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Geometry of Tangents, Local Polar Varieties and Chern Classes

L& Dung Tréing

,-¢University of Paris VII and
RIMS, Kyoto University

In this short report we give a summary without proofs of
recent results concerning the geometry of analytic singularities.
Most df these fesults were obtained in collaboration with

B. Teissier.

0. Notationsn

(0.1) - Let (X,;0) be a germ of reduced equidimensional com-
plex analytic space of complex dimension d.  We may suppose
that (X,0) is embedded into (mN,o). Let G be the Grassmann

space of d-vector spaces in EN. Let - X Jpe a representant

of (X,0) in @'. We call I its singular locus and X° = X - I
the subspace of non singular points_df. X. We have an analytic
morphism Y° : X° > G defined by v°(x) = TXX, where TxX is
the tangent space of X, at a non singular polnt x ¢ X._

We. consider X the closure of the graph .Gry°® of Y°
in X x G. One knoWswthat_:i is.a reduced analytic space

(ef [11] lemma 3.9). The projection onto X defines

v: X > X and the projection onto G defines Yy X »> G.

We call v :the Nash modification of X and Yy the Gauss

morphism of X.

The set Iv_l(0)| may be considered as the set of limits
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of tangent spaces of X at .0 (et -[37,[4] for éxample);’Adtually

|v—1(0)| defines a projective subvariety of G.

(0.2)  In the same way we consider the restriction A°
to X - {0} . of the canonical map N - {0} —>IPN_1. Let X'
be the closure of the graph of A° in X x PV, One knows

that the projection onto X defines e: X' » X, the blowing-
N-1

up of the point {0} in X, and the projection onto T

N-1

defines the canonical map \x: X'— IP As above we may

consider the set |e-1(0)| as the set of 1imits of secants

of X at 0. Actually e—l(O) is the projective variety asso-

ciated to the tangent cone CX 0 of X at 0.
3
In the following we shall consider the blowing-up €é: X » X
-1 ~

of the analytic subspace v ~(0) of X. Thus we have a
unique analytic morphism v':2€ - X' such that the following

diagramm is commutative:

v

g

;

X —
e
|
_
e

Such a diagramm was considered in [2 ], [ 6 ]. Notice that

N-1 .

actually X is closed in XxGx TP and, v' and € are

N~1

respectively induced by the projections onto Xx TP and

XxG.

(0.3) Remark: In this report we shall focus our attention

on the case of complex hypersurfaces. In this case N é.d + 1
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and G = @d‘l,'thé:dﬁal,projeCtiVe’space of hyperplanes in cd.
In the case of'COmpléte intéégeCtions;”if';X' is a suffi-

ciently small representant of (X,0), the Nash modification

is the-biowing-up of the Jacobian ideal of X. Thus, if X is

the cloééd hypersurface defined by f =0 1in an opén neigh-”

bourhood U of 0 in €%"!, then the Nash modification is

the blowing-up of the ideal J(f) generated by the partial

derivatives ‘E;>/,..., of of £ in GDXF' Moreover
Bzo (6;; - \

~

voé = eov'! = n 1is the blowing-up of the product of J(f) and

the maximal ideal MU defining {0} in X.

1. General results.

In this paragraph we only suppose (X,0) to be a reduced
equidimensional complex analytic space of dimension d. For
the proofs of the quoted results we mainly refer to [3 ], [4 ]

or to [6 ].

(1.1) Let X be a sufficiently small representant of (X,0)
in (EN,O). Then one may find a reduced complete intersection
X, of dimension d in eV such that X ¢ Xy (ef [6 11.1.2).
Let J

~

1 be the Jacobian ideal of Xl and vl: Xl > Xl the

blowing-up of Jl in Xl’

One can prove (cf [ 81]):

i.e. the Nash modification of X

(1.1.1) Theorem: Let X be the strict transform of X by Vv,
i.e. the closure of vl_l(X - Zl) in il’ then v; 1induces
an analytic morphism from X onto X 'isomorphic over X with

the Nash modification of X.
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Thus the Nash modification of X may be defined by the

blowing-up of the ideal Jlé?x of GDX. generated by Jl.
(1.1.2) Example. Let Pl and P2 two planes of m” in

general position and X = PlkJP2. Thus 0  1is an isolated

singular point of X. It is easy to see that the Nash modifica-

tion X of X ‘is_non singular and has two connected cpmponents

isomorphic by v respectively to Pl and‘ P2.

be the blowing-up of an ideal with support in {0}.

