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Chevalley Groups over C€C((t)) and Deformations

of Simply Elliptic Singularities

by Peter Slodowy

In these notes we are going to relate the deformatlon theory of the so

i

called 31mply elllptlc s1ngular1tif§ to the,ﬁorrespondlng Chevalley gréﬁ&i

S - e i ST et
ot i EE— -

(ézer the formal power series fleld m((tl&f Because of lack of space we can

give here only a survey of the main results and the basic concepts involved.

Complete details will be found in a forthcoming work on{;gﬁoint quotients

for certaln groups attached ‘to arbltrary Kac Moody Lle algebra These

P

general results pertain to a much wider class of 31ngularlt1es which in ad—
R s SRS g

dition includes at least @ie cusp SLngularltles of degree < 5 4whose de—

b AU

formation theory has recently been studied by Looijenga (cf. [13] and his

talk at the Kyoto conference). The aim of this article is to explain the
special situation given by the simply elliptic singularities where it is

possible to avoid the technical machinery needed for the,general case.

I. Simple Singularities and Simple Lie Groups

In this part we quickly recall the relation between the simple singularities
{equivalently: Kleinian singularities or rational double points) and certain

simple Lie groups. For complete details we refer to [21].

1. sSimple singularities are normal surface singularities with a very spe-
. "

cial minimal resolution. The dual graph of the exceptional divisor of such

a resolution is a Dynkin diagram of type. Ar rxr>21, Dr rr >4, E6 , E

E8 . Up to analytic isomorphism these diagrams classify the corresponding
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singularities.

2. Let G be a semisimple, simply connected, complex algebraic group and
T € G a maximal torus with corresponding Weyl group W = NG(T)/T . We have
r = rank G = dim T . Denote by x*¥(T) the group Hom(T,Gm) = z5 of alge-
braic characters of T and by X%(T) the dual group Hom (Gm,T) = zr' of
multipligative one parameter subgroups. Let I < X*(T) be the system of

roots of T in G . For each o €I we fix an isomorphism

~

from the additive group Ga onto the root subgroup Ua . For all s €T

we have
s u (C‘)S "v u (OL(S)C) C c .
o 0 ’ e

Let A = {alf.;.,ar}> be a system of simple roots of I ‘corresponding to
the choice of a Borel subgroup B > T , and let AY = {aY,...,aZ} be the
simple coroéts in Xu(T) . Since G is simply conﬁected X*(T) is spanned
freely (over Z ) by the fundamental dominant weights wl,...,wr which are
determined by the condition <wi,u§> = Gij ..To each w; there corresponds

a fundamental irreducible representation
G — GL(Vi)
of G on a finite-dimensional vector space V.l . let

X; + 6 ——¢C

Xi(g) = trace pi(g)



be the corresponding fundamental character. Then the adjoint quotient of

G 1is given by the morphism

X = G———‘—*Crv

X(g) = ‘(xl(g),....xr(q)) .

The morphism ¥ is the algebraic gquotient of the adjoint action of G “on
itself. Any fibre of X is the union of finitely many conjugacy classes
and its dimension is dim G - r.. The restriction of X to T coincides

with the natural quotient T ——+\T/W and T/W can be identified with ’Cr .

3. Now we will look at the fibres of X more closely. Any fibre of ¥ can
be written in the form X-l(x(s)) for a suitable s € T . Let us first
loock at s =1 . The corresponding fibre consists of thé unipofenﬁ eieﬁents
in G , i.e. those which are represented by unipotent'matrices in éll ra-

tional representations of G . It is called the unipotent variety Uni (G)

of G . For arbitrary s € T there is a reduction to the centralizer ~ Z(s)
of s ‘in Gr which is a reductive subgroup. It is generated by T and the
root sﬁbgroups Ua for which d{s) = 1 . The unipotent variet? Uni (s)  of
'Z(s) (i.e. that of its semisimple part) is the product of the unipotent
varie£iés of its simple (almosi)—factors; The fibre X—l(x(S)) is

Z(s)

G-isomorphic to the homogeneous bundle G X Uni (s) ' associated to. the "

‘principal fibration G > G/Z (s) and the adjoint action of Z(s) on Uni(s).

