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1. 1Introduction

Database normalization theory for 1logically designing 3
relational database has been developed.[l] The theory
studies algorithms for obtaining a set of relation schemes
with good properties under the universal relation
assumption, The input of the algorithms 1is a set of
integrity constraints, known as data dependencies. Such
dependencies are functional, multivalued, join dependencies,
and so on,

When applying the algorithms to actual database design,
three problems appear. The theory ignores how to derive
other data dependencies than functional dependencies from
the real world. Thorough study has not been made on how the
universal relation assumption restricts modeling the real
world as a relational database. The theory does not
consider other important integrity constraints than data
dependencies. That is, semantic aspects of database design
have not been studied enough in database normalization
theory, though syntactic aspects have been well studied.

Various data models, which describe the real world,
have been proposed for database design.[3],[5] The models
can handle semantic aspects of database design. It 1is not
shown in the models, however, how other data dependencies
than functional dependencies can be represented, and what is
meant by the universal relation assumption.

This paper reports results of a study on semantic



215

Page 3

aspects of database design and shows how to make it easier
to apply database normalization theory to actual database
design.

This paper presents a data model, called the functional
dependency graph (FD-graph). The FD-graph clarifies which
part of the real world can be represented as one relation
scheme without null values. The FD-graph cannot represent
the whole real world, however. That is, the FD-graph
clarifies part of the real world which corresponds to a
universal relation. The paper shows a method of
constructing a relation scheme from an FD-graph. An
FD-graph having no loop is discussed in [10].

The paper shows that multivalued dependencies in the
relation constructed from an FD-graph correspond to certain
FD-graph substructures., This result means that multivalued
dependencies can be easily derived from the FD-graph.

The paper shows that an integrity constraint, specified
in drawing an FD~-graph and called domain equivalence
conditions, is important in designing relational databases
without null values.

The paper finally shows an algorithm for obtaining
fourth normal form relation schemes by using an FD-graph.

The FD-graph is based on the functional dependency
model (FD-model) developed by Housel, et al.[5] The FD-graph
differs from the FD-model as follows. The FD-graph
structure is rigidly defined, while that of the FD-model is

not, The FD-model can handle the part of the real world
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which should be represented as multiple relations, while the
FD-graph handles only the part of the real world which can
be represented as one relation. The FD-graph can include
special nodes (join nodes), which represent a data
dependency, such as an embedded multivalued dependency and
which do not exist in the FD-model.

There are some similarities between the FD-graph and
other data models, such as the entity-relationship model
[3]. The results of this paper can be applied to those data
models, since they can be easily transformed into a set of

FD-graphs.

2. Basic Concepts

Let U be a set of attributes and be denoted by U={Al,
A2,..., An}. Let each attribute Ai have its corresponding
domain &(Ai). A relation R(U) on U is a subset of
D (A1)XD(A2)X...X D(An), where X means a Cartesian product.
An element of a relation is called a tuple of the relation.

A relation scheme is denoted by g=<ﬁ,P>, where R 'is a
relation name, U is an attribute set, and 7 is a set of its
constraints. The relation scheme R=<U,['> is defined as the
set of relations on U which satisfy constraints . An
element of a relation scheme is called an instance of the
relation scheme.

Let X be a subset of U and be denoted by X={Bl, B2,...,
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Bm}. For a tuple/&=<al,a2,...,an>, the restriction of/M on
X, denoted by ﬂ{X], is defined as‘/qx]=<bl,b2,...,bm>, where
bi=aj if Bi=Aj. The projection of R(U) on X, denoted by
7DX(R(U)), is defined as

Ty (R(U))={ m[X] I MeR(U) e

Let X, Y and Z be pairwise disjoint sets. The join of
R(X,Y) and S(X,Z), denoted by R(X,Y)WS(X,Z), is defined as

RMS={ <x,y,2> | <x,y>¢R and <x,z>€S }.

