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§0. Introduction

In this work we show the analogous invariants of plurigenera of compact
complex manifolds can also be definéd for normal isolated singularities.

Our presentation goes as follows. In Sect. 1, we give the definition of
plurigenera ﬁm, ma positiﬁe integer, of an n-dimensional normal isolgted
singularity and calculate them in the typical three cases. In Sect. 2, we
study the normal surface singularities and prove some theorems about Sm. In
the last section of this paper we classify the surface singularities such
that 0 < § <1 for m 2 1. |

Let x be a normal singularity of two-dimensional analytic space X. In
[2], Artin introduced a definition for x to be rational. A point x is
rational if Rlﬂ*Ox = 0 where 7:X > X is a resolution of the singularity.
Laufer [13] derived a necessary and sufficient criterion for x to be
rational that does not involve a priori kﬁowledge of what a resolution of x
looks like. Yau [27] geﬁeralized Laufer's result to higher dimensions. Let‘
(X,x) be a normal n-dimensional isolated singularity. It follows from
Hironaka's work [7] that a resolution>ﬂ:2 + X always exists. The geometric
genus 6f the singularity is defined as

Py (X,x) = dim (Rn_lﬂ*OX)x .

Assume that V is a Stein neighborhood of x in X. Let K be the canonical line

bundle of V-{x}. Then
P, (X,x) = din T (v-{x},0)) /L2 (v-{x}) .

(Here LZ(V?{X}) denotes the set of all square integrable holomorphic n-forms

on V-{x}, see p.601 of [13].) Following the m—genus of a complex manifold



[22], the plurigenera of an n-dimensional isolated singularity is defined
as

§ (X,x) = dim I"(v'—{x},o(mK))/LZ/ n

(v-{x}h

where L2/m(V4{x}) denotes the set of alleZ/m—integrable m-ple holomorphic
n-forms on V;{x};~6m(x,x) can be described in terﬁs of cohomologies of thé
resolution. These inﬁegers are determined indépendeﬁtly to the choice of
the Stein neighborhoods..Hence Gm can be an invariant attached to the
singularity. We consider the asymptotic behavior of Sm when m -+ 4+, and

s n .
calculate the value § = lim sup Sm/m in some cases.
m > ®© :

Let (X,x) be defined by a quasihomogeneous polynomial f(zo,zl,...,zn)

with weights ro,rl,...,rn:
: n+1
X = {‘(ZO’Zl""’zn)ec l f(zo,zl,...,zn) =01}.

Let r(f) = r0+r1+...+rn. Then (Example 1.15),

(1) xr(f) > 1 == Gm(X,x) ‘0 for m2>1,

(2) r(f) =1 = 6m(X,x) 1 for m2>1
and

(3) r(f) <1 ==>1lim sup § (X,x)/mn = —]-'rl1—r(f)}n'——--—--]:——----~ .
m nl T .T,...T
m > « 01 n

In case (1), (Theorem 1.11) (X,x) is rational by Burns [4], p.239. If (X,x)
is a quotient singularity then Sm(X,x) = 0 for m > 1. Suppose that (x,x)
is é cusp singularity. Then (Theorem 1.16) Sm(X,x) = 1 for m:; 1.

When (X,x) is two-dimensional, we prove two fundameptal theorems. One

is 1lim sup Gm/m2 < © , The other is as follows. Let m:X =+ X be the minimal
m => © :

resolution of X. Let A = ﬂ_l(x) be the exceptional set. Suppose A' is a
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connected proper subvariety of A. A' is also an exceptional set. Let
(X',x') be. the singularity obtained bykblowiﬁg dowm A'. fheﬁ (Theorem 2.8)
6 (X,x) 28 (X',x'"). Let p,(X,x) be the arithmetic genus introduced by
Wagreich [24].‘Then the latter fundamental theorem allows us to introduce
the notion of minimality of a singularity. (X,x) is ﬁinimal if pa(X,x) >1
and pg(X,x) > pg(X',x') for every connegted proper subvariety A' of A. For
instance (Corollary 2.9) Gorenstein singularities have the minimality if
P, > 1. Moreover (Theorem 2.13) a minimal singularity with p, = 1 is
Gorenstein. When the dual graph of a minimal good resolution is star-
~shaped, (Theorem 2.21) it becomes possible to get an estimate, in terms of
the associated graph including the genera of the irreducible components
and certain data.
In Sect. 3 we study the classification of singularities¢sﬁch that
0 é:ém < 1. Gm characterize the quotient singularities (Theorem.3.9) :
(X,x) is a quotient singularity <==> Sm(X,x) = 0 for m > 1. Knoller [11]
proved the analogous theorem : (X,x) is a rational double point <==>
Ym(X,x) = 0 for m > 1. We completely classify all rational singularities
with 0 §=6m < 1. This result has the striking resemblance to Wagreich's
work [23]. As for the singularity such that Gm =1 for all m > 1, a few
exceptions are left in the cléséification. In particular (Theorem 3.20),
if (X,x) is a Gorenstein singularity such that 6m =1 for all m > 1 then
(X,x) is a simple elliptic singularity or a cusp singularity.
The referee has iﬂformed the author that Theorem 2.1 is generalized

to the case of arbitrary dimensions n > 2. The author wisheé to thank the

referee for his wvaluable comments and suggestions.
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§1. Plurigenera of Isolated Singularities

Let (X,x) be a normal isolated singularity in the n-dimensional analytic
space X. It follows_from Hironaka's work [7] that a resolution 7 : X + X

always exists.

Definition 1.1, The geometric genus of a normal isolated singularity

(X,x) is p,(X,x) = din ® 00

The geometric genus is in fact independent of the choice of the
resolution. Yau [27] derived an intrinsic definition of p_ that does not
involve a priori knowledge of what a resolution of x looks like, which is a

generalization of Laufer's theorem [13] in the 2-dimensional case.

Theorem 1.2 (Yau [27]). Let x be a normal n-dimensional isolated
singularity of X. Suppose that V is a ( sufficiently small ) Stein neighbor-

hood of x and K is the canonical line bundle of V-{x}. Then
P (%% = dim T (V={x},0@) /L2 (V=(x}) ,

where LZ(V—{x}) denotes the set of all square integrable holomorphic n~forms

on V-{x}.

Let U =1 S(V) and A = 7 “(x), then T'(U,0(K)) = L>(U-A) by [13,
Theorem 3.1, p.601]. Therefore we obtain pg(X,x) = dim F(U—A,O(K))/T(U,O(K)).
For convenience, we denote the line bundle K®m by mK. An elementnof
T'(v-{x},0(mK)) is considered as an m-ple holomorphic n-form. Let w be a

holomorphic m-ple n—-form on U-A. We write w as
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m
W= ¢(z)(dz1Ad22A...Adzn) R

‘using local coordinates (zl,zz,...,zn). We associate with w the continuous

(n,n)-form (wga)llm, given locally by

; 2/m /-1.n —~ - — —
I ¢(Z) l ( 2 ) dzlAdzladZZA ZZA .e -Adzn/\dzn .
Definition 1.3. w is called integrable,(Lzlm—integrable) if

J (mAE)l/
‘W-A

™ ¢ w for W, any sufficiently smali relatively compact
neighborhood of A in U.

2/m

Let L (U~A) be the set of all integrable holomorphic m-ple n-forms

on U-A, which is a subspace of T(U-A,0(mK)). LZ/m

(U-A) becomes a vector
space I'(U,0(mK+(m~1)[A])) in the case that A is a divisor which has at
most normal crossings by Sakai [19, Theorem 2.1, p.243]. As for Lzlm(V?{x})
we replace U and A with V and {x} respectively in the definition of
Lzlm(U—A).

Following Laufer [13], we consider the sheaf cohomology with support

at infinity. The following sequence is exact:
0 + I'(U,0(mK)) + T_(U,0(mK)) + Ho(U,0(mK)) + ... .

By Siu [20], p.374, any section of mK defined near the boundary of U has

an analytic continuation to U-A. Therefore there is a natural'isomorphism
T (U,0(mK)) 3 T(U~A,0(mK)) .

By Serre duality,
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Bl (U,0ax)) 3 B (U,0(k-1K)) .

‘Since U is strongly pseudoconvex, Hn_l(U,O(K—mK)) is finite dimensional.

Hence by the ineqﬁality

2/m

dim r(U-A,O(mK))/L (U-4) £ dim r(U-A,O(mK))/F(U,O(mK))

< dim Hi'(U,O(mK)) = dim 51 (U,0(x-uK)),

we have dim I'(U--A,O(mK))/LZ/m

(U-A) <+ », If V> V', with V' another Stein
neighborhood of x, then we have the following commutative diagram of exact

sequences.

0 > T(U ,0@K)) + [(U-A ,0@K)) + Hy(U ,0(uK)) + H (U ,0@K)) * ...

‘¢ Bo A Y Yo oy v& B2

0 + T(U',0(mK)) + I'(U'-4,0(uK)) > By (U',0@@k)) » K (U",0(K)) > ... ,

where Bg, Yo and By are the restriction maps which are induced by the
inclusion map § : U' > U and o3 is the zero extension map of the cohomology.
The restriction map B3 is an isomorphism by Lemma 3.1 of [13]. It follows

from an easy diagram chase that
T (U-4,0(uK)) /T (U,0(uK)) > T(U"-A,0(uk)) /T (U’ ,0(ak))

is an isomorphism. Thus

2/m 2/m

I (U-A,0(mk)) /L2 ™(U-a) 3 T(U'-A,0(@K)) /L

(U'-4).

Definition 1.4. The plurigenus (m-genus), m a positive integer, of a

normal isolated singularity (X,x) is
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2/my {5}y .

ﬁm(X,x) = dim T(V;{x},O(mK))/L

Theorem 1.5. Let (X,x) be a quotient singularity. Then Gm(X,x) =0
for m > 1.