An element x € G is called regular (resp. subregular) exactly when

dim ZG(X) =r (resp. r + 2 ) which is the same as the condition

dim (conjﬁgacy class of x) = dim G ~ r (resp. dim G -~ r - 2 ). There is
exactiy 6hé'reguléf orbit in the unipoteﬁt variety and hence in any fibre of

X - If G is simple there is ekactly one subregular unipotent orbit, and
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this is the orbit of greatest dimension among the nonregular orbits in
Uni(G) . If G 1is semisimple there are as many subregular unipotent orbits

as there are simple factors.

4. Now let G be simple of type A = Ar ’ Dr ’ Er and choose a suffi-
ciently small normal slice S < G to the subregular unipotent orbit of G .

We may assume that S is transversal to all orbits and that it meets the

subregular unipotent orbit exactly once:

Theorem - (Brieskorn, [2]):

i) S nUni(G) is a simple singularity of type A .

ii) The restriction VX]S : S > T/W of the adjoint guotient realizes a

semiuniversal deformation of the simple singularity S n Uni(G) .

From this theorem we can.derive many useful informations concerning simple
singularities and their deformations. To determine the singularities in the
fibres of a semiuniversal deformation we have to look at the singularities
in ‘S n Xyl(x(s)) for s e T sufficiently close to 1 . In this case a
basis A(s) of the root system Z(s) = {a € Z| af{s) = 1} of Z(s) may be
embedded into a base A of{ L , and for each connected component of A(s)
there exists a simple singularity in S n X_l(x(s)) of the corresponding
type. This description also shows that the discriminant (i.e. the critical
set) of XlS coincides with the discriminant of ﬁhe ramified covering

T — T/W (near ¥X(1) ).

5. All deformations of a simple singularity admit a simultaneous resolution.
This fact can be derived from the following construction. Let B > T be a
Borel subgroup of G . Then B can be written as a semidirect product

B :
B=TWXU where U is the unipotent radical of B . Let G X (B) be the
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bundle associated to the.principal fibration G - G/B. and: the' adjoint

action of B on itself (B) . We obtain a commutative diagram

(B) ——— G

where ¢(g % b) = gbg_1 ,» O(g#Db) =06(g ¥ tu) =t and ¢ is the natural

quotient map (we denote the class of (g,b) in G X B(B) by g% b).

Theorem (Grothendieck, Springer):

The diagram above is a simultaneous resolution of ¥ , i.e. ©§ 'is smooth,

¢ is proper and for all s € T the restriction ¢s : 6-1(3) > an(wés))

is a resolution of singularities.

II. Simply Elliptic Singularities

We now review some properties of simply elliptic singularities and their

semiuniversal deformations. Details can be found in the references [9], {10],

[11], [12], [13], [14], [18]. [19]., [209].

6. A normal surface singularity (Xo,x) with isolated singular point x

is  called simply elliptic exactly when the exceptional divisor E = ﬂ—l(x)

in the minimal resolution ™ : Y > Xo consists of a single elliptic curve.
The selfintersection number of E is necessarily negative, E o E = -d for
some integer d > 1 . We call d the degree of the singularity. Up to ana-
lytic isomorphism (Xo,x) 'is determined by its degree d and the analytic

structure of E . Hence any simply elliptic singularity can be obtained as
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the contraction of the zero section in some negative line bundle over a

suitable elliptic curve E .

The embedding dimension of (Xo,x) is max(3,4) . For 4 =1,2,3 we ob-
tain the "parabolic" hypersurfaces in the sense of :Arnol'd [1] which were

studied by Saito [20].

2
X6+Y3+Z + TXYZ

=0 a=1
X4 + Y4 + Z2 + 1X¥Y2 = O a=2
X3 + Y3 + Z3 + TXYZ = O d=3

(Here the parameter T 1is related to the j-invariant of the elliptic curve
E , cf. [20]). For d = 4 we obtain the complete intersection of two

quadrics in ¢4 .