A functional dependency (FD) is a kind of constraint
about R(U). Let X and Y be subsets of U, The FD: X-=->Y
holds in R(U), iff for every pair /h; My of tuples of R, if
/M[X]=/5jx], then /M[Y]f/Q[Y]. It is said that an FD:
X-->Y is trivial if Y is a subset of X.

An embedded join dependency (EJD) is another constraint
about R(U). Let X1, X2,..., and Xn be subsets of U. The‘
EJD: K {X1,X2,...,Xn} holds in R(U), iff for any tuples M,
Mareeers /in of R(U), if))g[xiﬂxj]=/qlxian] (1<i,j<n) holds,
there exists a tuple/u such that‘ﬂixi]=/Q[xi] (1<i<n). If
U=;§|Xi' M{X1,X2,..,Xn} is called a join dependency (JD).

Let V be a subset of U. Let X and Y be subsets of V
and let Z be defined by %=V-(X'Y). An embedded multivalued
dependency (EMVD): X==>-=>Y in V holds in R(U), iff
M{xYY,xYz} holds in R(U). If V=U, the dependency is called
a multivalued dependency (MVD) and is denoted by X=->-->Y,.
It is said that an MVD: X-->-=->Y is trivial if Y is a
subset of X or U=xYY.

An FD (EJD,JD,EMVD,MVD) holds in R=<U,[>, iff the FD
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(EJD,JD,EMVD,MVD) holds in any instance of R.

If " is a set of data dependencies, R=<U,['> is the set
of relations which satisfy all the data dependencies in .

A relation scheme R=<U,["> is in Boyce-Codd normal form
if, whenever a nontrivial FD: X-->Y holds in any instance
of R, the FD: X-->U holds in any instance of R.

A relation scheme R=<U,['> is in fourth normal form if,
whenever a nontrivial MVD: X-->-->Y holds in any instance
of E, the FD: X-->U holds in any instance of_B.

It is said that these normal forms have desirable
properties.[3],[6] A different view about the desirableness
is discussed in [9] under the domain equivalence condition,‘
however,

Assume that a database is composed of R1(Ul), R2(U2),
eesy and Rn(Un). Then, the universal relation assumption
means that there exists a relation R(U) such that U=GIJi and

rzl

Ri(U1)=T0 (R).

3. Functional Dependency Graph

The functional dependency graph (FD-graph) is defined in
this section. The FD-graph is a data model whose role is to
clarify which part of the real world can be represented by
one relation without null values. The FD-graph is based on
the functional dependency model developed by Housel et

al.[5]
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3,1 Functional Dependency Graph Definition

rThe structure of the FD-graph is defined and the basic
meanings which an FD-graph represents in the real world is
shown in this subsection. More precise meanings are

described in 3.2.

pefinition 1. A connected directed graph G is called a
functional dependency graph candidate (FD-graph candidate),
if G has the following properties:
(1) The nodes of G are divided into three categories:
atomic nodes, compound nodes, and join nodes. The arcs
of G are also divided into two categories: functional
dependency arcs (FD-arcs) and constituent arcs (c-arcs).
(2) No atomic node has an outgoing c-arc.
(3) Any compound node or any join node must have multiple
outgoing c-arcs. Each terminal node of the c-arcs is
called a component of the compound (join) node.
(4) Each atomic node has its own specific 1label, which
indicates an attribute name.
(5) If there is an arc from N to M, there is no other arc

from N to M.

An example of such a graph is shown in Fig. 1. The node
shown as a rectangle with a saltire cross is a join node.
The nodes shown as a clear rectangle are compound nodes.

The nodes shown as a rectangle with a noun are atomic nodes.
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The noun is the label of the atomic node. That is, N1 is a
join node; N2-N5 are compound nodes; The other nodes are
atomic nodes; EXPERIMENT#, SCORE and so on are labels.

The arcs with a black arrow head are FD-arcs. The arcs
with a clear arrow head are c-arcs. That is, fl1 and f2 are
FD-arcs; The other arcs are c-arcs.