Proof. . (X,x) is a quotient singularity. Henée we can assume that
there exist a ball B ¢ €" of radius €, suffiéiently small, and a finite
group G of unitary linear transformations, no element of which fixes,
poitwise, a hyperplane in Cn, so that (X,x) = (B/G,p(O))vwhere p is the

quotient map B - B/G. If 6 is,én m-ple n-form on X-{x},

m
= p%
f P e/(leAdz Aeoendz )

2

is a holomorphic function on B-{0} and hence extends to be holomorphic also

- . n
at 0, the origin din € . Then

J_ wﬁfm=lf4 (pro.5%0) /™ |
X-{x} & Jg—{o0}

where g = ord(G). Since p*0 = f(z)(dzlAdzzA...Adzn)m is holomorphic, the

integral in question is finite and so 8 € L2/m

(x-{x}). Thus Gﬁ(X,x) =0. 0
Theorem 1.6. Let w be a holomorphic n-form defined on a deleted
neighborhood of x € X, which is nowhere vanishing oﬁ this neighborhood. If

w is square integrable in a neighborhood of x, then 6m(X,x) = 0 for all
m> 1.

Proof. Let V be a sufficiently small Stein neighborhood of x. If ©
is any holomorphic m~ple n-form on V-{x}, f. = 6/w™ is a holomorphic
function on V-{x} and hence extends to be holomorphic also at x. Thus 8 =

2/

fw” is L/ M~integrable. : 3]
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Let M be a compact complex (n-1)-dimensional manifold, and let F be a
complex analytic line bundle over M. Assumevthat F is positive in the
!sénse of [16]. We denote the total space of the dual line bundie F* by X.
Thé zero section of X is contractible. Then we get én n—-dimensional normal
isolated singularity (X,x) by blowing down 7 : X -+ X.

The Leray spectral sequence of T shows
H (X,04) = HO(X,Rl'rr*OX) = (R'M,08)_ »

and the Leray spectral sequence for p : X'+ M, p the projection of F¥,
shows

B (%,09) = B',R0p,09) = © HLOLOGE)) .
k20

Let KM be the canonical line bundle of M. Then all these groups vanish if
KM is negative. In the case that KM is a trivial line bundle, Hn_l(M,OM)
is one-dimensional. In particular
& .. =1 : : . .0
p,(X,x) = ] dimH ~(,0(kF)) = ] dim B (M,0(K,kF)) .
g k>0 k>0
Theorem 1.7. Let (X,x) be an (n+l)-dimensional normal isolated
- singularity. Assume there exists a resolution 7 : ¥ > X such that A =
n—l(x) is an n-dimensional compact complex manifold. Then
8§ (X,x) < ) dim T'(A,0(mK,+kN)) ,
m = A
k>0
where N is the normal bundle of A in X.
Proof. Since A is compact, we can cover A by finite number of
coordinate neighborhoods4{Uu} with holomorphic coordinates (z;,...,zg,ta)
with A n Uu = { peUa ] tu(p) = 0 }. Choose a Stein neighborhood V of x so

that v Ua > U = ﬂ—l(V). Then we have an injective homomorphism
o

- 10 -
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2/m

I'(U-A,0(mk)) /L " (U-a) + ) T (A,0(uK,HN)) .

k>0

Let ¢ € F(U—A,O(mk)). Hi(U,O(mK)) is a I'(U,0)-module of finite
diménsion over C. So ¢ is meromorphic on U with possible poles on A. ¢ is
given by meromorphic function ¢a in Ua such that

. 1 n ™
¢a{ dza/\.‘ s Adza/\ (dta/ta) } .

Expand ¢a in a Laurent series

_ ), \ Kk
%o = -m<12<<eo bo (D
In the case where k > 0,
1 m k,- 1 n , m _ , (k) 1 n.m
(m) J,”“Jlt l=€ (tOL) ¢a{dzaA-¢.AdzaA(dta/ta)} = ¢OL (dza"""‘dz(x) s
a' Ta

for ea suffciently small. Let'{fas} be transition functions of the line

bundle [A]. On UanUB’ ta = fGBtB’ then

1

¢ék)(dZiA.,.Adég)m-=f(faB|A)k¢(k)(dzB

B

Ae -V-Adzg)m ‘ .

Clearly [A]lA is the (complex analytic) normal bundle N. It follows that
‘{¢ék)} € F(A,O(mKAka)) and the homomorphism has been constructed. By the

definition this homomorphism is injective. O

Remark. In the case where (X,x) admits a C“—action, the above
homomorphism is surjective. Given'{¢;k)} € FkA,O(mKAka)), we can form the

global section of I'(U-A,0(mK)) as follows. Since ta = fuB(z)tB’

1 n _ 4.1 n
dZ(on . oAdZaA (dta/ta) = dza/\. . oAdZuA (dtB/tB)

-~ 11 -~
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on Uan UB. Then

RO

k 1 n mn_- ¢, (k) k 1 n m
N /(t) }{dzam..,\dza,\(dta/ta)} = {qaB /(tB) }{dzBA...AdzBA(dtB/tB)}

and hence the homomorphism is surjective.

Let M., M2 be compact complex ﬁanifolds of dimensions ny5 D,

respectively, There exist natural projections Py from M = Ml bl M2 to Mi’

i=1, 2. Obviously piKl+p§K2 is the canonical line bundle of M, which we

denote by K. Suppose Fl’ F2 be positive line bundles on Ml’ M2

F = p§F1+p§F2 is also positive. The zero section, which is identified with

, respectively.

M, of the total space of F* is contractible. By blowing down M, we get an
(nl+n2+1)—dimensional normal isolated singularity. Using Theorem 1.7, we

get

O
I

) dim T'(M,0(uK-kF))
k>0

= %* * - * %
kzo dim P(MlxMz,O(m(lel+p2K2) k(p1F1+p2F2)))

k;o' {dim T (M ,0(uK;~kE)) x dim T(MZ,O(sz—kFZ)‘.)}

( by Kinneth formula ) .
ng

Proposition 1.8. 1If K, is trivial and Kl is positive, then Gm ~m .

In fact lim sup (Sm/m_n1 = (1/n1!){c1(Kl)}n1, where cl(Kl) is the first
m >

Chern class of Kl"
Example 1.9; Let (X,x) be the n~dimensional normal isolated
singularity obtained by blowing down the zero section, denoted by M, of a

negative line bundle. Then

- 12 -
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(1) KM : negative ==> 6m 0 (m>1)

(2) KM : trivial ==> Gm =1 (m>1)

‘o o n
(3) X, : positive ==> lié;szp § /m” >0 .

Next we consider a normal isolated singularity defined by a quasi-

homogeneous polynomial.

Definition 1.10. Suppose that (r 1,...,rn) are fixed positive

0T

rational numbers. A polynomial f(z ,zn) is said to be quasi-

0°%1°°*"

homogeneous of type (ro,rl,...,rn) if it can be expressed as a linear

. . . io_1ii in . . .

combination of monomials z . z " ...z for which i r +i.r.+...+4i r = 1.
0”71 n 070 171 nn

Let d denote the smallest positive integer so that rod = 459 rld = 4y

- . q0 qn = d
cees rnd q, are integers. Then £(t'°z t zn) t f(zo,...,zn).

0%
Theorem 1.11. Let (X,x) be an n-dimensional normal isolated
singularity defined by a quasihomogeﬁeous polynomial f of type (ro,rl,...,rn).
Then (X,x) is rational in the sense of Burns [4] if and only if r(f) =
o>
r0+r1+...+rn 1.
Proof. By virture of [4, Proposition (3.2), p.239] it suffices to
show that w = dzlA...Adzn/%§0 is square integrable in a neighborhood of x.
Let d denote the smallest positive integer such that there exists, for each

i, an integer q, so that r.d = q,. Let ¢ : Cn+1 > Cn+l
i i 44>

be defined by
¢(w0,...,wn) = (wgo,...,wgn) and let X' = ¢—1(X). Then X' is defined by a

homogeneous polynomial ¢*f of degree d with the singular locus S(X'). Let

- 13 -
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A be an irreducible hypersurface defined by ¢*f in-ZPn 3 X' is a "cone
over A", and let p : A> A be a resolution of the singularity. Suppose
‘that H¥ + A is the line bundle induced on’A by the "tautological" line
bundle on P (dual to the hyperplane bundle). Then the "tautological" map
™ HX'* X' is a resolution of the singularity with ﬂ-l(O) = A. Since ¢*w
is locally square integrable at any point p ¢ S(X')-{0}, m*¢p*w is

. holomorphic off A. By easy calculation, T*¢*w has zero of order q0+ ql+
eee + Q.- d - 1 at A, From [13], w is square integrable if and only if
q0+ql+-o-‘+qn—d—1;0, i.e.,r+r+---+rn>1. ]

0 "1

Corollary 1.12 (Burns [4]). Arnold's singularities [1] are rational.

When (X,x) is defined by a quasihomogeneous polynomial, then 6m is

completely determined by its weights { TgsTyseeesT 1.

Theorem 1.13. Let (X,x) be an n-dimensional normal isolated
singularity defined by a quasihomogeneous polynomial f of type (ro,rl,...,
rn). Let d denote the smallest positive integer such that there exists,

for each i, an integer q; so that rid =qy- Then

n+1 I

Sm(X,x) = #{(\ Xn) eN m{d—(q0+°'°+qn)} g:koqo+°'-+lnqn }

0% 2

—H

4
0reeeor) e W | mld-(qkesetq DI-d 2 Ajq ket th a T

Proof. If 0 is any holomorphic m-ple n-form on X-{x}, g = 0/w” is a
holomorphic function on X-{x} and hence extends to be holomorphic also at
x. Expand g in a power series : g = X a8 4z Xo...z kn. Notation being
0+0.A5° 0 n

Am
as in Theorem 1.11, T*d*z w has zeros of order

- 14 -
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)\oqo-if )\lq1+ s + )\nqn+ m(qo-l- gt eee tq - d -1)

Am 2/m

at A. From [19, Theorem 2.1, p.243], z’w € L (X-{x}) if and only if

0 < (m-1) + { loq0+ qu1+ cee +7lnqn+ m(q0+ gt eo- + qnfd-l)}

Hence

2/m

8 ~ g ( mod L7/™(x-{x}) )

Ao

~ _ : 1 An s
where § = ) akohn.)\nzO Zy ez with

Ajateeg

Assume moreover that g = 0 on X. Then there exists a polynomial p(z) such

that g(z) = £(z)p(z), where p(z) = z b}\o)\x.._}\nzo)\“zl)‘l...zn}‘n with

HA gt g

m{d—(q0+q1+'-~+qn)} - d 2 A,

Thus we get the desired result.

