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Recent results of our research are surveyed in this report.
Thé derivative nonlinear Schrddinger equation for the circﬁlar
polarized Alfvén wave admits the spiky soliton solutions for
the plane wave boundary condition. The'nohlinear equation
for complex amplitude associated with the carrier wave is
shown to be a generalized nonlinear Schradinger equation,
having the.érdinary cubic nonlinear term‘and ﬁhe derivative
of cubic nonlinear term. A generalized scheme 6f the inverse
scattering transformation. has coﬁfirmed that superposition of
" the A-K-N-S scheme and the K-N scheme for the component
equations valids for the generalized nonlinear Schrddinger
equation.’ |

Then, two types of new integrable nonl%near evolution
eqﬁation have been derived from our scheme of the inverse
scattering transformation. One is the type of
nonlinear Schrddinger equation, while the othér is
the type of Korteweg-de Vries equation. Brief'discussionsv
‘are presented for physical phenomena, which could be accounied
by the second type of the new integrable noﬁlinear'evolution
equation.

ﬁaSﬁly, the Statidnary sdlitary‘ﬁave solutions have been
constructed for the intégrable nonlinear evoluﬁion éqﬁation
of the second type. These solutions have peculiar structure
that they are singular and discreet. It isba new challenge
to construct singular potentials.by the inverse scattering

transformation.
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§1. Introduction

Piasma under the external magnetic fields are unique media
that could sustaih many kinds of oscillatiohs,~of which amplitude
attain easily such a'large level that nonlineér effects prevail
in competition with dispersive effects of the waves. Basing
on the reductive perturbation theory, Taniuti and his

1)

collaborators have derived thé‘Korteweg—de Vries equation
for the ion acoustic wave, the cﬁbic nonlinear Schrédinger
equation for the electron Langmﬁirvwave and the modified
Korteweg-de Vries equation for the Alfvén wave. Yet, these
do_nbt éxhaust'all Qf the possible vafieties of nonlinear
evolution equations describing fhe nonlineér'wave propagation
in plasmas. In fact, the derivative nonlinear Schrédinger
equation has been dérived fbr the Alfvén Waﬁeipropagating
parallél to the magnétic fieldz).‘ |

It was the gfeat success of Ablowitz,'Kaup, Newéll and

3)

Segur thaf they could find a unified scheme of the inverse
scattering transformation for the above mentioned canonical
type ofKnonlineaf evolution equations. Sinée the aerivative
honliﬁear Schr&diﬁgéﬁ equation is unable to‘bé éastéd into

the A—K-N-S scheme, we have carried out detailed ana;ysié'ofbA
the stationary solution of this new type of nonlinear evolution

equation4)'5); Then, Kaup and Newell6)

_havebpresented a
new scheme of the inverse scattering transformation for the .

derivative nonlinear Schrédinger equation.
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According to our analysis

5)

’ however, the solutions we
have obtained are the stationary solutions of‘a genéralized
nonlinear Schrdédinger equation, of which nonlinear terms are
sum of the cubic nonlinear term and the derivative honlinear
term. Through a genera;ization‘of the inverseée scattering
transformation, we hé?e shown explicitly that the inverse
'scattefing transformation for the generalized nonlinear
Schrddinger equation is nothing but a linear superposition of
the‘A—K—N—S scheme and K—N scheme7).

Furthermore, within the scheme of our generalization of
the inverse scattering transfo:mation, we have discovered
two types of integrable nonlinear evolution equations, both
of which have‘satur5£ive nonlinear termsg).f

. In the present report, we summarize recent development

of our studies, and will discuss the novel feature of soliton

solutions of these new integrable nonlinear evolution equations.
: ‘
§2. Spiky Solitary Waves of Alfven Wave

