2重分岐被覆空間の既約性について

河野正晴（北大理）

3-manifoldがfake 3-ballをふくまない時、そのmanifoldを(C,P)-manifoldと呼ぶ（又は縮して単に(C,P)である）。ここでは(C,P)-manifold a 2-fold branched coveringが又(C,P)-manifoldであることを示す（証明などを詳しい所は[K]参照）すべきであるmanifoldは(C,P)であるという命題はPoincaré Conjectureと同値となる。又(C,P)-manifold Mに対してπ2(M)=0となる時はMにirreducible（i.e. ①S^2⊂M 2-sphereに対してB^3:3-ball ②B^3=S^2）である。又Mがirreducible a時π1(M)≠1ならばMは(C,P)-manifoldである。結果は以下のようにある。

定理1

M, Nをclosed orientable 3-manifoldとある。
p:(M,L) → (N,L) をMからNとLをbranchする
2-fold branched coveringであるとする。この時 \(N \) が (C.P) ならば \(M \) も (C.P) である。

Corollary

3-sphere に 2-fold branched covering space は (C.P) である。

又上記 Corollary を用いて次の結果がわかる

定理 2

\(M \) を 3-sphere に 2-fold branched covering space とする。この時 \(\pi_1(M) \cong \mathbb{Z} \) なら \(M \cong S^2 \times S^1 \), \(\pi_1(M) \cong \mathbb{Z}_2 \) なら \(M \cong \mathbb{P}^2 \) である。

§ 1.

定理 1 を証明するためにいくつかの Lemma, Proposition を示す。

Proposition 1

\(M \) を closed orientable 3-manifold, \(g \) を \(M \) 上の orientation preserving involution とする (\(g^2 = \text{id}_M \)）。この時 embedded 2-sphere \(S^2_1, \ldots, S^2_n \) が存在して次の 2つの条件を満足
する。

(1) 任意の i について $S_i \cap \bar{g}(S_i^2) = \emptyset$ は $g(S_i^2) = S_i^2$ が成立する。

(2) $[S_1^2], \ldots, [S_m^2]$ は $\mathfrak{I}(M)$ を $\mathfrak{I}(M)$-module と見たとき、それを generate する。

Fix$(g) = \hat{M}$ とする。M にうめこまれた任意の 2-sphere S^2 を考える。この時

\begin{align*}
\text{type } (a) & \quad S^2 = g(S^2) \\
\text{type } (b) & \quad S^2 \not= g(S^2)
\end{align*}

においてある。type (b) の時 transversal technique を用いて S^2 は \hat{M} と M で、S^2 と $g(S^2)$ は $M - \hat{M}$ で transversal としでよい。この時

\begin{align*}
X(S^2) &= S^2 \cap \bar{g}(S^2) \rightarrow \hat{M} \\
Y(S^2) &= S^2 \cap g(S^2) \rightarrow \hat{M}
\end{align*}

$t(S^2)$ を次のように呼ぶ。

\[d(S^2) = \begin{cases}
X(S^2) \text{ a component a数 } & S^2 \text{ が type(b) の時 } \\
0 & S^2 \text{ が type(a) の時 }
\end{cases} \]

又 $p \in Y(S^2)$ の点とし、B_p を p に small neighborhood としたい時、$B_p \cap X(S^2)$ は component の数が a である時、点 p は type (i)
であるという。この時
次が言える。
\[\begin{array}{c}
\times \quad \times \quad \times \\
\text{type (4)} \quad \text{type (2)}
\end{array} \]

Lemma 1

\(\mathbb{S}^2 \) を type (b) の 2-sphere とする。isotopy で \(\mathbb{S}^2 \) を少し
動かして \(\gamma(\mathbb{S}^2) \) をすべて type (2) の点にできる。
（証明は略）

Lemma 2

\(\mathbb{S}^2 \) を embedded 2-sphere で \(\gamma(\mathbb{S}^2) \neq 0 \) とする。この時
2 個の 2-sphere \(\mathbb{S}_1^2, \mathbb{S}_2^2 \) が存在して次の条件を満す。

(i) \(\max(\alpha(\mathbb{S}_1^2), \alpha(\mathbb{S}_2^2)) < \alpha(\mathbb{S}^2) \)