Thus v cannot

P

Wé may choose X. to be PP, UP_UP_: such that P_,
1 4 1 2,

1 2 3

3° P4 are the coordinate planes of a liriear coordinate system
of m” at 0. Thus v 1is the blowing-up of the subspace of

P

the lines D,uD_UD_UD of X where:

1V P VPV Ey
D, = P NP,
Dy = PN Py
D, =P NP
37 F2n ¥y
Py = Fan By

(1.2) In [12] H. Whitney has proved a lemma we may state in the

fqllowinngay:/

(1.2.1) Theorem Let J be the subvariety of G}<H>N_l of

couples (T,2) such that & ¢ T, then n71(0)c {0} xIC
As arc§rollary_we have:

(1.2.2) Corollary If d = 1, the set of limits of tangents
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coincides with the set of lines in the tangent cone.

We remind that this theorém'ef Whitney justvsays that
the non singular part of X always has the Whithey'condition
along {0} at O.. Recall that if Y 1is a non singular analytic
space contained in X and X, is an open analytic subset of

the set of non singular p01nts of X such that X, =YX, we say

that Xo has the Whitney condition along Y at a point O € Y
if, for any sequence {xn} of X, and any sequence'{yn} of Y,

such that:

1) 1im x. = 0 and limy =0
n n
2) the 1limit of the lines X Y, exists and:
1im XY, = L
3) the limit of the tangent spaces TX X exists
and: 1im T X =T
p Xy _
then T D> 2 .

We say that X, has the Whitney condition along - ¥ if it

has the Whitney condition along Y . at any point of Y.

This notion was introduced by H. Whitney in [117].
(1.3) In {3 ] we show that:
(1.3.1) Theorem The limits of tangent spaces -of the”reduced“
tangent cone. |CX‘O’ of X at 0 are limits of tangents of
b

X at 0.

2. Surfaces in m3.

(2.1) Before stating our main result in the general case of
any hypersurface, we flrst show what is known in the case of the

germ of a reduced surface (X 0) in (E O) In this case

-5 <



202

3

the linear planes of
i 2

define a 2—dimensiqnal projective
space we denote by Iﬁ . In [4 ] we prove:

(2.1.1) Theorem The variety of limits of tangents in P2 is
the union of the set of planes tangent to the reduced cone and
of a finite number of pencils of planes through lines in the

tangent coné called exceptional tangents of X at O.

In the case (X,0) is an isolated‘singularity, such a result
was obtained in [3]. In [ 3] we moreover gave a precise geo-
metric description of the exceptional tangents in relation with
the blowing-up of X at d.

From the above theorem one obtains:

(2.1.2) Corollary The set of limits of tangents of the germ
of a reduced surface in (m3,0) is finite if and only if the
reduced tangent cone is a finite union of planes and (X,0) has
no exceptional tangents.

In [4 ] we give a numerical criterion such that a germ
of reduced surface in (m3,0) has a finite number of limits of

tangents.

(2.1.3) Examples:
1) The "swallow tail", i.e. the discriminant of the general
polynomial of degree 4 for which the sum of roots is zero,
has only one limit of tangents at 0.
2) If the singular locus of (X,0) is non singular at 0 and
X 1is equisingular along it at 0, then the set of 1limit of
tangents is finite. |

Actually the numerical criterion quoted above and Zariski's
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discriminant theorem about equisingularity (cf [14]) gives:
If the singular locus of the germ of a reduced surface
(X,0) in (E3,Q) is non singular, the limits of tangents of (X,0)

are finite if and only if X 1is equisingular along its singular

locus at O.