An atomic node represents an entity indicated by its
label. A compound node represents an abstract notion
constructed from its components. The abstraction
corresponds to aggregation in [6] and the abstracted notion
is identified by a basic attribute set (see the following
Definition 4). A compound node also represents an integrity
constraint that no functional dependency holds among its
components. That is, a compound node shows many-to-many
relationship among its components.

A join node plays the same role as a compound node. 1In
addition, a join node represents another integrity
constraint that the relation which corresponds to data about
the Jjoin node 1is the join of relations of its components
(The precise definition is shown in Definition 6 (4)). For
example, N1 shows that any JUDGE, who corresponds to a
PERFUME, judges all the experiments concerned with the
PERFUME.

An FD-arc shows that the basic attribute set of its
terminal node is functionally dependent on that of its
initial node. For example, CHARM-DEGREE is functionally

dependent on {MODEL,JUDGE}.
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Each node and each FD-arc represent the meanings just
described. Various facts or data, which correspond to the
meanings, exist in the real world. Restricting the facts or
data makes it possible to represent more precise meanings

for an FD-graph (see 3.2).

Definition 2. Let N and M be any nodes of an FD-graph
candidate G. The FD-reachability from N to M, N75;>M, is
inductively defined as follows:
(1) Nfa;>N
(2) If M is a compound (or join) node and N—;;>Mi for
each compoent Mi (1<i<n) of M, Nfa;>M holds.
(3) If there is a node, L, such that N—ﬂ;>L and either
L--»M or L—%>M*{ then N-g5>M.
The component-reachablility from N to M, N-2;>M, is also
defined as follows:
(1) N-2->N

(2) N-z->L and L--DM imply N-E—>M.

Example 1. Nl-;5>Nl3. N2-§;>Nl3.

Figure 2 is an FD-graph candidate. ©No compound node has an

appropriate notion constructed from its components, however.
Figure 3 is another FD-graph candidate. The graph has

a contradictory meaning. The compound node N means there is

*) L--»M (L--{>M) means that there exists an FD-arc (c-arc)
from L to M.
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a many-to-many relationship between PERSON and TELEPHONE#,
where the FD-arc f means TELEPHONE# is uniquely determined
by PERSON.

FD-graph candidates are confined to remove graphs such

as Fig. 2 and Fig. 3.

Definition 3. If an FD-graph <candidate G satisfies the
following conditions, G 1s called a functional dependency
graph (FD-graph).
(1) For any different nodes, N, M and L, if N_E_>M and
N-E—>L, M—ﬁS>L does not hold.
(2) When we regard G as an undirected graph, if G has a
primitive 1loop p, there exists a node N such that N-ﬁ;>M

for any node M which is included in p.

(3) G has no directed loop composed of only c-arcs.

Condition (2) is necessary to represent facts or data on an

FD-graph as one relation (see the proof of Theorem 1).

3.2 Functional Dependency Graph Instance

A collection of facts or data, which corresponds to the
meanings of an FD-graph, is defined as an instance of the
FD-graph. The "instance" notion gives an FD-graph more

precise meanings in the real world.
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Definition 4., For each node N of an FD-graph G, the basic
attribute set X(N) is defined by
X(N)={ A 1| N—E—>NA, where NA is an atomic node whose

label is attribute A}.

pLemma 1. Let G be an FD-graph.

(1) X(NA)={A}

(2) If a node N is either a compound node or a join node,
X (N)=x (M1)Y.. .V x(MKk),

where Ml,..., and Mk are all the components of N.

(3) For any node N, X(N)#¢.

Example 2. X(N1)={MODEL, USED-AMOUNT, PERFUME, JUDGE}.

X (N4)={MODEL, JUDGE}.

Definition 5. For each node N, let N be defined as
N={ M1l N--5>M }.
The derived attribute set Y(N) is defined as

Y(N)= U x(M).
MeN
The derived attribute set of N indicates all the entities
functionally determined by the notion which corresponds to

N.