To the first six simply elliptic singularities there is associated an affine

Dynkin diagram A -

d 1 2 3 4 5 6

| | | | | I [
I R RV VR U B B
A By E, Eg Dy A, A, XA

The deformation theory of these singularities can be described completely in
terms of the corresponding diagrams. This was suggested already-in the work
of Ssaito [20] and established precisely in the works of Kndrrer [9],
Looijenga [10], [11], [12], Pinkham [19] and Merindol [14]. The basic tool

in Pinkham's approach is the theory of the corresponding Del Pezzo surfaces.

7. We first give a rough picture of the semiuniversal deformation

¢ : X >V of a simply ellipfic singﬁlarity XO , cf. [14], [18]. We may
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choose ¢ to be equivariant with respect to natural Gm-actions on X
and V and we may assume that there is a projection

+ : . +
p:v->9 ={rec]||r] >1} as well as a section s : @ >V of p

.
mapping § onto the fixed points of Gm in V with the following prop-

- o o oFy B

erties. Décompose V.= Ve v Vf , where Ve =s(Q) , Vf = y-Ve . Then a»
fibre ¢—1(s(k)) has a simply elliptic singularity of the same degree d

as XO and the exceptional elliptic curve E of its minimal resolution

is isomorphic to C*/<Al|i € 2> . A fibre over V

£ is either smooth or

has at most simple singularities.

The dimension of V is max(11-d,1) and it is smooth exactly when d < 5.

~ oF +1. « o
Then V = Q X ct ! , where r =9 -d . For-d = 6 we obtain

vzatx C(P1 X Pz) where C(P1 X Pz) is the affine ‘cone over the Segré
. 1 2 . 5 R VR S
embedding of P~ X P~ into P~ . For d = 7  each slice 'VA =p “(A) "is

a cone over a surface of degree 7 in PG (depending on A ). For d = 8

there are two components V = V1 u V2 which intersect along Ve . Each

slice V, , is a cone over an embedding of the elliptic curve
14

i ~ + 2
C*/<Alli € 7> into P7 and V2 =Q X¢ .For d4=9 we have
Vred = Q+‘x € , however V has embedded components along Ve .. For 'd > 10
we have Vred = Ve = Q+ , but again V is not reduced. (Under the iso-

.morphisms given above p and s will always have the canonical form.)

A simply elliptic singﬁlérity éan bé smoothed by déformationiif and only if

da<9.1f 4 = 9 there are no singular fibres over V_. , and if d =8

£

there ‘are none above Vll\ Vf‘. In the other cases '(d'< 8) - the discriminant

of ‘¢ 1is of particular interest. It was described in a uniform way by'

Pinkham and Looijenga (d < 3) .

8. We now recall this construction. It suffices to consider the discriminant

_ Ll -1
DA C'Vf,k =V_ n VX of the restriction ¢A : ¢ (Vfrk)-——+ v

£ . The

£,A
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exceptional elliptic curve E  in the resolution of ¢—1(S(k)) is then

isomorphic to C*/<Al> .

Let Xx(T) denote the lattice generated by the coroots of some root system
Z and let. T = X,(T) & ¢* be a maximal torus of the corresponding simply
connected complex Lie group. By A we denote the abelian variety

X(T) ® E. = T/X4(T) ® <Xi> . The Weyl group W of I acts naturally on
X%(T) and A . There is an essentially unique c®-bundle L over A
endowed with a W-action and such that its first Chern class cl(L) equals
the negative normalized Killing form on X,(T) (value 2 on short coroots).

X (T) < B (a,0).

Here we use the Appell-Humbert identification ncl(Pic A) =58
The isotropy groups of W on L are generated by reflections. Therefore -

L/W 1is a smooth space. Let D ¢ L/W denote the discriminant of the

ramified covering L - L/W .

Theorem (Looijaenga, Pinkham):

X
Let 7 be a root system of type E8 ’ E7 , E6 R D5 , A4 , A2 A1 . Then

the pair KL/W,D) is isomorphic to the pair (Vf K'DK) for the cor-
2= Past , oL == Lo

responding simply elliptic singularity. Let gle Vf Y L/W be the image of
14

a point s € L and WS the stabilizer of s in W . Then there is a type

preserving bijection between the irreducible factors of WS and the (simple)

singularities in the fibre ¢—1(§3 of the deformation ¢ .