The circularly polarized Alfven wave propagating along

the magnetic field obeys the derivatiVe'nohlinéar Schrddinger -

equationz)
e 22 13 2 - .
i———-qj—_u-——2-cj{+i-—-——{|q[‘q}=0 ' 1)
St -1 - 49 . ‘ v

wheféhqbis thevcdmplex magﬁetic'field
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q=B, F iB, BRI L V -2)
and g is the moving coordinate ﬁith”éhe;Aifvén;Vélbcity in
x—directidn.
We: seek stationary solutions,offeq,l);describingvthe”f 
 nonlinear self—modulatioﬁvof large amplitude pléne'wavés);

setting'q as

VBY (£, t) explix (E,T)] R 3.a)

qE,b) =

X(E,6) = (kE - 98) +6(y) -,  3.b)

vE = vy, 3.0
with.' |

y=&-t : . 3.a)

we obtain

1

2(y-y) 1} . 4.2)

‘ : /2 =1/ Y

e(y)=9(yo)+3k—lﬁl~— arctap{/%;%%—tanh[Ylu!il/z(Y‘Yo)]}
1/2 [I=xT -

+Kgl%l__— arctan{ I;ET tanh [y |u| 1/2(Y—YO)]} ’ 4.b)

v () 20 () =0g+8y”8 " {kmbcosh 2y u| ™Y/

where
kK =+ 1, o 5.a)
6 = sign of (3<D0 - A - 2pk) , : : . 5.b)
a = 2{205 - X - 2(1+u)k} . 5.¢)
‘ 12
B = 4[(@0 + k)[A + (L+2w)k - 2¢0}} ’ 5.4)
2 1 . ) . . :
Y =7 (A ;Kl)(lz_ A) o, N I 5.e).
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% = a/B8 + ayz/(e¢o) . 5.f)
m= o/B8 .

The allowed range of propagation velocity A is determined to be

Ay <A< Az | 7 ' 6)

1

with the definition of

= Ed — V -

A] 2(2<D0 uk) ZJQO(QO + k) 7.a)
N R IES .

X2=2(2¢0 - pk) + 2 QO(QO + k) 7.b)

Referring to the left polarized Alfvén wave, we illustrate
ch&racteristic feature of the solitary wave solutions given by
egs.4.a) and 4.b). For arbitrary choSen'p;rameters of k=+1,
v50=0.5//§, k=0.01 and u=0.5, A=2(2¢,-uk), Fig.l represents
the bright hyperbolic solitary wave, resulting from the‘seif-

modulation of

Fig.l

>the large‘amplitude plane wave, due tp a strong coupling of
nonlinear modulation of the amplitude and the phase. ‘When the
propagation veloéityzlvtakes the 1imiting vélqcifies Al or
Ay eé;.(7.a), (7.b),'the hfﬁérbglic solitary wave solution

is reduced to the algebraic solitary wave solution:



4p

v2 (y) = (y) =0, + 8.a)
0 2, -1 2
4+0% [ul T (y-y,)
| 1/2 '
8(y)=0(yy)+ lﬁ%——— sarctan(%pv]ul l/z(y—yo))
1 o1/2 _
+l%l——— 3arctan(%p|n| l/z(yeyo)) 8.b)
where
p=4 (0 +k) +e4/3 (3 ¥K) | | 9.a)
v=/$5/|2/¢6¢k+e/65] - , 9.b)
+1 . for X=A2
{
= for A=), 9.c)

Fig. 2 illustrates the fast alegebraic solitary wave'mOVing

with the velocity kz for the same values of ¢0, k and p as
*

in Fig.1l.

Fig;z

In order to show physical differences between the derivative
nonlinear .Schrédinger equation for the Alfven wave and the

cubiC“nonlinear~Schr6dinger~equation,'we‘substitute

a(g,)=0(n,thexplitkn-uk’e)], -~ - . 10.a)
with
n= E- 2ukt ' ;o R 10.b)

into eq.(1). Then, we get an equation for the complex
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amplitude Q(n,t) as

1——Q+u——~Q - -IQI o+ 2

at an

{lQl %q}= o, (11)

where the'nohlinear terms are composed of the usual cubic
‘nonlinear term and thé'dérivative~nonlinearGterm. The spiky
solitary waves presented as egs.4.a), 4.b) and 8.a), 8.b) are

the stationary state solution of eq.1l).
§3. A Generalization of Inverse‘Scattering Method

