Steiner system と association-scheme

慶応大学 芳沢 光雄

代数的組合せ論の基本的概要である association-scheme をみたす Steiner system について得られたいくつかの結果を述べる。

定義 association-scheme

X: finite set, R_x (i=0,...,d) が次の条件をみたすとき、X と {R_0, ..., R_d} の組を d-class の association-scheme という。

(i) ∃x; R_x = \{(x,x) \mid x \in X\}
(ii) X X = R_0 \cup R_1 \cup ... \cup R_d
(iii) \forall x; R_x = \{(x, x) \mid (x, x) \in R_x\} (x=0,...,d)
(iv) \forall x, y, z \in \{0, ..., d\} を任意に選ばせたとき、

| \{(z \in X \mid (x, z) \in R_y, (y, z) \in R_z)\} | は (x, y) \in R_d のもとで、

association-scheme の例については、[1] を参照。

定義 Steiner system

Ω: finite set, |Ω| = n, \exists \Omega^{(d)} \subset \Omega, 1 \leq \ell \leq \Omega のとき,
(Ω, B) が Steiner system $S(\lambda, k, \nu)$.

$
\nu_1, \ldots, \nu_k \in \Omega$ に対し, $\nu_1 \cdots \nu_k$ を含む B の元がただ 1 つある。

Ω の元を point, B の元を block という。

Steiner system の例については [6], [7] 等を参照。

association-scheme を含む Steiner system は, association-scheme の導入の仕方によって互いに変わるものであるが (see [4]),
ここでは最も一般的な次の方法をとることにする。

定義 $S(\lambda, k, \nu)$ が block-schematic

$X = B$, $X \not\subseteq X$ に対し $(x, y) \not\subseteq R_i \iff |x \cap y| = x (i = 0, \ldots, \nu)$ と

した場合, $X, \{R_0, \ldots, R_\nu\}$ が association-scheme となる。

尚, 現在までに知られている block-schematic Steiner system

は, 次のものである。

$S(2, 2, 3)$, $S(3, 4, 5)$, $S(3, n+1, n+1) (n: even)$,

$S(3, 6, 22)$, $S(4, 9, 23)$, $S(5, 8, 24)$, $S(6, 11, 25)$, $S(5, 6, 12)$.

$S(2, k, \nu)$ が block-schematic であることは [3] で示されていることに注意する。その他のものは自己同型群 (従来の場合はマジュール群) などを考慮すれば block-schematic であることがである。

さて一般的な研究方法として, 次のようなことを考えよう。

$S(\lambda, k, \nu)$ に対して, $B = \{B_1, \ldots, B_\nu\}$ と定めるととき, $\lambda \times \lambda$ 行列

$A_\nu (0 \leq \nu \leq \nu)$ (h-adjacency matrix) を次のように定める。

$A_\nu (x, y) = 1$ if $|B_x \cap B_y| = x, 0$ otherwise.
$S(x, r, v)$がblock-schematicであるは、$A_i A_j = \frac{\mu_i \mu_j}{v_i v_j} A_k$
($0 \leq i, j, k \leq v$)である。

あるfixしたblockと点で交わるblocks数をω_iとすると、入力ベクトル(ω_i)はA_iに対応するA_iの固有ベクトルである。

$\varphi \in \Omega$に対して、入力ベクトル$A_i a_0 = \omega_i a_i = 1$の$a_i \in B_i$, $= 0$は$a_i \in B_i$、入力ベクトルA_0も同様に定めれば、$A_0 A_0$もA_0
の固有ベクトルになり($i=0, \ldots, \omega_i$)、対応する固有値をa_iとすれば、
$$\sum_{i=0}^{\omega_i} (A_i a_i + (A_i a_i)^T) = (\lambda_i \cdot \epsilon_i) (\lambda_i \cdot \epsilon_i^T) (\lambda_i=0, \ldots, \omega_i)$$
が成立つ。

以上のことよおよblockに関する整数条件（see [7]）などを
使って以下のように結論を得た。ここで次のような関では、より
一般的な形で$(x-0; 1/8)$designが拡張されている（see [8]）。

設1 $\forall n \in N$に対して、$x - x = n$となるblock-schematic$S(x, r, v)$
(ω_i)は有限個。

設2 図$S(x, r + v, v)$がblock-schematic

$\Leftrightarrow (i) x = 2, (ii) x = 3, v = 8, (iii) x = 4, v = 11 \text{ or } (v) x = 5, v = 12.$

設3 [5] $S(x, x+2, v)$がblock-schematic

$\Rightarrow (i) x = 2, (ii) x = 3, v = 17 \text{ or } (ii) x = 3, v = 17, v = x + 23.$

設4 [5] $S(x, x+3, v)$がblock-schematic

$\Rightarrow (i) x = 2, (ii) x = 3, v = 6, v = x + 39.$

尚、設2, 3, 4を得了にただし計算機を使用しており、
値の値が増えるに従って、計算時間は急激に増えた。

-3-
ここで証2は必要条件の形で示されており。証3,4については必要条件の形で示されている。これはが小さいところでは、intersection matrices（μ(a,b,s)から成る行列）が矛盾なく求められ、くが大きくなると、intersection matricesも計算機を使っても求められそうにないことがからである。したがって、\(\mu_{3,4} \)の(ii)についての話である。

さて最後に、証1の証明のideaを使って次の証を得た。

証5[10] 次のような条件をみたすdistance-regular graphはない。（\(f_2 < f_1 \)であり、次の(i)(ii)(iii)のどれかをみたす。）

(i) \(d \) : odd, \(g \geq d+2 \)
(ii) \(d \) : odd, \(g \geq d+1 \)
(iii) \(d \) : even, \(g \geq d+2 \)

記号等については[2]を参照。\(\delta \)この証の条件をもう少し変えるといくつか例があることも述べておき。

例: 正十二面体の点と辺についてのグラフは。
\[f_2 = 3, \quad d = 5, \quad f_2 \delta = 1, \quad g = 5. \]

参考文献

[5] H. Enomoto and M. Yoshijima: On block-schematic Steiner systems $S(x, x+2, v)$ and $S(x, x+3, v)$ (to appear)