Corollary 1.14.

- ’ n+l
P (Xx) = #{ Qgseansd) € W[ d=(qgbesetq ) 2 Agaghesst Aa T .

0

One can easily check that Theorem 1.13 gives the following example.

Example 1.15. If we are as above, then

r(f) > 1 <==> Gm

0, form2>1,

r(f) = 1 <==> dm =1, form >

A\
-t
-

-~ 15 -
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r(f) < 1 <==> 1im sup § /o = (l/n!S(l—r(f))n(llrorl.;;r ) .
n>o B _ ' n

Let k be a totally real field of degree n over the rationals and M an
additive subgroup of k which is a free abelian group of rank n. Let U;_be
the group of those units € of k which are totally positive and satisfy

U+

M (where E has rank n-1) one

€M = M. For a given pair (M,E) with E c

defines
cE) = { () leecE, nem}.

Let H be the upper half plane. The group G(M,E) operates freely and
(1 () (1
>

properly discontinuously on H by zj B € zj+ H , where x b x
1 £'j £ n, denote the n different embeddings of k into the reals. Then
Hn/G(M,E) defined a complex manifold which acquires a normal singularity

when an additional point « is added with neighborhoods

|Im(z1)Im(zz)...Im(zn)| >Se,

where ¢ is a constant. The singularity at « will be called a cusp

singularity of type (M,E).

Theorem 1.16. Let (X,x) be a cusp singularity. Then Sm(X,x) =1 for

any m > 1.

The proof will be found in [26]. In the 2-dimensional case the proof

was given in [6].

- 16 -
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§2. Normal Surface Singularities

We begin by recalling some theorems and definitions in Section 1. Let
(X,x) be a ( germ of ) 2-dimensional normal singﬁlarity and 7 : X > X be a
resolution of the singularity. We assume that V is a Stein neighborhood of
X in X, Then U = ﬂ—l(V) is a strongly pseudoconvex neighborhood of A =
ﬂ_l(x). Let K be the canonical line bundle of U. The following integer is

defined by Knller [11]. :
Yp(X,%) = dim T(U-4,0(@K))/T(V,0@K) (m21) .

This integer is determined independently to the choice of the Stein
neighborhoods. Hence Ym is an invariant attached to the singularity.

Knller considered the asymptotic behavior of Yo when m + + ©, and showed

Theorem 2.1 (Knller [11]). There is a positive constant ¢ such that
Ym=i cm2 for a 2-dimensional normal singularity.

2/m

By the definition T'(U,0(mK)) < L°/™(U-A), we have § <Y_ . Therefore

we obtain the following.

Theorem 2.2. For any 2-dimensional normal singularity, we have
. 2
§ = 1lim sup § /m" < » ,
m+o O
We call this theorem the first fundamental theorem of { 6 } for
2-dimensional normal singularities.
Let W-l(x) =A=U Ai’ 1 < i< n, be the decomposition of the

exceptional set A into irreducible components. We associate a weighted

- 17 -
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graph T' to T in the following eay.

Definition 2.3. We associate to a resolution 7 a weighted graph Fﬂ
with weighted vertices Yi(bi,gi), i=1,..., n where bi = Ai~Ai and gy =
genus(Ai); Yi and Yj are joined by l-simplex if Ai n A.j # $. A vertex of
weight (b,g) is denoted by (b) and will denote (® .

[g] ' (o]

Definition 2.4. A vertex Y of T is said to be center if either g; >

0 or 8 = 0 and Yy is joined to at least three other vertices. We say I is

star-shaped if there is at most one center.

Definition 2.5. If y is a vertex of I' we defined I'-{Yy} to be the
weighted graph obtained from I' by removing Y and all edges joined to Y.
If vy is the center of a star-shaped graph then the components of T-{y} are

called the branches of T.

By a cycle, we shall mean an element of the vector space over the
rational numbers generated by { Ai }. A cycle 2 = Z riAi is called effective
if all rj's are non-negative. A cycle Z = z riAi is called integral if all
rj's are rational integers. A cycle Z = Z riAi is positive if Z is effective
and Ty > 0 for some j. We let |z| = v A L # 0, denote the support of Z.
We aﬁbreviate a positive integral cycle to a PI-cycle.

In the following, by a curve we shall mean a compact irreducible
1-dimensional analytoc subset of X, i.e., a curve is the one of { Aj 1.

The intersection number Zl'A2 of cycles Z1 and 22 can be naturally

defined. Note that this is in general a rational number. Let F be a line

bundle on X. We define the intersection number FeC of F with a curve C by

- 18 -
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the degree of the line bundle FIC restricted to C. Denote by [Z] the line

bundle over X defined by the integral cycle Z. Then it is easy to see that

It

[Z]+C = Z+C for any curve C. Since the intersection matrix S ( Ai°Aj ) is

z riAi

a non-singular matrix, we can uniquely determine the cycle Z
satisfying

ZeC = F+C (*)

for all curves C. In general det(S) is not + 1, therefore the coefficients
rj may by rational numbers. The cycle Z defined by (*) is said to be
numerically equivalent to F. We define the intersection number of line

bundles F1 and FZ by F1°F2_= Zl-ZZ, where Zi are numerically equivalent

tycles to Fi (i = 1,2). (det(S))F is an integer. It is easy to check

1'%

and Z2 we have [Zl]'[ZZ] = 7. °Z

that for integral cycles Z 1°Z,-

1

We define the virtual genus of PI-cycle Z to be
p(Z) = (1/2)(Z+Z+K-Z)+1. ,
where K is the canonical line bundle on X. Now we define

p,(X,x) = sup p(2)

where Z ranges over all PI-cycle on X.

The fundamental cycle is the unique PI-cycle Zo‘on X.such that

(1) ZO~Ai £ 0 for every component Ai‘of ﬂ_l(x),

(2) 4if Z is a PI-cycle such that Z-Ai < 0 for any i, then Z g=ZO'

The existence of Z0 is shown by Artin [2]. Given the intersection matrix

We define

( Ai.Aj ), one can easily determine Z,-

Pf(X’X) = P(ZO) .
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In fact P, and Py are independent of the choice of the resolution (for

details see [24]).
Definition 2.6, We call pa(X,x) the arithmetic genus of (X,x).

The invariants defined thus far are not independent. One can easily

2 P, 2 pg . Furthermore Artin [2] has proven the following

see that p a

g
theorem :

= == = K==> =
Py 0 >p, =0 p, = 0.

Moreover Wagreich [24] has proven that P, = 1 <==> P = 1.

Definition 2.7. Let (X,x) be a normal surface singularity. We say

- (X,x) is rational (resp. ellistic) if pg(X,x) = 0 (resp. pg(X,x) =1).

Remark. For the definirion of elliptic singularities some authors
work instead with P, ! (X,x) is elliptic <==> pa(X,x) = 1. In this case

they say (X,x) is strongly elliptic if pg(X,x) =1,

Let A' be any connectedkproper subvariety of A. Then A' is exceptional
in U by [12], Lemma 5.11, p.89. A' has a pseudoconvex neighborhood U'.
Blowing down A', we get a normal surface singularity, which is denoted by
(X',x'). The singularity which appears in this way will be simpler than
the original singularity (X,x), provided that A is fhe exceptional set of
the minimal resolution.

We call the following theorem the second fundamental theorem of { 6m }

for normal surface singularities.
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Theorem 2.8, In the case of a minimal resolution, for any m > 1, we
have

Ta(Ex) 2 Y (X',x")

8p(53) 2 8, (X',x") .

Proof. Let Ao?q(F) be the sheaf of germs of (0,q)-forms with

coefficients in a complex analytic line bundle F. Then we have a fine
resolution { Ao’q(F)A} of O(F).

Following Laufer [13], we have a diagram :

0 > I (U',0(@K)) + I'(U'-A",0@K)) + Hy(U',0(@K)) + ==+

y

0 + I'(U ,0(mK)) + T(U - A,0(mK)) + HL(U ,0(mK)) ~ H'(U,0(mK)) .

Given an element‘w e T(U'-A",0(mK)), there exists & ¢ F(U',Ao’o(mK)) such
that £ = w near the boundary of U'._§E = = 0 near the boundary of U'.
Hence 9f has compact support, i.e., OF € T*(U',Ap’l(mK)). 9(3E) = 0, so I
is a cocycle in Hi(U',O(mK)). Let 55 be the zero extension of EE from U'
— N fa g 1
to U. Then 3(3%) = 0, and 9% is a cocycle in H, (U,0(mK)). By [10],
TN —
Vanishing Theorem, p.246, Hl(U,O(mK)) = 0. Therefore 3% is the 9~image of
0,0 = _ =2 =
some € I'(U,A”?> (mK)): 37 = 3%. Since 9% is zero near the boundary of U, T
is holomorphic there. By Siu [20], p.374, there exists ® e I'(U-A,0(mK))

such that § = Z near the boundary of U. It is easy to check that the map

w b & induces a well-defined homomorphism

2/m

rU'-A',0(wK)) -+ T'(U-A,0(mK))/T(U,0(mK)) + T'(U-A,0(uK)) /L™ "(U-A) .

C is holomorphic outside of some compact set in U'. & has possible poles on

A', Since EKC—E) =0onU', Z-€ = A, A ¢ T(U',0(mK)). Hence &-w = A on U'.
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Therefore, if & ¢ T'(U,0(mK)), then ®w € I'(U',0(mK)); besides, if @ ¢

L2/m 2/m

(U-A), then w € L' " (U'-A'). Thus homomorphisms

¢ : T(U'-A",0(uK))/T(U',0(mK)) + T (U-A,0(mK)) /T (U,0(uK))

2/myi a1y > T(U-A,0(K)) /L

2/m

Y : T(U'-A",0(mK)) /L (U-4)

are defined and injeétive. a

Remark. Note that Q e T'(U-A,0(mK)) having poles exactly on A is not

in the image of ¢ and ¥ respectively.