In spite of the success of Ablowitz, Kaup, Newell and

3)

Segur to present a unified scheme of the inverse scattering
transformation for a"certain class'of.nonlfnear evolution
equations, their scheme appears to be not general enough to
cover large'varieties of the integrable nonlinear evolution

6)

equation. Indeed, Kaup and Newell ' have presented another‘
scheme for the derivative nonlinear Schrédinger equation and
the.massive Thirring equatioﬁ. Inépired by the solitary

wave solutions of  the gengralized:nonlinear Schr&dingef
equation, eq. (11), we have undertakenAto:seek'avgenéralization
of the inverse scattering transformation to cover a wider
class of nonlinear evolution equatlons7)

We consider the eigenvalue problem.

v +F () v =G (M) a(x,t)v; ' ' 12.a)
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3 IR -
sgvsz(A)vz—G(A)r(x,t)vl 12.b)

where F()) and G(\) are functions of the eigenvalue A. The
A-K-N-S scheme is a special“casevof”ou: generalization,
F(A)=i) and G(A)=1. The time dependence of the eigenfunctions

is chosen to be

) , o .

EEvl=A(A,q,r)vl+B(k,q,r)vz, co | 13.a)

3 o

EEVZ=C(l,q,;)Vl—A§l,q,r)vz. o 13.b)
Noting that (Vix)t=(vit)x,vi=1,2, and assuming that the eigen-

values ). are time invariant we feadily find that A(),q,r),

B(A,q,r) and C(A,q,r) satisfy

AX + G(rB - qC) =0 | 14.a)

Ggy - B, - 2FB - 2GqA = 0 14.b)

Gr, - C_ + 2FC + 2GrA =0 l4.c)
t b _ :

The proper choices of A, B, C, F and G yield various integrable’
nonlinear evolution equations.

Referring to the A-K-N-S scheme and‘thecK—N scheme, we

choose
F(A) = iax? - VZB A, 15.a)
G(A) = aX + iVE/Z 15.b)

Namely we consider the superposition of these two scheme of
the inverse scattering transformation. Here, a and B are

positive constants. Then, with the choice of
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AN, q,r)=—2i02 440 /T84 (41 B-1iarq) A2
+/2BorgA+i (HB/2)rq , 16.a)
B(A,q,r)=2a2ql3+3i/§§aq12+(—26q+iaqx+a2rq2)X
| +(~/B/2q +ia/B/Zrq’) ,  16.p)
C(h,q,r) =202r23 3431 VZBar A%+ (-2 sr-iarx;azr?q) A
+(/§77rx+ia/§77r2q), » - 16.0)

we obtain from egs.(14.b) and (1l4.c) the set of nonlinear
evolution equations
. . 2 2
ig +q  ~iel(rg™) +frq™=0 , 17.a)
ir,-r__-ia(r?q) - Briq=0 | 17.1b)
t Txx Dy a=v. -
If we take r=+g*, the set of equations (17.a) and (17.b) is

reduced to the generalized nonlinear Schrodinger equation
. : 2 2
igta, Fiallg|“q) +8lql| g=o. 18)

The above analysis is the.first illustration bf the fact
that the linear superposition of two different scheme of the
inverse scattering tfansformationvworks~out.to solveuthe"
nonlinear evolution equation with mixed type of nonlinear

terms.
§4. New Integrable Nonlinear Evolution Equations

Having been encouraged by the success of our generalization

of the inverse scattering transformation, we have undertaken
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to explore new types of integrable nonlinear evolution
equationssz _ ’
We assign for F(A) and G(A) of egs.(12.a) and (12.b) the

following expressions,

F(A) = i) , SRR 19.a)
G(A) = A . 19.b)
Then, choosing
A= - 2i 42 , | - 20.a)
Y1-rq v -
B=2—9-3%+i(—2) 2, 20.b)
Yl-rq l-rq :
c=2-Z2_2-i(E9)a, 20.c)
v V1-rq - Y1-rq © '
We obtain from egs.(l4.b) and (14.c) P
q, - i (—2—) =0 | - 21.a)
v1-xrq <% .
ro+i (—£) =0 ‘ | 21.b)
t ‘ : :
1mra ex

If we take f=iq*, egs.(21.a) and (21.b) are reduced to

.
L t—2% 10

2 e
¥ Ailq)?