(ii) \([\mathbb{S}_1^2] \) と \([\mathbb{S}_2^2] \) から \(\mathfrak{g}(\mathcal{M}) \)-module とし \(\gamma(\mathcal{M}) \)-sub-module として
\(\mathfrak{g}_2(\mathcal{M}) \) を含む。

（proof）Lemma 1 により \(\gamma \) の点はすべて type (2) とし
てよい。この時 \(\gamma(\mathbb{S}^2) \) に immer-most な 2-disk \(D \) が存在
する。\(\mathfrak{g}(\mathbb{S}^2 \cap D) = \mathfrak{g}(\mathbb{S}^2 \cap D) \) であることが起こる。

(i) \(\mathfrak{g}(\mathbb{S}^2 \cap D) = \mathfrak{g}(\mathbb{S}^2 \cap D) \)

(ii) \(\mathfrak{g}(\mathbb{S}^2 \cap D) \cap \mathfrak{g}(\mathbb{S}^2 \cap D) = \phi \)
Case (1) ついて $\map f\colon D \times I = [0,1] \to M$ が存在する

(a) $f(D \times 0) = D$

(b) $f(\partial D \times I) = f(D \times I) \cap S^2$

(c) $f(D \times 1) \cap g(D) = \emptyset$

$f(D \times I)$ を満す。 ついて $S_1^2 = D \cup g(D)$

$cS_2^2 = f^{-1}(g(D) \cup f(\partial D \times [0,1])) \cap f(D \times 1)$ とおく。

cS_3^2, cS_4^2 は Lemma a 条件 (ii) を満たすことは明らかである。

$cS_1^2 = S_3^2 \times S_2^2 \times S_2^2 \subset S_3^2 \times S_2^2 \times S_2^2$

および $\alpha(cS_2^2) < \alpha(cS_2^2)$ である。

Case (2) ついて $\map f\colon D \times [-1,1] \to M$ が存在する

(a) $f(D \times 0) = D$

(b) $f(D \times [-1,1]) \cap S^2 = f(\partial D \times [-1,1])$

(c) $f(D \times [-1,1]) \cap g(S^2) = f(D \times 0)$

$f(D \times [-1,1])$ を満足する。

$S^2 - f(D \times [-1,1])$ は 2 つの component を持つ。それを S_+, S_- とする。ただし $S_+ = f(\partial D \times 1)$ とする component とし、ついて $S_1^2 = S_+ \cup f(D \times 1), S_2^2 = S_- \cup f(D \times 1)$ とする。

$S_1^2 \cap g(S_2^2) = f(S_+ \cup f(D \times 1)) \cap g(S_+ \cup f(D \times 1))$
\[\alpha(S^2) = \alpha(S^2) \]
Lemma 3

M に 3-ball を bound しない 2-sphere $S^2 \times \mathbb{R}$ となるものが存在する。この時次の3つがいずれか
が成り立つ。

1. $M = N_1 \# N_2$ と。
 $p_i : (M_i, L_i) \rightarrow (N_i, L_i) : N_i \alpha L_i$ で branch
 する 2-fold branched covering が存在する ($i = 1, 2$)。

2. \(M \cong S^2 \times S^1 \)

3. $M = M_1 \# (S^2 \times S^1)$ と。
 $N = N_1 \# P^3$ と。
 $p : (M_1, L_1) \rightarrow (N_1, L_1) : N_1 \alpha L_1$ で branch
 する 2-fold branched covering が存在する。

(proof) $S^2 \times [-1, 1]$ を S^2 の small invariant neighborhood
とする ($S^2 \times \partial S^2 = S^2$)。この時

(1) S^2 が M を separate する

(2) S^2 が M を separate しない

の 2 つが成り立つ。

Case (1) $M = S^2 \times [-1, 1) = V_1 \cup V_2$ とある。この時 M
2 つの場合 (1-ⅰ) \(S^2 \cap C = \emptyset \) (1-ⅱ) \(S^2 \cap C \not= \emptyset \) に
分けられる。