Example 3. Y(N1)=X(N1)"{EXPERIMENT#, SCORE, CHARM-DEGREE,

CONTENT} .

Y24
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Definition 6. Let N1, N2,..., Nn be all the nodes of an
FD-graph G. Let fl1, £f2,..., fm be all the FD-arcs of G.
Instance candidate I of G is defined as

I={R(N1,I)yee., R(Nn,I), £fI1l,..., £Im}, where
(1) R(N,I) is a relation on X(N). The relation 1is called
the basic relation of N.
(2) If X(N)oX(M)=X%9,

Ty [R(N,I)]= T, [R(M,I)].

For any c-arc c: N--oM, let cI be 7Eﬂny It follows from
condition (2) that cI is a surjective function from R(N,I)
to R(M,I).
(3) For any FD-arc f: N--PM, fI is a surjective function
from R(N,I) to R(M,I).
(4) For any join node N,

R(N,I)=R(M1l,I)M...MR(Mk,I)

where M1,..., Mk are all the components of N.

Basic relation R(N,I) is a set of facts or data about the
many-to-many relationship concerned with N. Function fI is
a set of facts or data about the functional relationship
indicated by FD-arc f£.

Conditions (2) and (3) demand that a function which
corresponds to each arc is surjective. The surjectivity is
very important, when an instance of G is represented as one
relation without null values. The conditions about the
surjectivity are called domain equivalence conditions.

There is a case where Condition (2) is not satisfied.
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Let us consider an FD-graph G in Fig.4 and an instance
. candidate I of G. Let R(N1,I) be the data which show what
kind of hobbies each person has and R(N2,I) be the data
which show what kind of hobbies each person wants to have in
the future. The set I={R(N1l,I),R(N2,I)} is not an instance
candidate of G, since I does not satisfy Condition (2).

It follows from Condition (2) and '(4) that a join
dependency M{X(Ml),...,X(Mk)} holds in R(N,I) for each join

node N, where M1l,...,Mk are all the components of N.

pefinition 7. An instance candidate I of G is called an
instance of G, if I saﬁisfies the following condition.
For any pair of nodes <N,M>, Nﬁﬁ;>M, there exists a
"function FNM such that
(1) FNM is a surjective function from R(N,I) to R(M,I).
(2) If there exists an arc from N to M, FNM=al, where alI
is the function which corresponds to the arc and is
determined by either condition (2) or (3) in Definition
6.

(3) If N--->L and L--->M, FNM=FLMFNL holds.
32 127

There is an instance candidate which is not an instance.
Let G be an FD-graph shown in Fig.5. Let function fIl
represent each employee's manager. Let function fI12
represent each manager's sex. Let function £I3 represent
each employee's sex. Then, the instance candidate I,

constructed from £Il1, fI2, and fI3, is not an instance of G,

13



226
Page 14

since Condition (3) does not hold.

Lemma. Let I be an instance candidate of an FD-graph G. 1If
G has no loop when G is regarded as an undirected graph, I

is an instance of G.

3.3 Relational Representation of Functional Dependency Graph

Instance

This subsection shows that data for an instance can be
represented by one relation without loss of information.
Domain equivalence condition and Condition (2) in Definition

3 are the key to the representation by one relation.

Lemma. Let I be an instance of an FD-graph G.
(1) Let p=(al,a2,...,an) be a directed path from N to M,
where each ai is an arc of G, the terminal node of ai is the
initial node of ai+l, the initial node of al is N, and the
terminal node of an is M. Then,

FNM=aInaIn-1l...all,
where aIi is the function determined by the arc ai as shown
in Definition 6.
(2) If M-2->L, FML=7£X(L).
Definition 8. For an FD-graph G and an instance I of G, the
derived relation S(N,I) on Y(N) is defined as follows:

(1) If X(N)=Y(N), S(N,I)=R(N,I).