(2.2) In [ 5 ] we have studied the case of a'germ of reduced
surface (X,0) in (m3,o) with no exceptional tangent at 0. We

obtained the following result:

(2.2.1) Theorem Let (X?O) be the germ of a reducéd surface
‘(X,O) in (m3,o). If (X,0) has no exceptional tangent at 0 and
if the tangent cone CX,O of X‘ at O is reduqed, then (X,0)
has an equisingular deformation on its tangent cone.

Moreover if (X,0) is an isolated singularity and if (X,0)

has no exceptional tangent at 0, then its tangent cone is

reduced and the preceding result holds.

(2.2.2) Examples:
1) The "swallow tail" has no exceptional tangent but its
tangent cone 1is not reduced.
2) The surface of m3_ defined by

(Xz + y2 + z?)2 +2° =0

(ef [5 1) has no exceptional tangent but its tangent cone

2,2
Z

is given by (x2 + y2 + )~ = 0 and is not reduced.
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(2.3) From [ 4] we can characterize geometrically the excep-
tional tangents of (X,0). Let us considér"pfdjeétiops p of
(X,0) onto (m2,0). Let us déhoté by X° the non singular part

of X. Notice that if P is sufficiently generai thebcritical
space C(p) of the restriction of p to X? is either @ or non
singular of dimensign 1. We shall call Tp the closure of C(p)
in X. Thus Fp is either § or a réducéd curve of dimension 1.

From [ 4] we obtain

(2f3;l) Theorem: If the érojéction p:(X,0) > (m2,b) is sufficient-
ly general, the tangent cone of r, at 0 is the uniCn’oftthev
exceptional tangeﬁﬁS"ofT(X,O) and of the lines in thevapparent
contour of the projection of the féduced’tahgéht‘ coné’lcx’ol onto
2 oy b, , , .

Thus we have (using (2.1.2)).

(2.3.2) Corollary If the projection p :(X,0) = (Ez,O)"is suffi-

ciently general, the limits of tangents of (X,0) are finite if and
ly if T_ = @.

only i o @

If p is sufficiently general, wé call (FD,O) a polar curve

of (X,0).
From theorem (2.3.1) we see that the exceptional tangents of
(X,0) are the lines of the tangent cone of a polar curve of (X,0)

which do not depend on the general projection p:(X,0) > (mg,o).

3. Complex hypersurfaces

(3.1) In this paragraph we shall state recent results of
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B. Teissier and myself. In the whole paragraph (X,0) denotes

d+1

the germ of a reduced hypersurface in (T ,0). 'We shall use

the notations of §0. We consider the diagramm of (0.2):

e
x —

| v
X' ——
e

P PR Y
< .

where X 1is a sufficiently smallwrepresentant of (X,0).
(3.2) Let .n = voé& = eov'. We denote by Y = n—l(O).
Actually y'_is the exceptional divisor of the blowlng-up of the
product of -the maximal ideal WVV'defining {0} ."and the jaeobian

ideal J(f) of (X,0), where f = 0 1is an equation of (X,0)in

+
(@t o0y,

Let (%d)aeA be the irreducible components of _%ﬂ

% = U %&‘

o€d

Let Va be the image of ‘}a by v'. It is a subvariety of

the reduced projective variety |Y'|, where Y' = e™1(0)(1.e. =
Proj CX,O)‘ |
Notice that there are a; o e A, such that dim V= dim 1y
30 1 .
(i=1,..,k) and V_ U ..uV_ =|Y']. One may prove:
*1 *x

(3.2.1) Theorem For each component Y, of |Y'|, there is only

one a,e A  such that - Va = Yi and the variety of limits of tangents

~ i
(Y] = lv'l(O)l) of (X,0) is the union of the dual varieties

d

of the 'V , i.e. the union of the subvarieties of % of hyperplanes

which contain a tangent space to Va(ae.A).