Pinkham actually gives a construction of the total space.of ¢ , too. His
method also extends to the cases d =7 and 8 . If d =8 the pair

The case d = 7 can be

(V2 N Vf,X'DX) is obtained by putting ¥ = A1 .

described similarly by using a rank two lattice containing an A, -system

1
(for precise details cf. [14]).

For later use we note the following. Wé may pull back L to a trivial
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c*-bundle T x €* over T equipped with an action of the affine Weyl

group W=wx X%(T) . The translations X (T) will then operate on T

és thé subgroup X (T) ® als =z Xg(T) of T , and the action on T X c*
will be determined by an automorphy factor e : T X X,(T) - €¥. Since X,(T)
acts freely on T X c* we obtain the same isotropy groups for W on

T X ¢* as for the action of W on L . By the same reason the discriminants

of the ramified coverings T X c*— (T x ¢% /W = L/W and L > L/W

coincide.

IIT. Chevalley Groups over €((t))

Extended Dynkin diagrams, affine root systems and affine Weyl groups arise
in the study of algebraic groups over local fields [3], [5]. It has been
natural to ask (cf. for example [19]) whether there would be a similar re-

e i e ) h
lation between, simply elliptic singularities and the corresponding

@%evalléy groups bﬁérA‘C((E;E as there was between simple singularities and

simple complex Lie groups.

A first attempt is to repeat the construction of{the morphism ¥ : G > T/W

“over the‘bgéé;fiéld> K = c((t{l}. However, this will lead only to forms of

s ERE

@E;blé singularities over K} (cf. [21] Appendix 1). In particular one does

not end up with finite dimensional objects over € . To remedy these defects

one Eijfz:‘hodif§'é Chevalléy gfoﬁpvoVéf K in a way suggeQEEAWSQNEﬁE” ™

—
{Eheory of the closely related Euclidean Kac Moody Lie algebras [6]} [15]5f

. T

9. ILet (6 be a semisimple simply connected algebraic group over € ./ILet

kK=c(t) ={ 7§ aitl a,e€C, i e 2} Dbe the field of power series
i>i
<o

s of G over Kt} The most important

TSR

over C and(fa(K) the group of poin
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modification of G(K) will be.the following semidirect product. By = ¢¥*

we denote the group of C—automorphlsms of K) given by -

Ap(t) =" p(\t)

where )\ € €* and p(t) 1is a power series in -t . This group acts natu--

rally on G(K) and we may form the(eemldlrect product G(K) X QL The

pro;ectlon p : G(K) b Q - Q 1s 1nvarlant under conjugatlon by G(Ky . If

S

(g,A) 1is an element of the fibre p (k) conjugation by an element

X € G(K) will look like ék{%q}ii:sq“ Mwwwfmmwa ~jiL:: {:¥
Q2120 T k?)\

x(g,Nx T = (xgxx_l.l)

A_~1

where 'x. 7 = Xx—l

-l x(Kt)_l if we write x as a power series 'in t .

A

‘the correspondlng con]ugacy clasgtg

It w1ll turn out later that forf/”i| #1

\ylll have finite C—codlmenSLQn in G(K) X Q/ and that it is possible to
define a quotient of (a part of) G(K) ¥ Q with respect to.conjugation:
However, to obtain a complete picture we need a further modification of the

group G(K) .

10. The<Kac Moody Lie algebra g correspondiughfol\G(K) ‘is given as the

follow1n one—d1mensronal central exten51on of the p01nts g ® C[t t 11) of

the Lie algebra g of. G over the Laurént polynomial ring @[t t” ]

A

have;‘g (g ® ¢[t t ]) ®C -

Y as a C—vector space and the Lie bracket for

elements X @ u,ye®v,xyeg, uv e C[t t ] is defined by

i
5,

i

[x @ u , y ® V] = [x,y] ® uv - Res(udu)(x}y). c‘>
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where - (, ) 1is the Killing form on g and. Res (udv). . means the.residue
of the differential form udv (cf. [4]). Kac has developed a theory of-