/4
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(2) If X(N)=Y(N), let {Al,...,Ak} be Y(N)-X(N). Let Mi
be the atomic node whose label is Ai. Then,
S(N,I)={}M l /&[X(N)]GR(N,I) and /L[Ai]=FNMi9M[X(N)])
(1gigk)}

Lemma. Let I be an instance of an FD-graph G.

(1) Txu(S(N,I))=R(N,I)

(2) X(N) is a key for S(N,I).

(3) If an FD-arc f: N--9M exists, an FD: X(N)-->X(M) holds
in S(N,I). When the FD 1is regarded as a function, the
function is exactly fI. |

(4) If Nf;6>M, NQM§S(N,I))=S(M,I).

Definition 9. A node N is called a maximal node, if N
satisfies one of the following conditions for any node M.

(1) M—§;>N

(2) M--->N and N-—-->M
{5 D

Definition 10. Let N1, N2,..., and Nk be all the maximal
nodes of an FD-graph G. The relational representation of I
is defined by
R(G,I)= :2 S(Ni,I).
P=l
Theorem 1.
(1) For any node N, W§N§R(G,I))=S(N,I).
(2) If an FD-arc f: N--#M exists, an FD: X(N)-->X(M) holds

in R(G,I). When the FD is regarded as a function, the
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fuction is exactly fI.

Theorem 1 shows that the relational representation of 1
inherits all the information from I without loss. Theorem 1
does not hold, if domain equivalence condition or Condition

{2) in Definitin 3 does not hold.

Definition 11. A relation scheme §§=<U,fz> is called the
relation scheme of an FD~graph G, if for any instance of Rg+
RﬁiU), there exists an instance of G, I, such that

R(GrI)=Rq.(U) .

4, Data Dependencies in Relation Scheme of Functional

Dependency Graph

This section clarifies which data dependencies characterize
the relation scheme of an FD-graph G and shows that
multivalued dependencies <can be derived from certain

substructures of G.

Definition 12. Let N"be N={ M | N-—->M}. Let G' be the
graph made from G by removing all the nodes in.)fand all the
arcs whose initial or terminal node is included in )ﬂ When
G' 1is regarded as an undirected graph, each connected
component Hi of G' is called an associated collection with

N. Let Wi be the set of attributes which are the label of
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an atomic node in Hi. Wi is called an associated attribute

gset of Hi with N.

Theorem 2. Let N be any node of an FD-graph G and Wi be any
associated attribute set with N. Then,
X (N) ==>-->Wi
nolds in the relation scheme 3&=<U,F;> of G.
When G has no join node, let W' be a nonempty proper
subset of Wi. Then,
X(N)~=>=-=>W'

does not hold in.BQ.

Definition 13. Let G be an FD-graph.
(1) The set of FDs, Pf} is defined as
¥ =(X(N)-->X(M) | An FD-arc: N--BM exists in G},
and is called the essential functional dependency set of G.
(2) The set of MVDs, ¥, is defined as
ﬂf={X(N)—->——>Wi i Wi is an associated attribute set
with N and Y(N)YWwi#u},
and is called the essential multivalued dependency set of G.
(3) The set of EJDs, f?} is defined as
Pf={ Y 1 ¥ is an embedded join dependency indicated by
a join node},
and is called the essential embedded join dependency set of
G.
(4) The essential data dependency set of G,‘Fs} is defined

by
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M- p&vps vps

Example 4. Let G be the FD-graph shown in Fig. 1. All the
elements in fﬁ?are:
{MODEL,USED—AMOUNT,PERFUME}-->——>{INGREDIENT,CONTENT}l
{EXPERIMENT#,SCORE,CHARM-DEGREE,JUDGE},
{PERFUME, JUDGE}=-->-~>{INGREDIENT, CONTENT} }
{EXPERIMENT#,SCORE,MODEL,USED—AMOUNT,CHARM—DEGREE},
{PERFUME}-~>-->{INGREDIENT, CONTENT} |
{EXPERIMENT#,SCORE,MODEL,USED-AMOUNT,JUDGE,CHARM—DEGREEL
ﬂf is composed of an EMVD:

{PERFUME } ~->-->{MODEL ,USED-AMOUNT}{ {JUDGE} in

{MODEL , USED-AMOUNT , PERFUME, JUDGE} .