Corollary 2.9. Let (X,x) be a Gorenstein singularity, i.e., there is
some neighborhood V of x in X andva holomorphic 2-form w on V;{x} such
that w has noizeros on V-{x}. If pg(X,x):i 1, then pg(X,x) > pg(X',x‘).

Proof. Let ™ : X »+ X be the minimal resolution of the singularity.
The support of T*w is empty or A = ﬂ—l(x). If 1*w ¢ T(U,0(K)), then (X,x)
is a rational singularity, and so pg(X,x) = 0, a contradiction. Hence the
support of T*w is A. Thus T*w is not in the image of ¢1 = wl for any
(U',A') as in the proof of Theorem 2f8’ where ¢1 (resp. wl).denotes ¢

(resp. ¥) with m = 1. 0

Arnold defined the inner modality for quasihomogeneous isolated
singularities. In the 2-dimensional case, the following theorem is proved

in [29].

Theorem. Let Ug be the inner modality of a quasihomogeneous isolated

singularity of dimension 2. Then pg §:Uo-§:52 . Furthermore,
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P = 1 ==> Mo £ 4 ; Hoe = 1 or 2 ==> pg =1.

Definition 2.10. A normal surface singularity (},x) with pa:; 1 is
minimal if pg(X,x) > pg(X',x') for any (X',x'). Moreover (X,x) is
minimally elliptic if P, = 1 and pg(X',x') = 0 for any (X',x') (see

Lauférh[IS, Theorem 3.4 (3)]).

Remark. The definition of "minimally elliptic" is equivalent to that

of Laufer [15, p.1263].

Theorem 2.11. Let (X,x) be a normal surface singularity. If (X,x) is
Gorenstein and P, > 1, then (X,x) is minimal.

Proof. Obvious by Corollary 2.9. ]

Corollary 2.12 (Laufer [15]). If (X,x) is Gorenstein and pg(X,x) =1,

then (X,x) is a minimally elliptic singularity.

Theorem 2.13. Let (X,x) be a normal surface singularity. If (X,x) is
minimal and P, = 1, then (X,x) is Gorenstein.
= ‘ = > =
Proof. Suppose Pg n, then n pg 27r, 1. Choose wys W,» cee
w € I'(U-A,0(K)) to be a basis for T'(U-A,0(K))/T(U,0(K)), where U is a
strongly pseudoconvex neighborhood of A. Let C; (resp. Di) be the pole

(resp. zero) locus of Wy then K = ( Wy ) = —Ci+ Di’ and C. is a positive

i
cycle. By the definition of P>

'_-I
]

p, 2 p(C;) = (1/2)(CC.+ C,°K) + 1 = (1/2)C,*D .+ 1 .

Since C,*D,
ii

Y

o, p(Ci) = 1.
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. Should ]Cil n !le = ¢ for some i and j, then there would exist a

positive cycle Z such that p(Z);i o, Z'Ci:i 1 and Z-Cj=i 1, so
= > = - . . -2 >
1 P, 2 p(Ci+ Z + Cj) p(Ci)+p(Z)+p(Cj)'i'(!:.L Z+Cj Z+Ci Cj 22,

which is a contradiction. Hence UlCiI is a connected analytic subvariety of
A. Since (X,x) is migimal, A= U]Cil. Now consider linear combinations of
o wy } with coefficients Z’aimi. In those forms there exists a meromorphic
2-form w such that the supprot of the pole of w is A. We write the divisor
.( w)as (W) =-C + D where C is the pole locus and D is the zero locus

of w respectively. From the definition of P,»
1=7p, 2 p(C) = (1/2)(C-CHK-C)+L = (1/2)C-D+1 .

Since C*D > 0, C*D = 0. Hence ® has no zeros near A. Thus (X,x) is

Gorenstein. : 0

Lemma 2.14.. With the notation being above let f be a holomorphic
funétion on U and non~vanishing off A. Thén £(A) # 0.

Proof. Suppose f(A) = 0. Then ( f ) = Z where Z = z diAi' Now
(£ )'Ai = 0 for any i, therefore Z*Z = 0. It contradicts the fact that the

intersection matrix ( Ai'A.j ) is negative definite. O

In the case where (X,x) is aminimally elliptic singularity we get

more information about the singularity.

Theorem 2.15 (Laufer [15]). Let (X,x) be a minimally elliptic
singularity. Then (X,x) is Gorenstein and pg(X,x) = 1.

Proof. Let U be a strongly pseudoconvex neighborhood of the
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exceptional set A. Since pg:; P, = 1, there exists at least one non-zero

element in T'(U-A,0(K))/T(U,0(K)). Let w € T'(U-A,0(K)) be the representative
: )

of the above element. Denote by C (resp. D) the pole (resp. zero) locus of

‘w, then K= (w ) = -C + D, where C is a positive cycle. So

1=p p(C) = (1/2)(C*C + C*K) + 1 = (1/2)CD + 1

a

v

Sinec C*D > 0, C*D = 0. Now (X,x) is minimally elliptic, therefore ]C! = A.
Hence we may assume that w does not vanish off A. This implies (X,x) is
Gorenstein.

Let W' be another non-zero element in TI'(U-A,0(K))/T(U,0(K)). By the
similar argument w' does not vanish éff A and the support of its pole
locus is A. Then f = w'/w is a nowhere vanishing holomorphic function on

U~A and hence extends to be holomorphic also at A. We claim that
(f-f(A))w ¢ T(U,0(K)) .

Suppose otherwise, i.e., (f-f(A))w * T'(U,0(K)). By the same argument
(f-f(A))w does not vanish off A, By Lemma 2.14 (f-£(A)) does not vanish on

A, which is a contradiction. Therefore
w'-f(A)w = (F-£(A))w € T(U,0(K)) .

" Thus P, = dim I'(U-A,0(K)) /T (U,0(K)) = 1. : O

Theorem 2.16. Let (X,x) be a normal surface singularity. If (X,x) is
Gorenstein and pg;i 2, then 1 é:pf < pg.

Proof. We assume T : X - X to be the minimal resolution of the
singularity. Let U be a strongly pseudoconvex neighborhood of the

exceptional set ﬂ—l(x) = A. Suppose that Py = pg. Then p(ZO) =p > 2.

g
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Kato's theorem [10], p.246, says
dim T(U-4,0(~2)) /T (U,0(-Z)) + dim Hl(U,O(—zO)) = (1,—;»(20)) +p (X0

By the hypothesis the right hand side is equal to 1. Since IZol = A, a

non-zero constant function is not a zero element in
T (U-A,0(-2()) /T (U,0(-Z)) ,

so dim T(U-A,0(-2()) /T(U,0(-Z)) 2 1. Hence dim H'(U,0(-Z,)) = 0. Now

consider the sheaf cohomology with support at infinity. Let K be the

canonical line bundle of U. Then the following sequence is exact :

0 = T(U,0(R42)) + T(U-A,0(K+Z0)) + Hy (U,0(RHZ)) + === .
¢ ,

Serre duality gives Hl(U,Ot—ZO)) as dual to Hi(U,O(K+ZO)). Then ¢ is an
isomorphism. As (X,x) is Gorenstein, there is a holomorphic 2-form w on

U-A such that ©w has no zeros on U-A. Let (w ) = 2121 XiAi denote the
divisor of w, where Ai (i=1,2,...,n) are the irreducible components of A.:

Then we obtain n linear equations

KA i=1 "%

g = @eay=]

n }\A’Aj (.j=1,2)---sn)

in n unkﬁowns Al,Xz,...,Xn. Since (X,x) is not a rational double point,
K~Ajo > 0 for some jo [cf. 11]. By Lemma 3.2 Ai < 0 for all i, i.e.,
ki'§:—1 for all i. Then -( w ) is a PI-cycle. Now ( w ) is a cycle on A

and wHZ, e T(U-A,0(K+Z,)). Hence wtZ, e T(U,0(K+Z3)), so Z; > ~=(w ).

Since T is the minimal resolution, O ;K~A,j =(w )-Aﬁ for any j, so

-(w) i=ZO by the minimality of the fundamental cycle Z_. Therefore K =

0°

(w) = -Z,. Thus p(ZO) = 1, which is a contradiction. 0

0
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Corollary 2.17 (Yoshinaga-Ohyanagi [28]). ©Let (X,x) be a normal
surface singularity. If (X,x) is Gorenstein and pg = 2, then P, = 1.

Proof. By Theorem 2.16 P = 1, and which implies P, = 1. O

Thus, by Theorems 2.11 and 2.13 we obtain the fol%Pwing theorems.

Theorem 2.18. Let (X,x) be a normal surface singularity with pg = 2,
‘Then (X,x) is Gorenstein if and only if (X,x) is minimal and P, = 1.
Theorem 2.19. Let (X,x) be a normal surface singularity with P, = 1.

Then (X,x) is Gorenstein if and only if (X,x) is minimal.

A resolution X -+ X of a normal surface singularity (X,x) is good, if
(i) All the components of the exceptional set of X -+ X are smooth
and intersect transversely. |
(ii) Not more than two components pass through any given point.

(iii) Two different components intersect at most once.

It is well-known (and easy to see) thatvthere is a minimal resolution
having these properties.

Now we give Gm—formula_for the normal surface singularity whose
minimal good resolution is star-shaped. In what follows we consider the
normal surface singularity whose minimal good resolution is star-shaped.
Let A0 be the center of the weighted graph. The branches of}the star-
shaped graph are indexed by i, 1 < i < n. The curves of the i-th branch-
~ are denoted by Aij’ 1< §=ri’ where‘Ail intersects A0 and Aij intersects
Ai,j+1' Let -b = Agehgs and -bij = Aij.Aij' Then bij >22and b > 1.

Finally, set
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d;fes = byq- 1

=[b

i1° biz""’ biri] with ey < di,‘a’nd’ei and di are relatively prime.