(1-ⅰ) \(p(S^2 \times [-1, 1)) \) は projective plane \(\times \) a twisted
I (interval) - bundle とある。よって $N - p(S^2 \times (-1, 1))$ は
connected て、\(\mathcal{C}(V) = V \) となる。\(\mathcal{C}(V) = V \) のとき、\(M = (\mathcal{C} \cap V \cup V_2) \cup (\mathcal{C} \cap S^2 \times [-1,1]) = \emptyset \) となり矛盾。

(1-i) これは、\(\mathcal{C}(V) = V \) のとき、\(M = (\mathcal{C} \cap V \cup V_2) \cup (\mathcal{C} \cap S^2 \times [-1,1]) = \emptyset \) となり矛盾。

(1-ii) これは、\(\mathcal{C}(V) = V \) のときに、\(\mathcal{C}(V) = V \) が成立し、以下の diagram を可能に
する。

\[
\begin{array}{ccc}
\mathcal{C}(V) & \xrightarrow{f_i} & \mathcal{C}B^3 \\
\downarrow p & & \downarrow p_0 \\
p(\mathcal{C}(V)) & \xrightarrow{g_i} & \mathcal{C}B^3
\end{array}
\]

この時 \(M = V \cup \mathcal{C}B^3 \), \(N = p(V) \cup \mathcal{C}B^3 \) とする。

\[
p_i(x) = \begin{cases}
p(x) & x \in V \\
p_0(x) & x \in \mathcal{C}B^3 \end{cases}
\]

この時 \(p_i \) は 2-fold branched covering となり、\(M = M_1 \# M_2 \), \(N = N_1 \# N_2 \) とulers が 2-ball を bound しないことにより、\(M_1 , M_2 \) も 3-sphere にはならない。よって①が起こる。

Case (2) では、\(V = M - S^2 \times (-1,1) \), \(W = p(S^2 \times (-1,1)) \) とおく。更に②の場合にわたる。②-i) \(S^2 \cap \mathcal{C} = \emptyset \), \(S^2 \cap \mathcal{C} \neq \emptyset \)。

(2-i) \(p(S^2 \times [-1,1]) \) は projective plane と twisted I-bundle で、\(\mathcal{C}V = S^3 \cup S^2 \) とおく。
この時次の diagram を可換にする同相写像 \(f_1, f_2, g \) が存在する。

\[
\begin{array}{c}
S^2_1 & \xrightarrow{f_1} & S^2_2 & \xrightarrow{f_2} & \mathcal{B}_0^3 & \xrightarrow{id} & \mathcal{B}_0^3 \\
\downarrow p & & \downarrow p & & \downarrow \text{id} & & \downarrow \text{id} \\
p(S^2_1) & \xleftarrow{g} & p(S^2_2) & &
\end{array}
\]

この時 \(M_1 = V \cup B_0^3 \cup B_0^3, N = W \cup B_0^3 \)

\[
p_i(x) = \begin{cases}
p(x) & x \in V \\
 x & x \in B_0^3 \end{cases}
\]

とおくと,

\(M = M_1 \# (S^2 \times S^1) \), \(N = N_1 \# P^3 \) となる。 (⇒ ③)

(2-ii) : \(\forall V = S^2_1 \cup S^2_2 \) とおくと, 各 \(i = 1, 2 \) に対し同相写像 \(f_i, g_i \) が存在し, 下の diagram を可換にする。

\[
\begin{array}{c}
S^2_i & \xleftarrow{f_i} & \mathcal{B}_0^3 & \xrightarrow{P_0} & \mathcal{B}_0^3 \\
\downarrow p & & \downarrow p & & \downarrow \text{id} \\
p(S^2_i) & \xleftarrow{g_i} & \mathcal{B}_0^3 & &
\end{array}
\]

\(M_1 = V \cup B_0^3 \cup B_0^3, N_1 = W \cup B_0^3 \cup B_0^3 \)

\[
p_i(x) = \begin{cases}
p(x) & x \in V \\
p_0(x) & x \in B_0^3 \end{cases}
\]

とおくと,
p_1 は 2-fold branched covering で $M = M_1 \# (S^2 \times S^1), N = N_1 \# (S^2 \times S^1)$。
M_1 が 3-sphere である時は $M_2 = S^2 \times S^1, N_2 = S^2 \times S^1$ とおくと $M_2 \# N_2$ が branched covering が存在する。よって①。M_1 が 3-sphere である時は②。

