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Abstract

A trackwork scheduling problem of a network is considered, and a new
algorithm}is proposed. The railway is divided into several sections, in
each of which trackwork must be done once a day. The problem is to choose
trackwork time in each section such that the total amount of waiting time
of passengers is the minimum.

In order to describe the movement of passengers, the time-distance
plane is dissected into small parallelograms, and the number of passengers
in each area is considered. These quantities are regarded as flows in a
network, each arc of which has its capacity and cost, and a method to
construct the network is shown.

Under one choice of trackwork time, the flow of passengers is computed
by the well-known minimum cost flow algorithm. By enumerating all cases,
we céuld obtain the optimum choice. 1In the proposed branch and bound
algorithm, however, only the promising cases are generated so that the

computation time is greatly decreased.

1. Intrdduction
' Let us consider a railway of about 300 - 700 kilometers. The rail-

way is divided into several sections, in each of which trackwork (i.e.



84

maintenance of the railway) must be done once a day. Then, the problem
we have is to choose trackwork time in each section such that the total
amount of waiting time of passengers is the minimum.

However, the diagram of limited express trains is fixed. We can only
manage to change the diagram of slow trains. Therefore, trackwork must
be scheduled in a time interval between two limited express trains with
slight adjustment of slow trains. If the trackwork could nét be scheduled
adequately, smooth transportation would not be achieved.

In order to‘describe the flow (or movement) of passengers by slow
trains, we dissect the time-distance plane (i.e. the plane where the dia-
gram is to be drawn) into small areas (parallelograms) and consider the
following quantities:

The number of passengers by slow trains through each area;

The number of passengers who must wait at the stations because of

trackwork.

Also, values of the following quantities are given:

The number of passengers who arrive at stations from outside the

railway;

The number of passengers who leave the railway.

Thus, we have a network flow of passengers. Each arc of the network has
its capacity and cost (cost per unit flow), where the former stands for
the upper bound of the number of passengers and the latter for the wait-
ing time. The way of dissecting the time-distance plane and that of
constructing the network afe shown in 2.

‘In the present paber we assume that passengers travel such that the
total amount of their waiting time is the minimum. Under this assumption.
if we choose one trackwork time for‘eacﬁ section, the flow of the passen-—

gers is computed the well known minimum cost flow algorithm. By
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enumerating all possible combinations of trackwork time and applying the
minimum cost flow algorithm to each of them, we can find the optimum com-
bination. The number of the combinations are, however, large. In the .
algorithm proposed in 3 only the promising combinations are generated

so that the coputation time is greatly decreased.

2. Scheduling trackwork and a disjunctive network

In the following our railway is double-tracked, and trackwork is
scheduled in each track separately. Therefore, we discuss.the problem
for one track only.

Let the railway be divided into p sections Ops Ogseces Gp by main

stations AO, Al’ A2’°"’-Ap—l’ Ap' (There are, of course, many other

stations -—-— small stations --- in each section.) Each section ci

starts at Ai— and ends at Ai' Also, let there be d limited express

i
trains Ll, L2,..., Ld.

In order to describe the flow of passengers by slow trains, we dis-
sect the time-distance plane m by the following lines or curves:

Horizontal (i.e. parallel to time axis) lines ays 815 3pseees ap_l,

a corresponding to AO’ Al, A2,..., Ap—l’ Ap.

Piecewise linear curves % 22,..., % ., corresponding to the diagram

1 d

of limited express trains Ll, L2""’ Ld. We denote the cross

i . . P...
point of a; and 23 by 15
Lines sij's passing the point Pij of gradient of slow trains. The
line corresponds to the slow train which starts the station Ai at

the same time as the limited express train Lj (if such a slow train

, with

exists). We denote the cross point of sij with a4 by Qi+l,j

a1 by Ry g 5
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Thus, we have the following areas (parallelograms) of two kinds:

Waiting area. Parallelograms P, s. Any slow train

1jQi+15jPi+l,jRij
in such an area is outstripped by a limited express train at a small

stationg

Nonwaiting area. Parallelograms R

\
33P141, 5041, 5154, 5-1 S0 AW

slow train in such an area is not outstripped by a limited express
train at a small station.
The time-distance plane T is dissected into these areas, where we ident-

ify the time t+24 with t (fig. 1).
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In the following we assume thét the flow (or movement) of passengers
is uniform in each area, respectively. Then, the flowvof4passengers is
described by the following quantities.