Another choices of A, B and C,

- - 22)

iqt +

. rqar, 5
R - R S 23.2)
ST Qere) ]

=10 -
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. - 2iqg
B= — 39,3, ____5,375 22
Y1-rq (1-rqg)
q : ~ , ,
- {___E_____]XA , - 23.b)
(l—rq)3/2
2ir
C= 4r X3 _ X AZ
vY1-rq (l—rq)3/2
r ﬂ
- X D 23.c)
(1-rq) 3/?

lead to the followihg set of equations

2
qt+’.82 l3/2 e =0 24.a)
9x (1-rq) ax d *
r +{ 22 1 311]
t 02 (ex) 372 3w =0 - 24.b)

If we take r=-q, the set of egs.(24.a) and (24.b) is reduced to
82
3x2

1 3ﬂ]= 0. 25)

3_ g+
3t &4 2,372 3x

{(l+q
We notice also, for r=-1 and g=u-1l, egs.(24.a) and (24.b) are
reduced to
3
) _ 3 -1/2
a—t-u-2——3u ’ 26)

X

which is the equation discovered by Harry Dym9).

Shimizu and Wadatilo) have carried out detailed analysis

of eq.(22) with the lower sign under the boundary condition

q(x,t) -0 as |[x|] + = . 27)

- 11 -



GLE;

For the bound state eigenvalue Al given as

A= E&+din , w0, 28

an expression for one-soliton solution is obtained;

cosh[2ny+2ne (y)4id]
q(x,t)=- —=1 i *
2.2 200 R
VES+n cosh”[2ny+2ne, (y)]1=2—2
+ 2. .2
g +n
. 22 |
x exp[-2i{Ex+2(£°-n")t+Ee (y)}], = 29.a)
where e+(y) is given impliéityly as
_ _1 [~ 27 1 |
y= e+(y)+ in log [ 1]. 29.b)

2, 2
E74nT e (y)
The guantity y is a moving coordinate defined by
y = x + 4St. : 30)

As for the illustration, the function €+(y) is shown in Fig. 3

for n=1/2 and £/n=/3.

Fig.3

Since e+(y) is determined numerically from eq.(29.b),
we can evaluate g(x,t) numerically. Figure 4 illustrates the

one soliton envelope Iq(x,t)l for n=1/2 with various values

Fig.4

- 12 -
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of &/n. For the small amplitude limit of n<<g, eqgs.(29.a)

and (29.b) are reduced to

2n

g(x,t)= z

sech[2n(x+4Et) |exp[-2iEx-4i (E2=-n2)t], 31)

which is the one soliton solution of the cubic nonlinear

Schrédinger equation
. 2 2
igy + q., + 28%|al®q = 0. 32)

In Fig.4, the limit of a bursting soliton given as |g|+nt+0

has been shown, as well.
§5. Some Physical Problems Related to Eg. (25)

Although the new integrable nonlinear evolution equations
bear novel feature for the mathematical interest, we have tried
to identify physical problems for which the new integrable
evolution eqUafions are relevant. We find the eq.(25) could '
be the key equation for physical problems in which the
curvature of surface or any deformation is crucial.

One of such problems is the nonlinear éransverse‘bscillation_

11)

of elastic beams under tension . We can write down the

equations of motion of the small
Fig.5

element AB illustrated in Fig.5 as -
2 S
) 3 : 33.a)
PA —5 ¥ = = S, -a
atz ax

- 13 -
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- 9 9 _ .
O=fzM+P 3y +S; . 33.b)

where p is density of material, A stands for area of cross
section. S is the stress resultant parallel to the axis of
y, and P is the end-thrust parallel to the axis of x. As far
as we are considering a uniform elastic beam, P is assumed to
be constant.