Lemma 4

$\pi: (S^2 \times I, L') \rightarrow (\mathbb{B}, L')$ 2-fold branched covering とするとき次のいずれかか。

(1) \mathbb{B} は 3-ball で L は trivial knot

(2) $\mathbb{B} = S^2 \times I$ で任意の $x \in I$ に対し $S^2 \times \{x\}$ と L は 2-points。

（証明は略）

Lemma 5

S^2 を M 内の 2-sphere で $S^2 \cap M$ かつ $S^2 \varsubsetneq \bar{S}^2 = \phi$ とすると、次の 3 つの方針が起こる。

① $\varsubsetneq (S^2) = S^2$ で 3-ball を bound しない 2-sphere S' が M 内に存在する。

② L は trivial knot つまり $M = N \# N$

③ $M = M' \# (S^2 \times S^1)$ で

$p': (M', L') \rightarrow (N, L')$ となる 2-fold branched covering が存在する。

（証明） $f: B^3 \rightarrow N$ で次の条件を満す同相写像が存在する。
(1) \((f(B^3), f(B^3) \cap L) \) は trivial ball pair
(2) \(\exists B^3 \cap a \text{ 2-disk } D \) が存在
(2.1) \(f(B^3) \cap p(S^2) = f(D) \)
\(\implies S = (p(S^2) - f(B^3)) \cup f(\partial B^3 - D) \)
\(S' = p^{-1}(S') \) とする。\(S' \) が 3-ball を bound しにくいば、\(D \).
よって \(S' \) は 3-ball \(V \) を bound するとして仮定する。\(V \cap p^{-1}(f(\partial B^3)) \)
は 2 個の 2-disk で、\(S^2 \times I \) と
2 個の 2-disk で、\(S^2 \times I \) と
2 個の 3-ball となり \(S^2 \times I \) に
照。よって \(V \cap p^{-1}(f(\partial B^3)) \) は \(S^2 \times I \)、
故に \(V \cap p^{-1}(f(B^3)) = S^2 \times \{0, 1\} \)
としてよい。ここで \(S^2 \times \{0\} = S^2 \), \(S^2 \times \{1\} = \emptyset(S^2) \) と
してよい。

\[\pi_1(S^2 \times I) \to \pi_1(S^2) \] は 2-fold branched covering.

Lemma 4 より \(\pi_1(S^2 \times I) \) は 3-ball で、\(\pi_1(S^2 \times I) \cap L \) は trivial
braid。\(W = N - p(S^2 \times (0, 1)) \) とおくと、(a) \(p^{-1}(W) \) は 2-component
(b) \(p^{-1}(W) \) は connected で、\(W \) の場合にゆかれた。 (a) の
時は \(\text{L} \cap W = \emptyset \) なので \(\text{L} \cap p(S^2 \times I) \), よって \(\text{L} \) は trivial
(⇒ ι) (b) の時は \(W = p^{-1}(W), \exists W' = S^2 \cup S^2 \) と
おと。この時相写像 \(f_1, f_2, g \) が存在して以下 a diagram を可能にする。

\[
\begin{array}{cccc}
S^2_1 & f_1 & S^2_2 & f_2 \\
\downarrow p & & \downarrow p & \\
\partial W & \leftarrow g & \partial B^3_0 & \partial B^3_0 \\
\end{array}
\]

\(H' = W' \cup B^3_0 \cup B^3_1 \), \(N' = W \cup B^3_0 \).

\(p'(x) = \begin{cases} \phi(x) & x \in W' \\
x & x \in B^3_0 \end{cases} \)

とおくと

\(H = M' \# (S^2 \times S^1) \), \(N = N' \) となり \(p' \) は 2-fold branched covering となる（\(\Rightarrow (3) \)）。

Lemma 6

\(M = M_1 \# M_2 \) の時

\(H : (C(P) \text{-manifold } \iff H_1 \times H_2 \text{ は } (C(P) \text{-manifold} \)

（well-known）

これ以降我々は Thurston などによって示されたとされる次の定理を仮定する

Theorem (homotopy Smith Conjecture)