1° The number of passengers that travel by slow trains through

each waiting area (fig. 2). This value is bounded by the number

of small stations for wait in the section. This upper bound is



Ceman )
listations | N o
oo for wait )

ea.
H

the capacity for thié quanti;y. Passengefs must wait a certain
time at a small station. This waiting time is the cost for this
quantity.

2° The number os passengers that travel by slow trains through
each nonwaiting area (fig. 3). Let this area be R, .P

137141, 30441, -1

i,§-1° This value is bounded by Pi,j—lRij/g’ where g is the

minimum time gap that must be between two trains.  The bound

P

P /g is the capacity for this quantity. The cost is equal

°

i,j-1%43
to zero.

3° The number of passengers that come into.each area from outside
the time-distance plane w, i.e. the passengers that arrive at
stations from outside the railway (fig. 4). Since we assume that
the flow of passengers is uniform in each area, we mﬁst only
consider passengers that arrive at main stations. The value of
this quantity is given,

4° The number of passengers that go outside the time-distance

87
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' Fig. 3. A nonwaiting larea; . | = '

Fig. 4. Passengers that arrive at station a
_ from outside the railway.
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plane 7 from each area, i;e. the passengers that leave the railway
(fig. 5). By the same reason as in 3° we must only consider pas-
sengers that leave main stations. The value of these quantities
vary under choices of trackwork time (therefore, pnknown variable),
but the total amount for each section, i.e. the number of passen-

gers that leave each main station in a day, is given.

50

60

P P N | P Ll

Fig. 5. Passengers that leave the railway.

The number of passengers that move from each area to the adjacent
one in the positive direction of the distance axis, i.e. the pas-
sengers that travel from a section to the next one (fig. 6). Let
two areas o and o’ be adjacent and let the length of the common
edge of o and o/ be L. The capacity for this quantity is L/g,
where g has been defined in 2°, and the cost is zero.

The number of passengers that move from each area to the adjacent
one in the positive direction of the time axis, i.e. the passengers
that must wait at main stations because of trackwork (fig. 7). Let

two areas B and B’ be adjacent and let the sum of the length of
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two edges in the direction of time axis of B and B’ be L/. The
cost for this quantity is L//2, and the capacity is infinity.

These quantities are interpreted as flows in a networkvconstrﬁcted
as follows.

(1) 1In every area.we place two vertices‘—F— an‘origin and a desti-
nation -—— and a directed arc from the former to the‘latter. Flows in
these arcs correspond to thé‘quantitiéslof 1° éng 2°. vTﬁé brigin of
each area is a soufée. The diVergence 6f each source, which corresponds
to the quantity of 3°, is giveﬁ; R

(2) For everyvseétioﬂ we place a vertex caiieﬁ sgnk. From the
destination in each area to the sinkiof the section we ééhnect a directed
arc. ‘Flows in these arcs correspond to the quantities of 4°, and the
capacity and cost are the same as in 4°. The value of a sink is the
total number of passengers that leave the section in a day, which is
given.

(3) TFrom the destination ofvevery area we connect a directed arc
to the origin of the adjacent area of the next section. Flows iﬁ these
arcs correspond to the quantity of 55, and the capécity and tﬁé cost
are the same as in 5°.

(4) From the origin of every area we connect a directed arc to
thg origin of the next area qf the same section. Flows‘in‘these arcs
correspond to the quantity of 6°, and the capacity and the cost are the
same as in 6°, /

An example of such a network is shown in fig. 8.

As mentioned in 1, trackwork is to be done in a time interval be-
tween two limited express trains. Therefore, trackwork time in a section
consists of three areas: one nonwaiting area and the adjaceﬁt two waiting

areas (fig.9). Let the candidates of trackwork time (i.e. sets of three
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Fig. 8. Dissection of the time-distance plane

and the corresponding network.
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ime-for-a; section. i~

areas) in the section o, be Di(l), Di(2),..., Di(di)' If candidates Dl(zl),
D2(22),..., Dp(lp) are chosen for sections Oys Opseves OP, respectively,
corresponding 3p arcs (see 1° and 2°) must be deleted from the network.

We denote such a subnetwork by N(Rl, 22,..., lp). We have dlx dzx"ﬁldp

subnetworks.