Lemma 2.20 (Brieskorn [3]). Let X be the minimal good resolution of

a normal surface singularity (X,x) such that the weighted (dual) graph is

@ @ @

Let dfe = [bl’bZ""’br]’ e and d relatively pfime. Then X is analytically

isomorphic to the quotient of C2 by the cyclic group G of order d, acting

by (zl,zz) = (Czl,cezz), where ¢ is a d-th root of unity.

We call this singularity the cyclic quotient singularity of type

(d,e).

For any k > 0 and m > 1 let D(k)

., be the divisor on A, :

0

H(®

0 = kD - Z [{kei+m(di—1)}/dilPi >

i .
where D is any divisor such that OAo(D) is the conormal sheaf of A, Pi =
AOnAil’\ahd for any a € R, [a] is the grestest integer less than, or equal
to a.
Theorem 2.21. In case the minimal good resolution of (X,x) is star-
'shaped, the plurigenus Gm is not more than
) dim P(AO,OAémKAO—D;k))) .
k>0

Corollary 2.22. 1In the above situation the geometric genus pg(X,x) is
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not more than

.1 (k)
kzo dim H (Ao’0A§D1 ) .

Under the condition that (X,x) admits a C* action

- (1)
§_(X,x) = kZO dim T(A ,oAngAo-nm ),

and,

: . 1 (k)
X,x) = dim H (A,.,0,(D ),
L kZO : 0°“A¢ 1

which was proved by Pinkham [17].

Proof of the Theorem. Let { Ui } be a cover of A such that‘Pi € Ui

for i = 1,..., n, and Pj * Ui’ i # j. Assume moreover there exist local

coordinates (zi’ti) with AOnUi ={Pe¢ Ui | ti(P) =0} and Pi ={Pe¢ Ui [

ti(P) = zi(P) = 0 }. Take a (sufficiently small)_Stein neighborhood V of x
so that UUi =] w_l(V) = U. Let w be any m—ple holomorphic 2-form on U-A :

w e F(U—A,O(mK)). On U, ow is written as w|_ = ¢i{dzi“(dti/ti)}m' Expand

M kb
. in Laurent series on U,: . =) ¢.7t. . The same argument as
i i i i i

(k)(dzi)m } becomes a meromorphic

Theorem 1.7 works in this case, and so { ¢i

section of mKA0+ kN where N is the normal bundle of'AO in U. Let vi be the

w0

order of the pole of ¢i t Pi' Then

< -
vy =:['[kei + m(di l)}/di] .
In order to prove this, it is sufficient to prove the following lemma,

since each branch is the cyclic quotient singularity.

Lemma. Given b,,b

1° 2,...,br with the bi integers such that bi_; 2, the
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manifold M = M(bl’bZ""’br) will be covered by r+l coordinate patches, Wi

= (u(i),v(i)) = Cz, 0<i é:r,'joined as follows.
Wonw1 ={u#0} u' = 1/u v! = ublv
W)W, = { v' #0 } v'r o= 1/v! u'' = (v’)bzu'
W20W3 ='{ u'' £ 0 } a''' = 1/u"! vt = (uvl)bsvvv

.
.o

Let A, ={u=01}, A ={v=0}{v'=0}A ={u =0>}{u'"=01},

2
A3 ='{ v''' =0 }U{ v''t =0 }, .;. , Ar =’{ u(r-l) =0 }U{ u(r) =0 }’
Ar+l = { v(r) =0 } if r is even and A, = { v(r_l) =0 }u{ v(r) =01},
A Y A CO R } if r is odd. Then A' = AU Aju Agu ces U A is a -

compact analytic subset of M.

We define positive integers { Xr,lr_l,...,lo } as follows :

b A, = A

>
[}

-1 - °rl'r
4 \ sy e = Al = bzlz - A3
r-2 r-1'r-1 T

d=2Xx,=b A, - A

Now consider a meromorphic m-ple 2-form

(dundv) /Y

€
I

- on WO' Then w is holomorphic on M—(AOU A') if and only if

v < [{ketm(d-1)}/4] .
' r+l -
Proof. Let (w ) = z._ -a_A, be the divisor of w on M, where a, = k
i=0 "ii 0

+ m and aj = V. Since p(Ai) =0fori=1, ... , r,
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m(-2 + bi) =-a, 4 + biai - a; . -

Hence, by the definition of { Ay }

-2, =2.;-ba +mn(-2+b)

~

- m) + m()\r_

A (a —l)-a)\

r r-l 1 T r-1
= )‘r—l(ar—z -m + m()‘r—Z - - ar—l)\r—Z
= )\l(ao - m) + m()\o -1 - al}\o

/5

ek + m(d - 1) - vd .
Thus ®w is holomorphic on M—(AOU A') if and only if ektm(d-1)-vd > O, i.e.,
v £ [{ek + m(d - 1)}/d] . 0

Remark. If k < 0, then a, = k + m < m. Since

0
v)\l(ao - m) +>\O(m— al) -m>0,
)\l(ao -m) > Ao(al - m), and so a, < m., Hence by induction, it is true

that ai <mfor i=2,3, ... , r.

Now we continue our proof of Theorem 2.21. Since vy < ‘[{kei-hn(di-l)}/di],

{ ¢§Lk) (dzi)m } is a holomorphic section of

K, + KN+ z '[{kei+m(di--1)}/di]Pi .

Therefore we have a homomorphism

]y,
I(U-A,0@K)) » & T(A OAngAo-Dm ) .

b
k0 O
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By the above remark the kernel of this mapping is

L2/m

T'(U,0(mk+(m-1)A)) = (U-A) .

Thus

2/m

- (k)
T'(U-A,0(mK))/L™" " (U-A) > @ I'(AOO ngAO—Dm ))

>
120 A
is injective.
Next consider the case where (X,x) admits a C*-action. For a
(k)

holomorphic section { ¢§k)(dzi)m } of mKAo—Dm R

¢§k)t;k{dziA(dti/ti)}m

becomes a meromorphic section of O(mK), which is defined in the neighborhood

of A,, and extends to be a holomorphic section of O(mK) on U-A. Thus

O’

2/m

~ (k)
T'(U-A,0(mK)) /L™ " (U-A) = @ I’(AO,OAngAo D )) . i}

k>0

Example 2.23. Let (X,x) be defined by a quasihomogeneous polynomial

202+ Z15+ 225 :
3 2 5 5
Xx={ (zg52152,) € € | zo™+ z17+ 227 =0} .

Then Gm can be calculated by Theorem 1.13. The minimal resolution of (X,x)

is as follows, so Sm can also be computed directly from the above theorem.

= —2m-3k+5[ (k+m) /2],
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[=2]
I

@+ 3)/4, if m is odd,

[o2]
]

(m2+ 8)/4, if m is even.
by the Riemann-Roch theorem. In particular

8 = 1im sup Sm/mz =1/4 .

m => o

Using Theorem 2.21, T. Tomaru classified, by the behavior of Sm’ the

singularities with €% action.

Theorem 2.24 (Tomaru [21]). Normal surface singularities with €%

action are classified as follows : g = genus(AO), L = L'C'M‘(dl’dz""’dn)'
) 8 structure
m
(1) g22

Gm diverges with second .
>0 (i1) g=1andn>1
order as m > «

i - n 1
(iii) g = 0 and zi=1 (di 1)/di > 2
(1) 6m =1 for anym21 g=1landn =0
0 if m Z 0 (mod L) n
(I1) & = g = 0 and Zi=1 (d;-1)/d, =2
0 n 14if m = 0 (mod L) - *
n
g =0 and Zi=1 (d;-1 /4, < 2,
(I11) 6m =0 for any m > 1 or cyclic quotient
singularities

Corollary 2.25. If lim sup § /m2 > 0, then
m —> m

lim sup _/m” = (1/2){2g-2 +_2121(di—1)/di}2/(b- Lioies/dp) -

m —>
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§3. Classification

Next we study the normal surface singularities such that 6m is

either 0 or 1 for all m > 1.

Lemma 3.1. Let ( aij ) be negative definite matrix of rank n. Assume

aij 20 for i # j and a4 < 0 for all i. Consider n linear equations
b= ).y xa, forj=1, ...,m

in n unknowns xl, x2,

. . > j < 0.

cee s X If bj 2 0 for all j, then any X, <0
Proof. The proof will be by induction on n. When n = 1, the equation

is

by = %3
and hence the lemma trivially holds. Therefore assume that the lemma holds

for n~1l. By the negative definiteness of ( a; ) for any ( x ) # 0,

ZJ =1 J *5 = zJ lzl—l 1%135%3 <0

Therefore, if x

i > 0 for all i, then bjo < 0 for some jo. This contradicts

the assumption. Thus we can assume X < 0 for some ig. Consider n~1

linear equations
+ (= - . . .
b ( X, )a zl#l .a.. for j # o

By the induction hypothesis, X < 0 for i # ig, thus proving the theorem. [

Lemma 3.2. 1In the above situation we assume moreover that for any i

there exists j such that aij > 0 in the case n > 2. If bj:i 0 for all j
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and bjo > 0 for some jg, then any X < 0.

Proof. Quite similar to the above case. . O

Let m : ¥ + X be the minimal resolution of the normal surface
singularity (X,x). The exceptional set A = ﬂ—l(x) is decomposed into
irreducible components ; A = Ui:l Ai' 7

Proposition 3.3. Let 2121 kiAi be the cycle which is numerically
equivalent to the canonical line bundle K of ¥X. Then ki 20 for i=1, ...,
n. If, moreover, K is not numerically trivial (i.e., (X,x) is not a

rational double point), then ki <0 fori=1, ..; , M.