\(K \) を homotopy 3-sphere \(\Sigma \alpha \) 内の non-trivial knot とする。
\(K\) はブランチする \(\Sigma\) の \(p\)-fold cyclic branched covering space は simply connected ではない。

さて証明にはいる前に次のことを定義する。

定義

closed orientable 3-manifold \(M\) は prime 素 manifold であると connected sum に一定的に分解される。即、\(M = H_1 \# \cdots \# H_m\) である。この時、この個数 \(m\) を \(\text{PD}(M)\) と書く。

最初に特別な場合を示す。

Proposition 2

\(\pi_2(M) = 0\) の時、\(N\) が \((C,p)\)-manifold なら \(M\) も \((C,p)\)-manifold。証明の概要（\(M\) 内に homotopy 3-ball \(B\) をとり、それが 3-ball であることを示す。\(d(BB)\) に関する induction で

Lemma 2 を示した方針で行う。Lemma 2 との違いは、今度は 2-sphere だけでなく、それに bound される homotopy 3-ball が必要という点。そのため \(\pi_2(M) = 0\) が必要。
§2.

（Proof of theorem 1）

$PDCH$ についての induction で示す。 $PDCH = 1$ の
時、M が prime と てて $M \geq S^2 \times S^1$ は irreducible で、$N \geq S^2 \times S^1$ なから (C.P) は明らか。 irreducible の時は $\Pi_1 (M) = 1$
の時は $\Pi_1 (N) = 1$ となるので $N \geq S^3$。
よって Theorem (HSC) より $M \geq S^3$。
$\Pi_1 (M) \neq 1$ の時は irreducible から (C.P) がし
たがう。 $n = PDCH$ 未満の manifold については定理は正
しいと仮定する。 $\Pi_2 (M) \neq 0$ の時は Proposition 2 を示して
いるので $\Pi_2 (M) \neq 0$ とする。 この時 Proposition 1 より
$[S^2] \neq 0 \in \Pi_2 (M)$ となる S^2 が存在して $g(S^2) = S^2 \times S^2$
は $g(S^2) \cap S^2 = \emptyset$ となる。 $g(S^2) = S^2$ の時 Lemma 3 が適用で
きる。 m の時 Lemma 6 より N_1, N_2 は (C.P).

$p: (M_i, L_i) \rightarrow (N_i, L_i)$ ($n=1, 2$) は $PD(M_i) < PD(H)$
なので Theorem が使えて M_1, M_2 は (C.P)，よって H は (C.P)。

δ の時は明らか。δ の時も $PDCH_i = PDCH - 1$ なので δ
の時と同様にできる。 $g(S^2) \cap S^2 = \emptyset$ の時とは Lemma 5 を
適用すれば同様にできる。 \(\Box\)
Lemma 7

\[p: \tilde{M} \rightarrow M \] is a 2-fold unbranched covering

\[M: (C, P) \text{-manifold} \rightarrow \tilde{M}: (C, P) \text{-manifold} \]

(proof) Hempel [H] or Lemma 10.4 (p 96) and the same as before.

Theorem 2

\[p: (M, \Sigma) \rightarrow (S^3, L) \] is a 2-fold branched covering

(i) \[\pi_1(M) \cong \mathbb{Z} \implies M \cong \mathbb{S}^2 \times \mathbb{S}^1 \]

(ii) \[\pi_1(M) \cong \mathbb{Z}_2 \implies M \cong \mathbb{P}^3 \]

(proof)

(i) \[\pi_1(M) \cong \mathbb{Z}; \text{Lemma 6 implies } M \cong \mathbb{S}^2 \times \mathbb{S}^1 \# \Sigma \] (here, \(\Sigma \) is homotopy 3-sphere). Theorem 1 implies \(M \cong (C, P) \).

(ii) \[\pi_1(M) \cong \mathbb{Z}_2 \); Theorem 1 implies \(M \cong (C, P) \). \(\tilde{H} \) is a universal covering space of \(\Sigma \) and 2-fold covering. By the Lemma 7, \(\tilde{H} \) is \((C, P) \) and \(\tilde{H} \cong \mathbb{S}^3 \). \(M \) is \(\mathbb{S}^3 \) under the action of \(\mathbb{Z}_2 \)-action that exists in \(\Sigma \). Lemma 10.4 (p 96) implies
References.