For the bending moment M, we have thé‘relation

BT 1 92y

M=="—=ET
2 3/28x2 '

R 34)
{1+(3y/0x)“}

where E is Young's modulus, R represents the radius of curva-
ture of bending beam, and I is the moment of inertia of the
cross section of'beam.b When the beam subjeéts to tension
=-77, combining egs.(33.a), (33.b) and (34), we obtain the
following nonlinear partial diffefential equation

32 T azy ET 32{ 52y /x>

4.

‘ }=0. 35)
at” pA 3x° pA %2 [lf(&y/3X)2fﬂz

Since we are dealing with the uniform;élastic-beam, we do not

have any dynamical nonlinear effect, but we have taken

fully account of the geometrical nonlinear effect.
Introducing the dimensionless wvariables X) Y and T as

1/2

x = A X o 36.a)
vy =a/2y | 36.b)
t = @2/ =, | 36.¢)

where A=Q7/pA)l/2 is the linear wave velocity, and defining

the stretched coordinates

- 14_
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E=X+ T T g L ‘ 37.a)
T=€eT : e ‘ : 37.b).
with the dimensionless parameter e given as
= fiz , ‘_ | | ” | 38)

we can reduce eq.(35) to, up to the first order of ¢,

2 2 2
3 9 3° 3°v/a¢
= wr Y + { _ }.=o. 39)
3T 9E 32 [1+(3Y/ag)2T”2 S
Defiﬂing
ale,m = 5, | | 40)

we can see immediately that eq. (39) is'nothing but the equation
of the second types of our new integrable nonlinear evolution

equations, that is

2
3" y__939/38 _
5 1 2,372 = 0. 41)

9
9T *
9g (1+g

Another example could be found in the surface phenoména
in which the surface tension plays the key .role. For instance12
the shape of the surface of a fluid in a gravitational field

and bounded on one side by ‘a vertical plane wall is determined

by
2 z'" '
— 2 - ——————= = const : 42)
a’ (142 %) 372 '
where
a = /(2a/pq) ' 43)

is called the capillary constant. « is the surface tension

coefficient, and g is the gravitational acceleration.-

- 15 -
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pefining the function qu)be“

% P 44
and differéntiatinﬁ eq;(4i)”tWice‘Wiﬁh?reepeetftb‘x;‘we'pbtain
2 9% 8x2 (l+q

2, 3/%2}75‘:0." oY 13)

Therefore, eq (43) could be regarded as the statlonary solutlon

of eq. (41), whlch depends on the 51ngle varlable,

n=¢£- —% T. 46)
a S i : . ! o

Of course, in order to apply -the inverse scattering method to
integrate egs. (41) or (45), we have to carefully consider the

boundary conditions of the problems.
§6. Analysis of Stationary Solutions of Eq. (41)

Here, let us’ examine statlonary solutions of eq. (41)

assuming that g depends on a 51ng1e parameter
=& +vt, v>0. s ,47)

Substltutlng the transformatlon (47) into eq (41), we can
carry out the flrst 1ntegrat10n to get ‘

for the boundary conditions offq=0 and dg/dn=0 at |n]|-=.

Setting

q = a—n-l 49)
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we can again integrate eqg. (48) to yield

2 -3/2 dz
vY+{l+( } —5 ¥ = 0. 50)
- dn
Multiplying d¥/dn on the both side of eq.(50), we can get
, 1/2
sz a+ @ h 7 -c 51)

For the lower sign of eq. (51), we can obtain a localized
solution by imposing the boundary conditions at the infinity
as

dy
an = 0, Y =0 at note. 52)

This boundary condition specifies the value of C as
cC=1. | | | ~ 53)

We assign the following boundary conditions at a point Ng

dy__ o :

an- coté, Y—YO at n+n0+0, _ - 54.a)
dy _ o

aﬁ—+cot9 Y—Yo at n+ng 0, 54.b)

where 6 is an arbitrary constant. ¥For a given value of 9,
Y, is -determined to be

¥, = +( y1/2 (1 - sine)1/2. o 55)

For the positive sign of eq.(55),rcarrying out the integratibn
of dY/dn derived from eq.(Sl), we obfain

i/@(n—n =-sech ! Yl + 2(1 -y Yz)l/2

-1, /%, v, 2.1/2
+sech ~|= 0[ - 2(1 - 7¥50) . 56)

-17 -
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In Fig.6, we illustrate the solution Y(n)

Fig.6

for 6=0, 6=1n/4 and 6=n/3. The solitary wave solution of eq.
(41), a(n), is calculated from eq. (49) with eq. (51).