Proof. The virtual genus of Aj is

+

(A)) = (1/2)(A,*A, + K°A)) + 1.
P J J 3 J
Then we obtain n linear equations
0
- -— . = . < . 5 <L
2 + 2p(Aj) AgA (Qioq kA A, 1<j<nm,

in n unknowns k k s kn. Since T is the minimal resolution,

12> Ky e

-2 4+ 2p(A.) —A.*A, >0 for all j .
pJ) 37Ay 2 k|

Moreover the intersection matrix is negative definite. Hence the rest part

of the proof is obvious by Lemma3.l and Lemma 3.2. O

Let A' be a connected proper analytic subset of A. Then A' is also

exceptional ; and so there exists a strongly pséudoconvex neighborhood U' of
m

A', We may assume, without loss of generality, that A' = u Ai’ m < n.
i=1
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Theorem 3.4. Let A be the exceptional set of the minimal resolution.
Let Zizl kiAi (resp. zizl kiAi) be the cycle which is numerically equivalent
to the canonical line bundle K of X (resp. U'). Suppose that K is not
numerically tfiviél. Then ki < ki for i = 1, ;.. » m. If K is numerically
, trivial, then ki = 0 for all i.
Proof. First suppose that K is not numerically trivial. Then we have

two systems of linear equations. One is

]

I
[
v
v
=}
~
5%
Nt

n .
2+ 2p(4)) - Ay A, (T30 kA Ay for j

and the other is

- — A - moxra ). : *k
"2+ 2p(8)) - ALcA O 37 ) Ay for =1, ..., m (%)

. From (%) and (%%)

1l

n . = m |- . 5
Qimmey kA7) A Limg (ki - kDA Ay forj=1, ..., m.

Since ki < 0 for all i by Proposition 3.3, Ai-Aj 20 for all i > m+l > j,
and Ai-Aj > 0 for some i > m+l > j by the commectivity of A, we have
ki - ki >0 fori=1, ... , m, by Lemma 3.2. The latter statemant is

clear. 0

Proposition 3.5. Let (X,x) be a normal surface singularity with the
minimal resolution 7 : X - X. Let W_l(x) = A. Denote by Ai (i=1, ... , n)
thg irreducible component of A, Let 2121 kiAi be the cycle which is
numerically equivalent to the canonical line bundle of X. We have Sm =0
for all m > 1 if and only if -1 < k. L 0 for all 4.

Proof. Since pg = 4§, =0, (X,x) is a rational singularity. Then hK

1
n

is defined by an integral cycle for some h, say hK = Zi=1 uiAi. Hence there
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exists a meromorphic h-ple 2-forms w such that (w ) = 2121 uiAi. w is an

2/h

element of T(U-A,0(hK)) and 0 = 6h = dim T(U-A,0(hK))/L (U-A). Thus w is

an element of Lzlh(U—A). (X,x) is rational, and so A is an integral cycle

N\ B

/
of normal crossings. Hence w is the element of I'(U,0(hK+(h-1)A)), i.e.,

~h < Hy for all i. By Proposition 3.3, k, < 0. Therefore -1 < ui/h = ki

i
< o. | | O
Example 3.6. Suppose G is of the form
*An (n>1)
Then K ~ z % _A.. In fact K is linearly equivalent tu Z TO_A,, i.e
i=0. i i=0 i, e €.y

(X,x) is Gorenstein (cf. Theorem 2.15).

Proposition 3.7. Suppose G =

(1/2) @ @ (1/2)
B Pt 020

/) @ 1 1 1 @ (1/2)

(1/3)  (2/3) 1 /3 @3

@ (2/3)
@ (1/3)
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Ws @y G 1 G4 @) @/

G

or

(1/6) (2/6) (3/6) (4/6) (5/6) 1 (4/6) (2/6)

(3/6)- |

Let Z kiAi be the cycle which is numerically equivalent to the canonical

line bundle. Then )) kA, < ) —liAi, where ki's are the numbers written by
the side of each vertex.

Proof. Let Z be defined by Z = ) AiAi. Then Z-AJ. = Aj(2+Aj -Aj) for
any j. Since A, is a non-singular rational curve, -2 - A -Aj = K'Aj, and

g k|

hence
}\."1 2|A,'A,) = ZlK 'A, - )\.lk_ Ao 1&- .

Aj;é 1 and Aj-A.j < -2 and so (xj—l)(2+Aj.Aj)=; 0. Thus it follows from
Lemma 3.1 that Ai+ki <0, i.e., ki é:—li for any i.' 0
Theorem 3.8. Suppose that (X,x) is a normal surface singularity and
G is the weighted dual graph associated with the minimal fesolution ™z X
-+ X. If 6m = 0 for all m > 1, then G is either chain-shaped or star-shaped

with three branches.
n .
Proof., Let A = ﬂ—l(x) = y A,, Sincep_ =68, =0, A, =P; and T is
: i=1 i g 1 i
a good resolution. Let Zigl kiAi be the cycle which is numerically

equivalent to the canonical line bundle of X. Then by Proposition 3.5,
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-i <,ki £ 0 for all i. By Example 3.6 and Theorem 3.4, G can not contain
*Kn as a subgraph. Hence G is tree-—shaped. Similarly G does not contain
*ﬁn+4 as a subgraph. Thus there is at most one center in G,‘aﬁd so G is’
either chain-shaped or star—shaped with thrée brénches. Suppose not, then

G would contain *54 as a subgraph. This is a contradiction. O

Let (X,x) be a normal surface singularity. Suppose that the weighted

dual graph of the minimal resolution of X is star-shaped as follows :

AR' ....-oo ....Al._ _Cl_ eoe _..Cn

(o Erppr e ap— P = |
. Hr

B

where Ai’ Bj’ Ck and D denote non-singular rational curves. iet
E =dD + AA, + u.B. + v, C
i=1 T g T3 g KR

be the cycle which is numerically equivalent to the camonical line bundle

K of X :
[ =2-DeD = K*D = E*D
~2—Ai'Ai = K'Ai = E’A1 i=1, «oo 5 2%,
(*)
~2-B,*B, = K*B, = E*B =1, ... m
3705 3 3 J > s >
L -Z_Ckock = K.Ck = Eock k = 1’ cee 3 I o N
L
Let ZA = z aiAi be the cycle which is uniquely determined by the
i=1 '

following equation :
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1+ (—2—A1'A1) =1+ K'A1 = ZA'A1
(*%)
- - . = . = . <
’?'AiAi KAi ZAAi 2 <
Then (**) is equivalent to
= . < < —
0=(z, +A):o, 1212281,
-1 = (ZA + A)-Az
2 : .
where A = zi=1 Ai . So by Lemma 3.2, 0 < ai‘+ 1, i.e., -1 < Q.. ( In the
case where £ = 1, -1 = %y ). Horeover, (**) is equivalent to
1+d=(z, —‘EIA)-Al
‘= —‘ ) <
0= (z, - E[)ea; 2zigt.
By Lemma 3.2, hence
e - <
14+4>0 > oy )‘i 0
1+d=0 => ¢, -A, =0
i i
14+4d<0 => a,-A,>0 ,
] i i .
i.e.,
a>-1 => o, < Ai
d=-1 => o, = Ai
d<-1 => o, >, .
i i
It is the same with ZB and ZC' So we obtain a cycle Z = -D +'ZA

and (*) is equivalent to

El
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-2 - uii_Bi— Y, = (E-2)D .
0= (E - Z)-A; 1<1i<28
0=(E—Z)-Bj 1<3i<m -
{ 0=(E-2)¢  1Zk<n .
Then, by Lemma 3.2,

-2 _al; 81_ Yl*< 0 ==> d > -1

-2 —0p~ Bl— Yl’= 0 => d =:—1

-2 o, - Bi-yfl >0 => dc< -1 .

We must still express a, in terms of the selfintersection number of the A

1

1<i< 4% Let -a; = Ai-Ai, then (*%) is equivalent to

i’

([ -1+ a, = -a.0 + o,

1 171 2
-2 + a; =o; ;- ao’, + %1 - 2<1i<8-1,
L -2 + ay = ag_l - ag“g .

Hence

(a2+1) /(a1+1) = a, (u3+1)/(a1+1) = alaz—l, oo s (oci+1+1)/ (a1+1) =
ai(ai+1)/(al+1) - (ai_1+1)/(ul+l), cee s 1/(a1+1) = ak(a2+1)/(al+l) -
(0p_+1)/(0y+L) .

Let Py = l/(a1+1). Moreover, an easy induction proof shows that

P, = 1/(0+1) 2 841 .
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Ea

Then the first few pl's are
Pp=322
p2=alaz-—l;3 »
Py m.2j3,33 - a) —az 24,
Py = 313333, T 298, ~ 333 ~ 3, v 125,

P5 = 8;3)333,85 ~ 873,85 ~ 858,85 T 3,335
6

- alaza3 + a1 + a3 + a5

v ™

°

Remark. Setting Py = 1, then pnlpz_1 has the continued fractiomn

expansion :

PR/PQ’_]_ = [3.2,, \aQ’_l, esse 3 al] °

Thus, lettihg q, = l/(61+1) and r, = 1/(Yl+l),'we obtain the following

theorem.

Theorem 3.8.B. Let (X,x) be a normal surface singularity. Let G be
the weighted graph which is associated with the minimal resolution. Suppose

that 6m = 0 for all m >'1 and G has three branches, then G is of the form

Az—..._Al—

!
O

- o0 - (C -

1 .n

e @ 0 @ e U e I
-

B

such that
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(*) 1< 1/pL + 1/qtll + 1/1:n .

The systems of positive intergers Pgs 4> T which satisfy the condition
, ‘ ) :
(*) of Theorem 3.8.B are the following four types :

(2,2,n), n > 2, (2,3,3), (2,3,4), (2,3,5) .

Hence from the result of Brieskorn [3], these singularities are quotient

singularities. Thus we have the following.

Theorem 3.9. Let (X,x) be a normal surface singularity. Then (X,x)
is a quo'tient singularity if and only if Bm(X,x)‘.= 0 for all m > 1 (see

[251). _ . -

Theorem 3.10. Let (X,x) be a normal surface rational singularity with
the minimal resolution 7 : X + X. Let ﬂ—l(x) = A. Denote by Ai (i=1,...,
n) the irréducible component of A. Let,z i:l kiAi be the cycle which i;s
numerically equivalent to the canonical line bundle of X. Suppose .tl.xat
O;«Sm;l for all m > 1. Then —lékiéo fori=1, ... , n.