’_:9 -
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(3.2.2) In the case of hypersurfaces we have a result similar to
(2.3.1). ‘To state i1t we need to introduce tﬁe nétioh of polar
variefies in higher dimension. Lét pk”; (X,0) N (¢k+1;0) be)a
projection onto”mk+1(ls k £ d). We denote by X° the non singular
part of a sufficiently small represéntant X of (X,0). Let

C(p,) be the critical space of the restriction of p, to X°.
Then, if P, is sufficiently general, C(pk) is either ¢ or Ty
reduced with complex dimension k. Wé’shall call Tk the closure
of C(pk) in X. Obviously we can défine such a Pk for any

reduced analytic germ (X,0) of puré dimension 4 when Py 1s suffi-

ciently general. We call Tk a local k-polar variety of (X,0)

when - p,  1is sufficiently general. We have the following theorem:

(3.2.3) Theorem If Py is a sufficiently genéral projection,
the reduced tangent. cone of Fk at 0 1is the union of the cones
over the Va (o € A) such that dim Vd + 1 =k and of the k-polar
variety for p, of the cones over the Va(dé A) such that

dimV + 1 > k.
o

(3.2.4) We notice that the cones over the Vd(degA) such that
dim Va + 1 = k are the components of the reduced tangent cone
of a k-polar variety which do not depend on the general projection
P -
From theorem (3.1.2) we can obtain a corollary similar to

(2.3.2): .

(3.2.5) Corollary The limits of tangents of (X,0) are finite
if and only if for any 1 £ k £ d-1 and any general projection Py»
the polar variety T,  relative to ©p, 1s a.

We have a formulation similar td the one of (2.1.2):

- 10 -
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3.2.6) Corollary The limits of tangents of (X,0) are finite if

and 6n1y'if the reduced tangent cone of (X,0) is the union of

k hypefplanéS'and=%}.'has k  components.

We expect to have results similar to the ones of (2.2.1).

Besides of it we have thé following equisingularity criterion:

(3.2.7) Proposition Suppose the singular locus of (X,0) is non

singular at O and has the codimension one in (X,0). Then (X,0)
is equisingular along its singular locus at O if and only if the

limits of tangents of X at O are finité.

4, General situation

(4.1) " In this paragraph we shall give the results known in
the general case of germ of reduced analytic space (X,0) of pure

dimension d.

First we have a result concérning thé relation between‘the
tangent cone of (X,0) and the set of limits of tangent spaces of
X at O (cf [ 3]) we have already quotéd in (1.3.1).

Actually we even get a more precise result:

(4.1.2) Theorem There 1s a non void Zariski dense set U 1n the
projective variety of lines of lCX 01 passing through 0 such that
) ) ) .

for any & ¢ U and any sequence xn# 0 of non singular points of

X 'which tends to 0: 1limx_ = 0 - and for which 1im O0x_ = 2
S .n->oo n ) n--oe :
and lim T, X = T, then T is a limit of tangents of ]cX ol along %.
n ) . E

4.2y Actually, using the results of §3, it is better to make

use of the following result (cf [616.3.2).

- 11 -
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(4.2.1) Theorem Let (X,0) a germ of reduced analytic space of

pure dimension d. Suppose that (X,0) is contained in (EN,O).

For a sufficiently general projection p: EN > md+1

, the images
of local polar varieties of X at O are the local polar varieties

of p(X) =X at 0.

1
v Using this theorem it is then easy to get a result similar
to the one of (3.1.1), but we obtain the set of hyperplanes of

N

. T which contain a limit of tangént spacés of X at 0. and not

the set of Iimitsof tangent spacés of X at 0 itself.

(4.3) Now we have a relation between Chern classes for singular
varieties defined and obtained by R. MacPherson in [ 71 and our
geometric constructions (cf[ 6 ]). |

Let (X,O) be a reduced gé}m of ahélyfic space of bure dimen-
sion d. For sufficiently general projections Pk (1 £k < d)
aé defihed in (3.1.2) the multipiicities‘at On of the corresponding
polar Varietieé are analytic inﬁariants of (X,0). Let us denote:
m, = mO(I‘k)' - and e(X,O) = (ml,..,,md) |

Eu(X,0) = .