/\ ”1§h2‘§t welght representatlows; for g ) 1nclud1ng an analogue of the Wei?]}

e S—

i\character formula [7} ;,;If G is s:.mple of rank r then there are r ¥ 1

“\“

fundamental representatlons correspondlng to fundamental dominant welghts

: R SNSRI el sl

similarly as in the-classical theory. All these representations are of

R S O e

infinite dimension ove:i@ In [4] Garland has shown how to lift these

B . . —

,W st i T SO S
representations to; representatlons of a central extension & of G(K) X Q
i e

i
1

\ 1+C*+G——*G(K)XQ+1.{
oty

To- describe this extension it is, according to the theory of Moore [17],

sufficient to know the restriction of this exten51on to;the max:.mal torus )

s, - - 4

et T i R

of some SL, (K)‘subgroup of G(K) » associated to a long root Garland

(¥

shows that the.extension & is defined by the inverse of the tame:symbol,

i.e. \two elements u v of the torus K* 11fted to é‘ in a spec:Lal way‘ ( v

;nultlply accord:.ng to Vvﬂ}‘ & K* - gé& <K}§ LTT{ } < GQ‘K}*}{LK‘L « C

£
7

i

i
7

v{(u)v(v) v (u)u—\),(v) )

c(v

wev = uv (-1)

. where u+*v is the product in G , uv is the product in K , Vv : K> %

is thet—valuation on K =C((t)) and c : K~>C¢C lS the. constant term of ,A

aipat Fr. rnemmgpenin et

% . e - e e e

[P UR——

power series./ In the formula above the value of ¢ 1lies in c* and is

regarded as an element of the center of & .

e A e

To define and analyse @acters and conjugacy classes of G \‘kwe have to

S e P s e o

introduce some important subgroups of & .



W‘ . . |
j,\g,g,gg Qﬁ“““ GG‘ECC‘ .' "“ﬁm »Q:;

Nt

LpMace . C o Tle)e Kx}ﬁw; e
~ QT

In ;ﬁg following we will keep the notations of section 2.. The compo-

sition G > G(K) ¥ Q > Q is also denoted by p k4 By T :X_;(T) ® ¢* we/

it

"“’3@

s -
ST R P

g\denote the Complex Qo:.nts og aﬁ\:l.mal torus of G,.’ We regard T as a

subgroup of T(K) < G(K) which are the K—valued points of T and G . Let

P i, s e T s
X e ot o P et e

5 T =g 1(T X Q)}. Then ;\T is a maXLmal C—torus in G of d:.men51on r + 2

B SR e oSt ot O S . R AR

which, using a section of T in G , can be written as a product

Tx¢e¥x Q. Using the ordinary Bruhat decomposition of - G(K) one proves:

Proposition 1: Let N be the normallzer of T in G ‘; Then there is an
P —
exact sequence P N
Te NS &
AN [ i
1 > T >N->W-=>1 \/ | )

Taz AT cGicellic Livn
,, SN U
\_where W is the affin group W - W X X,?T‘;\\%xié('f} A

///‘

s MMMN__H,N/ ,m'

There is a particularlyfnice section of X (T) 1nto the image of N in\)

. i R s

S5,

o GRS SRS

H G(K) x Q gJ_ven by the subgroup

X(T) @ <t" | i € 2>C X(T) 8 K¥ = T(K)

in T(K)

A ‘\/zi S e
[/ Iet T}\ = p ()\) N T . Then '“I")\ is a €*-bundle over l— E(W

y,m,«m«.m ,, sk

kequipped with the natural action of N/T =W J e subgroup X,(T) of W

T e

j operates on T}\ by translations through the subgroup X(T) ® <)\l!i € Z>//

fComparing the automorphy factor for the action of X(T) on %)\
with the automorphy factor of the construction at the end of section 8

one obtains:
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{\ \L c* ;

&

T <

»:z/»ﬂ»wmwmy
pProposition 2: ,ghe ‘W-actions on the (D*—bundle T kgand the ((t -bundle
- . — W,«a

T X ¢® defined in Section 8 for the same 423,} coincide with respect to the

T

To= Txc¥x A} T T
T

= 7 x {}A} = T .