Corresponding to the
Fig.7

three cases of Fig.6, wé illustrate in Fig.7 the corresponding
solutions. These are singular and discrete solitary waves.
Although such singular sélutiOns are not acceptable as

physical solutions for the nonlinear transverse oscillation

of the elastic beam, the present analysis poses the‘challengihg
problem whether we“-can construct such Solutions by the inverse

scattering transformation.
§7. Concluding Discussions

In the'present‘report,\we have surveyed recent results
of our investigation on the nonlinear evolution equations.
Generalization of the inverse scattering transformation has
demonstrated that the linear ‘superposition of two schemes

of the inverse scattering transformation works to solve the

- 18 -
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éeneralized nonlinear .evolution-equation with the superposed .
nonlinear terms, each of which corresponds the component
scheme of the inverse scatté;ihé:ﬁrénsformation. We need to
éxplore to what extent such suéé?position works out‘to solve
the nonlinear evolution equatioﬁ:w”-

'&inifhié éonﬁéctidﬁ, i%”may‘béjwortﬁlfd'menfionTthe work of

Hirotal3)

. He had shown that the generalized nonlinearrequation
ig,+pq__+ioq +6|q|2q+i3a|qlzq ;6 57)

t XX XXX X
has N-soliton solutions, pfb&idéd that the condition

ap = agé 58)

holds. Eq.(57) is a superpoéitiqn of the nonlinear Schrédinger
.equation and the complex modified Korteweg-de Vries equation.
For the special case of p=0 and §=0, eq.(57) is~kgown to have
miltiple envelope soliton sélutionsl4).. On the other hand,
Chen, Lee‘and~Liu15) have shown. that eqg.(57) is integrable for
.the. special case of 0=0 and $§=0, which violates the condition
eq. (58).

Studies of the new integrable nonlinear evolution equation
have revealed the new problem of the;inye:sebécattefihgv
transformation to construct singular potentials. If the
singular solitary waves and the discrete solitary waves
demonstrated in the section 6 could obtain the citizen-ship
of the soliton empire, the extension of soliton science will
be far more reaching than that was expected when Zabusky and
Kruskall6) had coined thezconcept'of,soliton,for the solitgry

wave of the Korteweg-de Vries equation.

-.19 -
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Fig.2
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Captions of Figures

The bright hyperbolic solitary wave of the left polarized

]
Alfven wave for a value Qf A=2(2®0

chosen phase constant e(y0)=ﬂ/6. The thin line represents

~-puk) with an arbitrary

the magnetic field component By and the dotted line
stands for |B|, réspectively;

The fast algebraic solitary wave of the left‘polarized
Alfvén wave with a propagation velocity A2'

The curve of e+(u) for n=l/2 and E/n=/§f

The enﬁelope of one-soliton solution for n=1/2 and
£&/n=v3, V2 and 1. | |

Transvefse displacement of ela;tic beaﬁ under the
eﬁd—thrﬁét. | |

Localized stationary solutions of eq.(39) for 6=0,
6=m/4 and 9=ﬂ/3. | |

Singular solitary wave solutions of eq;(4l).derived
from the solutioﬂ Y with 9=0,»Q=n/4 and Q=w/3;

respectively.

- 21 -
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" Fig3 The curve of é,(u) for
7=1/2 and &/7=13. ’

1q(ul
4

E/n=V3

E/m=V2Z

E/n=1

u

" Fig4 The envelope of one-soliton solution for 7=1/2 and
&/7=+3, vZ and 1. s
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