Proof. . Suppose not, then there wouldv exist kio with kio < =1. Take a‘

i

order. Then there is a positive integer m such that --m--mki >a i and such
0 -0

that all mki are integers. (X,x) is rational, and so mK is linearly

holomorphic function f on U which vanishes on Aio’ -and let o o be its

equivalent to the integral cycle X mkiAi; there exists w ¢ I'(U-A,0(mK)) so

that (w ) = z mk.A,. Since 0. + mk, + (m-1) < -1, it follows that
ii ip io ‘

( fw ) + (@-1A } 0,

2/m

and so w and fw are not L7 -integrable. Thus 6m > 2, a contradiction. 0
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By Theorem 3.4 and 3.10, we have

Corollary. Let (X,x) be a normal surface rational singularity with
the minimal resolution T : X > X. Let A = ﬂ—l(x) be the exceptional set.
1f Gm(X,x) is either 0 or 1 for m > 1, then every connected proper

subvariety of A is the exceptional set for a quotient singularity.

Lemma 3.11. Let (X,x) be a normal surface rational singularity. Let
G be the weighted graph associated with the minimal resolution of (X,x).
Then G does not contain *Kn as a subgraph.

Proof. In general pa(X,x) éng(X,x) and ﬁ(Z) ézpa(X,x) for a
positive integral cycle Z. Since p(*Kh) =1, *Kh can not be a subgraph of

G. o

Proposition 3.12. Let (X,x) be a normal surface rational singularity.
Let G be the weighted graph which is associated with the minimal resolution.
Suppose that O §=6m L 1 and G has at least two centers. Then G is of the

form

Proof. From Lemma 3.11 G is tree-shaped and so G contains *ﬁn+& as a

subgraph. Let 2 KiAi be the cycle which is numerically equivalent to the
n+4
i=0
{ ki } be as in Proposition 3.7. Then by Theorem 3.4, -1 §=Ki é=ki

canonical line bundle of the minimal resolution ¥ of X. Let‘z k.Ai and

A #

-A.
i

. < .
1f *ﬁn+4 is a proper subgraph of G, then Ky ki by Lemma 3i2‘ This

- 44 -



122

contradicts the fact that a certain ki is equal to -1, and hence G = *ﬁn+4'

-1. Let Z be defined by Z = Zi:b A

Moreover if A, = 1, then K, = k,
i i i
Since Z is a reduced cycle, p(2) > 0. Hence 0 = pa(X,k) 2p(2) 20, i.e.,

0 =p(2) = (1/2)(Z*Z + K*Z) + 1. Therefore

—2=z-z+(—z+2" k ,.A _ )Z

i=1 "n+i n+i

and

4
2= Lioy *oug -

kn+i éz—(l/Z) for i =1, 2, 3 and 4, then kn+i = ~(1/2) fori=1, 2, 3

and 4. Thus, for i = 1, 2, 3 and 4

0= p(A'n+:i.) = (1/2)(Ah+i.An+i + K.Ah+i) +1

and -2 = A A 3 the result follows. 0

n+i n+i

“Finally we show that Gm of G =

A'n+3 (::) A'n+2
AN N 4
QL

An+4 AZV An (::> An+1

is either 0 or 1 for all m > 1. Consider AO as the center of G. Then we

get the analogous formula as in Theorem 2.21.

Theorem 3.13. Let P., P, and P, be the intersection points on A

0’ "1 2 0.
wh}ch is deflped respectively by PO = Aon Al, P1_= Aon An+3 and P2 f
Aon An+4' Set d/e = [bl’bz’ ,bn—l] with 1 < e < d, and e and d

relatively prime. Let
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kZO dim P(AO,OAO(mKA°+kN+[(ke+md)/d]P0+[(k+m)/2]P1+[(k+m)/2]P2))

be denoted by A . Then § < A .
: m m= m
Proof. The same argument as in Theorem 2.21 works in the almost part
of the proof. Following Theorem 2.21 we define a homomorphism
¢ : T(U-A,0(mK)) k:o P(AO,OAngAjkN+[(ke+md)/d]P0

+[ (ktm) /21B +[ (lc#m) /2]R,,))

n+2 [ - 1
iy Ag- Set Al = A U

n+2 .
i=1 (—ui)Ai + B where

Let U' be a strongly pseudoconvex neighborhood of v
Suppose w € T'(U-A,0(mK)). Then ( m[’U, ) = (ugdal + 1
B is effective and does not involve any of the Ai’ i=1,2, ... , nt2,
n+2

1=1 (—ki)Ai be the divisor which is numerically

equivalent to mKU,, i.e., mKU,-Ai = Z°Ai'for i=1, 2, ... , nt2. By easy

Let Z = (-Up)Al + ]

computatlon‘kl = {(uo—m)e+dm}/d. Z°Aj = mKU,'Aj = ( mIU, )'Aj, anq so

n+2 — R )
Tiog (k)AL Aj = BrA, .

Since B-Aj:i 0,'ui-—ki é;O by Lemma 3.1. In particular
W Sk = {(uo—m)e+dm}/d .

Hence ¢ is well-defined. If p, < m, then U, < m, and by dinduction lu, < m
0 1 i

for i = 2, 3, ... , n+2. Therefore the kernel of ¢ is

I'(U,0(uk+(m-1)4)) = 12/™(u-a) .

Thus the proof is complete. 0

Lemma 3.14. If we are as above,
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0 if m is odd,

1 if m is even.

~

Proof. We compute the degree of the line bundle H

degree (K, +aV+[ (ketnd) /1P +{ (km) /212 +{ Cictm) /sz2 )

—2m—b0k+[(ke+md)/d] + [(k+e)/2] + [(k+e)/2]

A

—2m-b0k+(ke+md)~/d+(k+e)/2+(k+e)/2 = k(-b0+ 1+ e/d) .

By the definition of e/d, e/d <1 and e/d = 1 if and only if bi = 2 for

i=1,2, ... , n. Then -b, +1 +e/d <0, If -b, + 1 + e/d = O, bi =2

0 0
for all i, and so G is not negative definite, a contradiction. Hence
degree = 0 if and only if k = 0 and -2m+[m/2]+[m/2]4m = 0, i.e., k = 0 and

m is even. Thus our result follows from the Piemann-Roch theoremn. g

Let Z be defined by

zZ = 2(A0+ A+ oo + An) + Ah+ +A +A L+ An

1 1 “n+2 “Tnt3 +4

Then =-Z is numerically equivalent to 2K. By the above lemma the singularity

with graph G is rational, and so -Z is linearly equivalent to 2K. Hence

§Zni 1. Then it follows from Theorem 3.13 and Lemma 3.14 that
0 if m is odd,
1  if m is even.

Thus we obtain the following.

Proposition 3.15. Suppose G is of the form
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Then

0 if m is odd,

1 4if m is even.
Similarly for n = 0 we have

Proposition 3.15.B. Let (X,x) be a normal surface rational
singularity. Let G be the weighted graph which is associated with the
minimal resolution. Suppose 0 §:6m=§ 1 (6m0‘= 1 for some m > 2) and G is

star-shaped with at least four branches. Then G is of the form

In fact 6m of the singularity with the above graph is
0 if m is odd,

1 if m is even.

Moreover, from Theorem3.10 and the proof of Theorem 3.8.B we ébpgin

the following.
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Proposition 3.15.C.  Let (X,x) be a normal surface:rational
singularity. Let G be the weighted graph which is associated with the
.minimal resolution. Suppose that O ézﬁm.i:l (Gmo = 1 for some m, > 2) and

G is star-shaped with three branches. Then G is of the form

_AQ.—."—Al-]I)—Cl—"._Cn
B
B
m
such that
% = ‘
=) 1 1/p2v+ 1/qm + 1/rn .

The possible solutions of (*) are easily enumerated. They are depicted

as follows :
(pgrar ) € { (2,3,6), (2,4,4), (3,3,3) } .

Hence it follows from Theorem 2.21, Theorem 2.24 and Theorem 3.9 that

0 <8 <1 for the singularities with the condition (%*).

m
Next we recall a few results about minimally elliptic singularities,
which was examined by Laufer [15]. Karras [9] and Saito [18] have studied
some of particular elliptic singularities.

A normal surface singularity (X,x) is called a simple elliptic
singularity if the exceptional set of the minimal resolution consists of a
éingle non-singular elliptic curve A. (X,x) up to analytic isomorphism is

uniquely determined by the analytic structure of the curve A, j(A) =
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823/(g23— 27g32), where w2 = 4z3 - g22 - g3 is the equation of A in @2,

see [5] and [18].

Cusp singularities are characterized as follows. Let (X,x) be a normal
surface singularity and m : X -+ X be the minimal resolutionvof;(X,X); Let
A= ﬂ—l(x) be the exceptiohal set. Then (X,x) is a cusp singularity if and
only if A is an irreducible rational curve with a node singulafity or A is
a "cycle" of non-singular rational curve Ai° The configuration is

illustrated in Example 3.6. Moreover, the associated cycle

{ (-bo, By eee —bn) }

l’
of selfintersection numbers determines the singularity (X,x) up to complex-—

analytic equivalence (see [8, 9, 14]).

Then by Example 1.9 and Theorem 1.16 we have

Theorem 3.16. Let (X,x) be a simple elliptic singdlarity or a cusp

singularity. Then Gm(X,x) =1 for all m > 1,

Definition 3.17. Let (X,x) be a normal surface singularity. (X,x)

is purely elliptic if Sm(X,x) =1 for m > 1.
In the following we shall review the resclutions of minimally elliptic
singularities and with a few exceptions classify those graphs which can

arise from the purely elliptic singularities.