natural identification

™~ Fa ﬁ
NI W
12. Consider the points G(G:E t T_]) of G over the formal power series

ring and the natural reduction homomorphism "mod t" :

U U\?} : G(C[t])__eg_G(q:) * + -
B “"'%B ﬂﬂ#gfg\‘"\iﬁ}-%&yT
Let &B c G be a Borel subgroup containing T and B' = r"l (B) its pre-

image under r . We consider B' as a subgroup of G(K) and call

B := e—l (B' ¥ Q) an Iwahori subgroup of & . According to Moore's theory

[17} we have an isomorphism of groups F"(B' x Q) x ¢¥ (with c* the e

T § - . | 7 - @;@{@nﬁ{ I

center of & ) giving rise to a semidirect product decomposition 2

bv:Lous prOJectJ_on B> TJ. We
s e

e e

(B = 'T‘ x U where f'J is the kernel of the ol

1
1

then have the afﬁine Bruhat decomposition originally due to Iwahori and
"Y

Matsumoto [5] and \adapted to our context by Garland [4]

11

toadeny .
e 5‘&{“"? ) {5@;1 i{sﬁi‘*‘

1
i i
’ R wé ) B= \¢ byt

i

Theorem 1: The group & is the dls;)oz_nt union of the lStlnCt deuble co-

g,
«»..‘»’

sets UwB,WEN/T.___"i:J‘

e = o = g ‘-. ; e S AR "
be the root system of ISE in a and §uu : G — U e G/

(\e flxed addlt:Lve one parameter subqroup corresponding to an o € Z /' (cf:

S ik

section 2). Through the projection T > T we consider I as a subset of



be the character deflned by the com9051tlo

R

ffine root system of T lnva is now defineq

'-d?‘
1 g
e}
1
e
*
?f‘

—
o

{a + 16 e X*(T)l o € Z , i€ Z} / For any affine root

e S o

PSS

is €% we obtalnga complex one parameter group"

,f
'

a a

:‘J; ] ~ £ ey )
[A=AC5eS = w L e e
E with the property
-1 . :
s u_(c)s = u_(a(s)c)
a a
for all s €T, c e € , by composing

% R , - i < .
' | C o Ct é«——?x——éuu(K)
cr—— ottt —————— ua(etl)
1with a fixed: .grouptheoretic section Ua(K)'——* G .

A ey

U51ng either the é;ﬁlnary&Bruhat decomposition. orrmggg)j or the(afflne one

for éﬁ one can 1nvest1gate the structure of the pentrallzers Z(s) of

elements s e T fge;T’(\m

| & wi«u'}, ="
X
| iﬁ&(«m&? R

Theorem: Let ;s e T such that |p(s)[ I (s)l # 1

[

i i SRRSO “"—n

g(s) {a G ZI a(s) = 1} 4 Then Z(s) is a finite subroot systeﬁ of I

and Z(s) 1is a finite dimensional complex reductive group with root system

i(s) generated by the subgroups T and ﬁa , a € E(s) .

13. Let &° ConSlSt of the elements in G Wthh are con]ugate lnto a

L Mwmmﬂ

(;:;;; Iwahorl subgroup B =T U} From a reflnement of the ordlnary or

e




{Xi we denote the formal character of T on V

icharacter formula [7]
\\c_

Proposition 2: , are W lnvarlant holomorphlc functlonsyi
................ e N A NI
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affine Bruhat decomposition one deduces:

Proposition:1l: ' Let s,s’ be elements in T ‘Echjugate»

s and s' are conjugate by.an element in N .

e o

? |
!