Theorem 3. Let G be an FD-graph. If any data dependency of
PQ holds in a relation R(U), R(U) is an instance of the

relation scheme R&=<U,rh> of G.

Corollary 1. RQ=<U,rg> is equivalent to §§=<U,P&> in the
sense that each relation scheme has the same set of

instances.

Corollary 1 means that the relation scheme of G is
characterized by the essential dependency set of G. The
result makes it possible to normalize a relation scheme
based on an FD-graph instead of a set of data dependencies.

One of such attempts is shown in the next section.
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5, Algorithm for obtaining fourth normal form relation

schemes

An algorithm for obtaining fourth normal form relation

‘schemes is shown in this section.

pefinition 15. Let G be an FD-graph and N be a maximal node
of G. Let AN and M be defined by N={ m 1 N--=>M} and
/(:{ M Mé/f and there exists a directed path from another
maximal node to M}, respectively. The N—graph GN is defined
as the subgraph of G constructed from all the nodes of }J\
and arcs between them. The N-delete-graph FN is defined as

the subgraph of G obtained by removing all the nodes of ﬂcld.

Lemma. The N-graph GN is an FD~graph and each connected

component of the N-delete-graph FN is also an FD-graph.

Algorithm
Input: G, where G is an FD-graph with no join node.
Output: S, where S is a set of relation schemes.
1. Let Max={Nl, N2,..., Nn} be the set of all the maximal
nodes of G. Let Max'={Ml1, M2,..., Mm} be a subset of Max
such that
(1) Y(Mi)#Y(Mj) if i#3,
(2) For any Ni, there exists Mj, where Y(Ni)=Y(Mj).
2. Let Gl be the Ml-graph of G. Let Fl1 be the

Ml-delete-graph of G. Let H2 be the set of FD-graphs which
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are a connected component of Fl.

3. i:=2

4, If i>m, then go to 7, else H:=Hi. ( B is a set of
FD-graphs.)

5. Let G' be the FD-graph which is an element of H and has
Mi as a maximal node. Let Gi be the Mi-graph of G'. Let
G'' be the Mi-delete-graph. Hi+l:=HiY{G''}-{G}.

6. i:=i+l; go to 4.

7. Let Ri=<Ui,l'i> be the relation scheme of Gi. Then, I'i
includes no MVD.

8. Let S1i be the set of Boyce-Codd normal form relation

schemes which is obtained from Ri by the algorithm in [2].

m
Let © be defined as S=,U‘S;.

The algorithm may not produce fourth normal form relation
schemes, since algorithms which always produce Boyce-Codd

normal form relation schemes do not exist.

Theorem 4. Let R be any instance of Rg=<U,g>. Let S be
denoted by S={ si=<vi,®i> 1| i=1,2,...,k }. Let Si be
defined by Si=7DV;(R)' Then,

(1) Si is an instance of Si=<Ui,$i>.

(2) R=S1MS2MK...MSm

{3) Let ﬂqte the essential functional dependency set of G.
Pﬁ-t—-(;géi)-", where + means the closure.

(4) P; includes no MVD.
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6. Concluding Remarks

This paper clarifies which part of the real world can be
represented as one relation scheme by using a data model,
called the functional dependency graph (FD-graph). The
paper shows that multivalued dependencies, which hold in the
relation scheme constructed from an FD-graph, can be easily
derived from certain substructures of the FD-graph.

The domain equivalence condition which appears  in the
definition of an instance of the FD-graph is important in
designing relational databases. The method of designing

relational databases by using FD-graphs is discussed in [9].
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