(7.10) P(x)u(x) + X f p{u)du + J k(x,u)u(u)du = R(x),

Ti o U-X 0
where
(7.11) P(x) = %_?__E_::IL‘_:_EL_;_ (l_x)a"8+l + cos m(a-g+1) xa—8+l’
(7.12) Q(x) = i sinm(a~B+1) Xa—B+l )

-a=-8+1 at+c+ao

(7.13) k(x,u) = (1-x) € (1-u) Ko (x,1)
_ sin m(a-B+1) x27A+L
™ u-x

- 18 -
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It can be shown that the kernel k(x,u) has the property
(7.14) k(x,u) = 0(log|x-ul), (u~x).

In order to state results for the solvability of the equation
(7.10) , we give some notations. Let po > 1 be a number which is
determined in Section 8. Classes Lp (U;w) and Lq (U;wl—qo)

0 0

denote the weighted Lp spaces, where gy =po/(po-1), U stands for

the open interval (0,1) and the function w(x) is such as
(7.15) w(x) _ XYl(Po‘l)(l_x)Yz(Po-l)
with 0<v,, v2<1. As will be seen in the next section, we have

R(x)GELpo(U;w). Denoting the left hand side of (7.10) by My and

setting

: 1 1 '
M*yx = P(x)x(x) - #i Jg Q(E{Xiu) du + L)k(u,x)x(u)du,

we obtain the following theorem from the theory by Hvedelidze [7]:

Theorem 6., The homogeneous equations Mu =0 and M*y =0 have §inite
numbers of Linearly /Lnde’penden/t solutions Ain Lpo (U;w) and Lq (U;wl_q") ,
0

nespectively. A necessany and sufpiclent condition gorn the solvability o4
the equation (7.10) 4n Lpo (Us;w) 48 2o hotd the relation

1

JR(X)X.(X) dx =0 (j=1,¢++,n),

0 J
where. {xj (x)} (3=1,+++,n) s a complete system of Linearly independent

solutions of M*y =0 An qu (U;wl_q") .
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8. Integrability of Free Term of (7.10).

We shall investigate that the function R(x) defined in (7.7)
belongs to some L_ class under certain restrictions on the given
functions ¥s5(x) and ¢g(x), and constants a, b and ¢ in Problem IOI.

We begin with the definition of the Lipschitz space in Lp .
f(x) stands for the extended function of f(x) defined on U such
that f(x) =f(-x), (-1/2<x<0); =£f(x), (0<x<1l); =f(2-x), (l<‘

x<3/2). Lp(U) denotes the Lp space on the interval U.

‘Definition 6, Let p>1 and 0<k<1. A subclass L, x ©°f
14
Lp(U) is called a Lipschitz space in Lp if its elements satisfy

the property

1
(J | £ (x+h) - f(x)!pdx)l/p = O(IhIk), “(h>0).
0 .

Now we shall prepare the following lemmas. The first two
lemmas have been given by Hardy and Littlewood [6], where the lower
limit of the Riemann-Liouville fractional integral of a functidn
f(x), (2.4), is taken to be -« , but in our case by making the
extension of f(x) such that f(x) =0 for x <0 the results remain

valid.

Lemma 2. 1§ p21, O0<a<1 and feL, (), then §on the function

g(x) =R® £ we have the relation
0x

1
(J 15 (x+h) - g(x) |Pax)’® = o(|n]%, (h~>0).
0

- 20 -
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Lemma 3. Let p>1, 0<k=<1 and O<k+a<l. If £€L

o,k :then»_

o

Rgy £/ .Y f e

x1

Lp,k+oc

Lemma 4. Let p>1 and 0<k<1. 1§ fEL then xTF, (1-x)t ¢

, p,k’
ELr K gonl<r<p and t-k >1/p-1/r.

To find the integrability of R(x), we put restrictions on con-

stants a, b and c, besides assumptions in Problem III.
(A.1) c=<0.

(A.2) For sufficiently large p; >1 with 1/p; < -a-c+B, there
exist g; and r such that p; >q; >r>1, —a%c+oc+28—2 >1/p1-1/q;

and  -a~-b-a >1/q;-1/r.

(A.3) For sufficiently large p, > 1, there exists g, such that

p2 >gz >1 and -a-b-a >1/p,-1/q,.

The boundary functions @s (x) and e (x) are supposed to satisfy

the following:

(A.4) s ELp‘1 Ky’ where pi; is assumed in (A.2) and k; satisfies
7

l1-0-B < k; <min(-a+c+Bf-1-1/pi1+1/q:, —-a-b-2a-8+1-1/g9;+1/r).

(A.5) (s ELp2 K,’ where p; is assumed in (A.3) and k, satisfies

a-B+1l <k < -b-0-B+1-1/ps+1/q-.

Under the assumptions (A.l) ~ (A.5), we find that R(x) ELp (U)
0

(po =min(r,g,) >1) by using Lemmas 2 ~ 4 and Theorem 2, and then we

have R(x) €L (U;w).
Po
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9, Product Operations in Fractional Calculus.
More than those of Problems II and III , we can set various

boundary conditions. That is, if we assume, instead of (IL.2)

or (II.2),
(9.1) AIS}’{b’—a_a x4+B-1 (1)
(9.2) AxP B+l Igéb,—a-axa+8—lu(l)
+ B(l—xf_a—8+lJ;IG_B’C'—a—a(l—xﬂ+B—lu(z) - 0(x),
But, in

a similar equation to (6.1) or (7.1l) can be obtained.

these cases, calculations of their products

(9.3) 152*3’1"b"“‘8+1 J§18+1'°"a‘“\) for (9.1), and

(9.4) Iaz+8—l,—a-8+l,-b J;IB+1,Q+B-1,—a—c+B—l\) for (9.2)

are needed, which are difficult comparing with (6.3) and (7.3).
Because they are reduced .to compute the Kampé de Fériet hypergeo-
metric series and the behavior of the series near the boundary
points of the domain of convergence cannot be known.

To say more generally, what integral is the product

I_plqlr JPrSrt

(9.5) 0x <1 ®, (0<p<1)

reduced to ? The product (9.5) can be calculated in case of

special combinations of parameters p, g, r, s and t. For example,

- 22 -
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the formula (5.5) is forkthe case gq=p, s=-p, (6.3) for r=0,
=-p and (7.3) for gq=0, s=0. But (9.3) and (9.4) are contained
in the hard case to know. For calculations of other combinations

of parameters, see [21].
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