. L
As a corollary we obtain a set-theoretic map
: ,\

—~ el e TRy

1&; ‘-«s” . ~O
9~ b \L T .. G
MG N Y

SN A ; x’f W
(here T/W is the set-— theoretlc quotlent') defined unlquely in the following

i way. An element (&lggﬁ\ lS conjugate to some b E B/. Leti , Qe’the pro—
iAjectlon of b cnto T /. Then 7(g) is the class of s .in ¥/f . » yj
* EPE— > - e @ Ma . f‘"\}@ " e N et

ét“ - B B

£ ~

. Now let} G be simple and o,
i A

fundamentalwlrreduCLble representatlons of G lntroduced in sectlon 1Cm By

ee«cclmmwemM“MMWmmww?;Let (%j;‘l = {s e Tllp(s)]:ﬁ> 1} ;

N

The characters ¥,

g,

~ 1 RS, e it e e
( The map 7. /W S oal i
o 2 1}“—“ A

to "E'j(;(“s) reeeaX, (s)

bounded from .above.

i

sendlng the W—orbit of an element

S€T>\‘-}

+1, I
is an analytic iscmorphism onto V¢r 1\ {0} for al1 o

A€ Q, |A| > 1ﬁ§ with the possible exception of a discrete subset of §

Let &°

P
composed with the morphism T

(s mod W) — (p(s),X (s),...,xr(s)) , to give Ege/éigebralc trace map

s 1= [g e & Ip(g)l > 1} . The map T : éo> — T 1/W may be

/A QX ot

’

T i 2 e

e A P = Y:ggl
&XZGOM_* axc ‘Em- g v/ w
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\Egrthe hermltlan product lntroduced by GarlandFEilx/Then xﬁ(g) X (T(g)j .

F h .peﬂ"‘ﬁyﬁ
Wwill coincide w1th the analytlc trace of Py (g) o

i S

fIf G = Gl'X...X Gk is semisimple with simple factors Gj the extensioné

"G is only a quotlent of the product G1 x...>< &".k by a F,(}Su—,:l)—dlmensa.ona],
i y»‘” - R e - - SR

:\central torusy Accordingly fundamental characters of G are given by pro-

st e

T

ducts of fundamental characters of the éi satisfying certain conditions.

These characters will in generalfhot be algebraically independéé? as is the

case for simple G .
14.. Let s e T, |p(s)| > 1 . We know from section 12 that the centralizer

Z(s) of s in & is a finite dimen51onal reductive group. We denote its

unipotent variety by Uni(s) . @{‘?( :}‘6 f(&}

7, L

%;f?lw 2Ts)

)} is —1somorphic to the associated bundle

~

Theorem 1: {The fibre T—l(T(s)

G x Z(S)Uni(s) .

Corollary: The fibre T—l(T(S)) contains only finitely many: conjugacy

. classes which are all of finite C-codimension.

Let B = Bn G > 1 - Then there is a commutative diagram

v/\ - T oS

\ by B . } ) ;
ét‘;l‘é‘("f‘ () (SIQ*GX (B 5 4 — ¢ >1“’§( ‘E(‘g)

ww“:-u

y

v‘._,-w..m_f
P e e
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defined in the same way as in section 5.

Theorem 2: The diagram above is a simultaneous resolution for T .

The proof of these theorems is analogous to the proof in the classical case

[211), the crucial starting point being a theory of(}grdan normal form

for elements in EQW>

IV. Conclusion

15. . Combining. the descrlptlons of the semlunlversal deformatlon o : X-+§P

T

s

i

Lf a simply elliptic singularity/and the flbres of T . &, — F > 1/ﬁ‘§

for the correspondlng group G we obtain the following result Let

X, 1= o (Vo) . f X ?X% 3&(’*)% & = |

@~
g T s m?e ,an@. i S R o i \

Theorem: For{simply elllptlc SLngularltles of degree d < 6% there is an -

identification V. =7 /W such that for all x € X_ there is a neighbor-

hood X (x) of x and an(rncluSLOn Xe (x) = &° ;;} making the following
G ——— T

diagram commute ' ’/f”w

A similar statement is true for the part ¢2 : ¢—1(V2) - V2 of the semi-

universal deformation in case d =8 .

o A .

he root systems attached to 51mply elllptlc SLngular;:i;:}form only a small

s

part of all root systems. Some further root systems can be attached to



36

simply elliptic sihgulq;igggﬁwegqigggdi&%th;aVgrOup of symmetries }(cf.

[8]). An analogue of the theorem above then holds for the. deformations
conserving symmetries. Here groups over C((t)) come’into play which are-
not of Chevalley type. They will be dealt with in the work on general Kac

Moody algebras mentioned in the introduction.
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