MM

(_1 ) d—km

k=1

We shall call Eu(X,0) the Euler obstruction of (X,0)(cf[7 1 and
[61).
Now we -denote by Voi(ie JO) the irreducible components of X.

Let V

1 = 2(X)  be the singular locus of X and denote Vli(ie Jl)
the irreducible components of Z(X). TFor x:eVii the value of
¢ (X,x) has a constant value 1f and only if xeVqyy - V'li’ where

- 12 -
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V'y; 1is a strict analytic subset of Vij- Let V, = E(Vy ),U V'ii'

Again we denote 21(:'L € J ) the irreducible components of V.

5e
For x &V,, the values of € (X,x) and ‘C(Vlj,x)(j € Jl) are constant

if and only if xévzi ~—-V'21, where 'V'2~i is-a 'strict analytic

subset of Vogo Let Vo = Z(V Y, V' . By induction we define
3 1eJ

Vk(k' < 2) and Vki(k 2.—,'ieJ ). For eri’ the values of

€ (X,x) and e X S,x) (r £2 -1, s eJr) are constant if and
only if xe€ VJL' - V! a1 where V'"i is a strict analytic subset’

of Vﬁi', Then vz 1 —‘z(v )il_ng' and the Z+li(l& J“l) are

the 1rreducible components of V 1 Obv1ously thls process ends

after a finite number of steps, as Voerp = 8 for some 2.

Now let nijg be a family -of intégers, defined inductively by:

Ngo = 1

k21, Led: 3 ongy Eu(Vyy,x) +m, =1 with xeT, LA

0<42k-1
2ed5
Now the cyclle:defined by R. MacPherson which gives the‘ local
chern class of (X,0) is 2 n"ij'vij
i
JEJ1

(4.4) A result stated by B. Teissier in [10] .g:ive_s:r

(M‘.Ll.l).‘ Theorem ~ The stratification of X defihed_ by the strata

Fij = Vij - kLg Ve

any s‘craﬁtif'j.ca‘c1‘0'n’f of X 1in which the singular locus, the singula

satisfies the Whitney condition. Moreover

locus of the sin‘gular locus etc.., are union of strata and which

satisfies the Whitney condition is finer than this stratification.

- 13 -
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(4.4.2)  This result shows that the Whitney condition is
"anélytic". In the case of projective varieties the Fij obtained
in the above construction are quasi projective.

‘For example .this helps to have a qonstruotive way to-define
the generic hyperplanes of: [13] to obtain a computation of the

fundamental group of the complement.of a projective hypersurface

(ef[11).

(4.5) In the case one considers cones over projective varieties,
the 1écal polar'varieties we define are cones and’give a local

version of the results obtained and quoted by R. Piene in [9].

(4.6) In [ 6] (Appendice) we obtain a theorem which gives a
relation between the limits of tangent spaces on any equidimensional

reduced analytic space and the ones of its =meneric projection as

a hypersurface. Namely we have:

(4.6.1) Theorem: Let (X,0) be a germ of equidimensional reduced
analytic space of dimension d embedded in (EN,O). There is an
open dense Zariski subset U of the Grassmann space of linear
projections Ps: EN -> md+1 such that, if poe U :

a) The induced analytic morphism by pe from X onto

X, = po(X) is finite and bimeromorphic;

1
b) In the Grassmann variety G of d-vector spaces on EN,

the (Schubert) variety C . of d-vector spaces not transverse
to Ker po meets any component Y, of the space Y| of
limits of tangent spaces of (X,0) in an analytic subset of

codimension 2 on Yk or void;

¢) The morphism p:Xe-Xl, induced by po, is finite and defines

- 14 -
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an analytic morphism ﬁ from X—Y-l(C) into il which
v_isffinite (with 'Y}i > G  beingithéTGauss mﬁrphisﬁ‘Of‘(X,O)
~and iii the Nash mbdificétion;spécé of.Xl)}rmbreOVer B
induced an analytic isomorphism.df the hOrmélization of

% - y"1(c) onto the normalization of (X - y T(C)).

This theorem should allow to generalize the results of §3.

- 15 -
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