Lemma 3.18., Let (X,x) bea normal surface singularity. If ome of the

good resolutions of (X,x) has’the following weighted dual graph :
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©
D—D—
then lim sup Gm/m2 >0 . |
m >

Proof. Since (X,#) is minimally elliptic (see Theorem 3.19, (3)-(5)),
there is some neighbdrhood:V of x in X and a holomorphic 2+forﬁ w on V-{x}
such that w has no zeros on V-{x}. Let T : X +>X‘be the minimal good
resolution. Then the‘weighted dual graph of X is of the form mentioned
above. Let ( T*w ) be the divisor of T*w. An easy computation shows that
-( 7*w ) is not reduced. In fact the multiplicity of —( m*w ) at the
cehﬁral‘curve ia equal to two. Let p : X > A ¢ cz be an admissible
representation and let f = p*z and g = p*w, where (2,w) is a coordinate
system for A. Denoté'by a (resp. b) the order of zeros of m*f (resp. mkg)

at the central curve . If m > Aa + ub, then

(g™ ) + @At o,

i.e., fkguwm is not Lzlm—integrable. Hence
8. 2H (LW eXN|mzha+ub}.
] 2
Thus 1im sup § /m”~ > 0 . g
- m = m

About the resolutions of the minimally elliptic singularities the

following fact was proved by Laufer [15].

Theorem 3.19 (Laufer [15]). Let m : X -+ X be the minimal resolution
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for a minimally elliptic singularity (X,x). Let m' : X - X be the minimal
reresolution such that Ai are non-singular and have normal crossings, i.e.,
the Ai meet traﬁsversely and no three meet at a point. Then T = 7' and all
the Ai are rational curves except for the following cases :

(1) A is an elliptic curve. m = 7',

(2) Ads a rational curve with a node singularity.

(3) A is a rational curve’with a cusp singularity.

4) A is‘two’non—singular rational curves which have first order
tangential contgct at one point.

(5) A is three non-singular rational curves all meetiong
transversely at the same point.

In case (2), 7' has the following weighted dual graph :

-1 ~ with by > 5.

In case (3) - (5), ©' has the following weighted dual graph :

@ (1) @ with b, >2, 1<1<3.

Remark. ' In case (1), (X,x) is a simple elliptic singularity. In case

(2), (X,x) is one of the simplest cusp singularity.

Theorem 3.20, If a'purély elliptic‘singularity (X,x) is Gorenéteiﬁ,
then (X,x) is a simple elliptic singularity or a cusp singularity.

Proof. Lét m : X+ X be the minimal resolution of the singularity.
Denote v-;(x) by A. Let A= u Ai’ 1<i Zn, be the decompositiqn of the

exceptional set A into irreducible components. We assume that U is a
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strongly pseudoconvex neighborhood of A. Let K be tha camonical line

bundle of U. Since pg = §. =1 and (X,x) is Gorenstein, there exists

1
w € T'(U-A,0(K)) such that

K= (w)=7] =2

with ,}\i > 1, that is, K is defined by an integral cycle. By Corollary 2.12
(X,x) is a minimally elliptic singularity. Lemma 3.18 implieé that (X,x)

is none of (3), (4) and (5) of Theorem 3.19. In case (1), (X,x) is a

simple elliptic singularity. In case (2), (X,x) is one of the simplest cusp
singularity. Thus we may assume that 7 is the minimal good resolution and
any Ai is a non-singular rational curve. For any holomorphic function £

which vanishes at x
(m*f ) +m(w ) + (m-l)AZO

as 5m = 1 for any m > 1. Let oy be the order of zeros of f at Ai' Then

o, > 1 and
4 =

ui+ m(—ki) + (m-1) >0 for m>1.
Hence Ai = 1 and so K = -A. Since p(Aj) =0,

0= (1/2){Aj'Aj+ Q —Ai)-Aj} +1.

Then 2 = (J.,. A.)*A.. This implies that A_ meets two other irreducible
ity 717 Ty 3

components of A. Thus (X,x) is a cusp singularity. i}

Let m : ¥ > X be the minimal resolution for a purely elliptic
singularity (X,x). Let A = 'n—l(x). Suppose that A' is a connected proper

analytic subvariety of A. Then the singularity (X',x') obtained by blowing
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down A' is‘also a purely elliptic if p(A') = 1. For 61(X',x‘) = pg(X',x')
>p@a") =1 and 1 = Sﬁ(x,x) ;:Gm(x',x') 2 1 by the second fundamental theorem
If any connected proper subvariety of A is the exceptional set of a rational
singularity, then (X,x) is minimally elliptic. Therefore (X,x) is Gorenstein
and so (¥X,x) is a simplé elliptic singularity ér a.cusp singularity by
Theorem 3.20,

Now suppose that there exists a connected proper subvariety A' of A
such that p(A') = 1. Let A0 be the minimal one. Such a cycle always exists

by [15, Proposition 3.2, p.1261]. Since A has the minimality, A, is the

0 0
exceptional set of the minimal resolution for a simple ellipric singularity
or a cusp singularity. Hence, applying the second fundamental theorem we

get the.followings.

Theorem 3.21. Suppose that (X,x) is a purely elliptic, m : ¥ + X is
a minimal resolution of the singularity, A = wn;(x). If (X,x) is not
Gorenstein and there exists a connected proper analytic subvariety A0 of A

such that AO is the exceptional set of a cusp singularity, then any
connected proper analytic subvariety of A, not containing Ao, is the

exceptional set of a quotient singularity.

Corollary 3.22, In the above situation the number of the irreducible
components of A0 is at most eight,

Proof. Suppose not, then A would contain

trie

H—H—O—6 4

Gy—Cy—
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as a proper connected subvariety of A. Let (X',x') be the singularity
obtained by biowing down *ES’ which is not a quotient singularity. Then

(Sma (X',x"') > 1 for some m, > 1 by Theorem 3.9. Hence the second

0

fundamental theorem says that Smo (X,x) > 2, a contradiction.
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§4. Appendix

In this section we prove that Theorem 2.1 is generalized to the case
of arbitrary dimensions n > 2, which was suggested to us by the referee.
Then the first fundamental theorem of { 6m } holds in the case of

arbitrary dimensions n > 2.

Theorem 4.1. There is a positive constant ¢ such that Ym ; amn. for
an n-dimensional normal isolated singularity (Xn,x).

Proof. .By a theorem of M. Artin [30], (Xn,x) éan‘ be realized as a
Zariski open subset U of a projective variety V with x € U as i‘ts only
singularity. Let T : U »> U be a resolution of the singular point. Then, )
in a natural manner, we get a desingularization p : V> V of V by letting V to
be (V ~ {xuu. Let A = ‘rr-l(x) = p—l(x) and consider local cohomologies on

V and U with the support A. Since

I'(U-4,0(K,)) /T(0,0(mK)) <> Hy(U,0(uK)) = Ky (V,0(K)),

it suffices to show that hg;(V,O(mKV)) L am® for some @ > 0. By the exact ~

sequence
0 | 0 1 1
0 = H (V,0(mK,)) > H (V-4,0(zK)) > HA(V,O(mKV)) > H (V,O(mKV)) >oeee,
we have
1l (v,0emk )) < hO(V-A,0(K.)) + hl(V,0(@K.)) .
p (V20K < 1 (V=A,0(mK, 0@R) -

From the compactness of V, hl(V,O(mKV)) L almn follows for some ay > 0.
Since V-A is strongly pseudoconcave, we have ho(V—A,O(mKV)) < © by a

theorem of Andreotti-Grauert [31]. Hence it remains to prove that
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| ho(V-A,O(mKV)) <a m" holds for some a, > 0. Let H, be a very ample line

2 2 1
bundle on V such that H = KV + Hl is also very amplev. Since

HO(V—A,O(mKV)) o> HO(V-4,0¢u)) ,

it is enough to show that hO(V—A,O(mH)) La (a3 > 0) holds. for any

ot
3
very ample line bundle H. We shall prove this by the induction on n.
Suppose that n = 2. Let m, = ldet(Ai-Aj)l, where (Ai°Aj) is the
intersection matrix of the exceptional set A =uU Aj. Let'Hl be another

ample line bundle on V and H' = mOH + mOHI' We can choose Hl so that

(mo—l)H + mOHl has a global non-zero section, and moreover, the restriction
H.l'I of H' to the open subset U satisfies Hﬁ-Aj > K-Aj for any curve Aj of A.

Then, by the exact sequence
0 » 820, 06m)) + 10(U-4,00uy)) > Hy(U,0GHY)) > B (U,0GH) > +o0
and [10, Vanishing Theorem], we have
by (U,0aH))) = din r(U—A,o<mHg,>)/r(n,0(mﬁ[;» :

| - . . . .
Note that mHU mmO(H + Hl)U is numerically equivalent to an integral

divisor for any m > 1. Therefore from [10, Theorem 2], it follows that

dim T(U-A,0(mH)) /T (U,0(ui})) < (1/2) (uk B} = m H-H}) = mK K .

Hence we get hy(U,0(uH!)) < amn° (az > 0). It is clear that h*(V,0(uH"))

2
3™
2

< a,m (a4 > 0), since V is compact. Thus

00 (v-4,0@H)) < b’ (V-4,0(abm( (my-1) B+m B, )))

It

h0 (v-a,0Gmi") < 1°(V,0H")) + By (V,0(mH"))

it

n0(V,0H")) + by (0,0@H)) < (az + a)u .
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Thus the case n = Z is proved. Next suppose that n > 3. Let Vl = ( 8 ) be
the non-singular divisor for a general element s ¢ HO(V,O(H)). We can

assume that Al = Vln A # ¢. On V-A, consider the exact sequence

0 + 0((k-1)H) -+ O(kH) =+ O, (kH) »+ O
! Vi-Ay
for k=1, ... , m. Then summing up the inequalities

0. (kH))

b0 (v-,001)) < 10 (U-4,0((k-1)D)) + B2(V;-A;,0, ¢

for k=1, ... , my we have

0 0 T 9 |
b (V-A,0(mH)) < b (V-4,0) + kzl h(V 3A1,0V1_A§kﬂ)) .

Since V_.-A. is strongly pseudoconcave, hO(V -A_,0, ng)) La kp-l holds

171 171°7v-A

by the induction assumption. Hence

]

0 0 T a1 n
h™(V-A,0(uH)) < h (V-A,0) + a, ] kU< agm
b L b

holds for some a, > 0. g

Thus we obtain the first fundamental theorem of { 6m } e

Theorem 4.2. For any n-dimensional normal isolated singularity, We

have

§ = lim sup 6 _/m" < o .
m —> m
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