For every subnetwork N(Rl, QZ,...,'RP) we denote by @(21, 22,..., lp)

the total amount of waiting time of passengers by slow trains. In the
present paper we assume that passengers travel such that the total amount
of waiting time is the minimum. Under this assumption, the value of

@(21, 22,..., lp) is computed the well known minimum cost flow algorithm [1]

A~ ~

for N(Ql, 22,..., zp). Our aim is to obtain zl, 22,..., Rp such that

@(21, £2,..., Zp) = 21’2?}?..’2 @(ll, 22,..., 2p) @D

The minimum cost flow problem for N(ll, 22,..., lp) is formulated as
follows:.
Minimize z = 2 ‘ek8k

keA
subject to
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r; (if vertex v, is a source),

- z_ X, = -t, (if vertex v, is a sink),
k66+i 'Y ke i k i i
0 (otherwise),
< <
0= X T e : for any k € A,

where
A: the set of arcs in N(Zl, Loseees zp),
6+i [6 i] : the set of arcs out [into] the vertex vy

¢, : the capacity of the afc;a

k* k ’

et the cost of the arc as

r.: the value of divergence of the source Vis

t.: the value of sink Vs

: the flow in the arc ay, (xk's are unknown variables).

We denote this problem by P(zl, 22,..., lp).

3. A branch and bound algorithm

For a subset F of {1,..., p} let us define

3(21,..., &3 F) = min o ,..., z;) | 2 =2 (1e®} (2)

Then, for any i and j (i < j; i, j & F) we have
$(yseees 25 B

= min ( @(zl,..., Ryseees xj,..., zp),
2 ey Rigunns zp;‘F\J{i}),

min @(21,..., 1 j

/
11*“1
min (2

Besaney Ygenes &3 FYU{L,iD ) " (3)
zg#zj J P

127 i

If we start from 3(% EP; @) and apply (3) recursively (i.e. branch

IR

procedure) , we can enumerate all possibilities. In order to decrease the

computation time, we apply the following test (i.e. bound procedure):
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(1) A-test. The optimal solution for the dual problem of P(Rl,..{, Zp)
gives a feasible solution for the dual problem of any P(l{,..., 2;) and,
therefore, gives a lower bound for (& ,..., Zé). If this lower bound is
not less than the best value already obtained, the computation of @(Ri,...,
2;) may be omitted.

(2) O-test. For & .s Zp and F we construct a network by deleting

100

only those Di(zi)'s such that i € F. We denote this network by N(%l’°"’

Ep) where %i = Ri if i € F and %i =0 if i € F. Then we have a lower
bound for 3(11,..., L ), e
N o<
@(El,..., by = 3(21,..., L F)

If this lower bound is not less than the best value already obtained, the

computation of 3(2 QP; F) may be omitted.

12000
(3) 8-test. This test computes a lower bound for the above @(%l,...,
%p) by the same'technique as A-test. If this lower bound is not less
than the best value already obtained; the computation of %(21,..., lp; F)
may be omitted.
(4) p-test. Let us solve P(0,..., Qi,..., 0). The cost of flows
corresponding to section ci is denoted by ui(zi). Then we have a lower

bound for 3(2 , 2.3 F), i.e.

120" p

<
up(ag) +ooohu (2 ) = B(Lysenes 25 F)

If this lower bound is not less than the best wvalue already obtained, the

computation of %(ll,..., zp; F) may be omitted.
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4. Computational results
An example of computation is shown in fig. 10, where p = 3 and
dl = dz = d3 =4, In fig. 10 underlined argument of ¢ means that the

section is in F. For example, ®(3, 1, 1) stands for &(3, 1, 1; {11}).
The asterisks show that no further computation is necessary.’
The total number of choices in this example is 64, whereas the

minimum cost flow algorithm is executed only 17 times.

1 4(1,1,1)=1030205 12 8(3,1,1)=811450 T—=-8(3,3,1)=667755 —— & (3, 3,4) =614435

A=1019640 A= 779640 A= 524725
#(3,0,0)=334510 (3,3,0)=442665 s
, L3 5(3,3,3)=472985
L7 5(3,2,1) A= 479640 T
A= 389820 6
- —(3,3,2)=583335
8(3,2,0)=511770% e 32
_§_¢(_3—,£’1)
A= 194910
= %
10 4 4,1,1) 8(3,4,0)=673330
r=937225 9
(4,0,00=620110% 5= 25815%
| 11 5(2,1,1)=752620 —=24(2,2,1)
A= 509820 A= 389820
9(2,0,0)=438180 8(2,2,0)=548280% )
E—Q(_Z_séyl) ' '
A= 284850
9(2,3,0)=671210%
L 1% 6(2,4,1)
A= 104970
16 8(2,4,0)=809175%
§=857040 15

$(1,0,0)=730535%

Fig. 10

§=254815%
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