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The Initial Value Problems for the Equations

of Viscous Compressible and Perfect Compressible Fluids

Kyoto Univ. Dept. Math., T. NISHIDA

Dept. Appl. Math. Phys., S. KAWASHIMA

§ 1. 1Introduction
We consider the following system of equations with a parameter

€ € [O’l]

Iy -
’Qt"'(pu )X. 0,.

]
i ji 1 - E i ] v, J i
u + u u + 5 Py 5 {(u(ux. + ux.))x. + (p ux.)x.} + £,
J 1 ] i j j i
(1.1
i=1,2,3,
. Op .
Lo +ulo +—2d =& (o ) +v},
t X, pc X, pc x. X,
J v J v J 3]

where t>0, x=(xl,x2,x3) € R3. The system (lfl) with =0 and e=1
describes the motion of a perfect compressible fluid and that of a
viscéus compressible fluid respectively. Here the unknown functions
Os u=(ul,u2,u3) and O represent the»density, velocity and absolute

temperature of the fluid ; f=(f1,f2,f3) is the external force and



Y = %—(u; + ui )2 + u‘(ui )2 is the dissipation function. It is

1 ]
assumed that the pressure p, the heat capacity at constant volume
.’ the coefficients of viscosity U and U' and the coefficient of

heat conduction K are smooth functions of the thermodynamic quan-

tities p>0 and 0>0, and that

_ op _ 9p :
Pp—apspe—e,CV,U,K>0,
(1.2)
2
"+ -u=20.
u 3 M 0

The relations between perfect fluids and viscous fluids have
been considered by Golovkin [4], Swann [14] and Kato [7] under.the
hypothesis that the fluids are incompressible.  In the present paper
these relations are investigated in the case of compressible fluids.
The results obtained are the following : a unique smooth solution
of thé initial value problem for the system (1.1), € € (0,1], of a
viscous compressible fluid exists on the time interval [O,TO] inde--
pendent of €, and as € +- 0 it converges to the smooth solution of
the system (1.1), €=0, of a perfect compressible fluid on the inter-
val [O,TO]. The proof is based on the facts that (1.1), €=0, is a
symmetrizable hyperbolic system and that for € € (0,1] the equations
of u and 6 in (1.1) can be considered as a parabolic system. How-
ever we don't know whether similar results are also true for large
t, when we have to consider weak solutions for the system (151),
e=0."

As to the initial value problem for the system (1.1) of a
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compressible fluid, the case of £=1 (viscous fluid) has been solved
locally in time by Nash [13], Itaya [5], [6] and Vol'pert and
Hudjaev [18], and globally in time by Matsumura and Nishida [10],
[11] for the small initial data, while the case of €=0 (perfect
fluid) has been solved locally in time by [18] and Kato [8]. As to
the initial boundary value problem for (1.1), the case of e=1 has
been solved locally in time by Tani [15], [16] and globally in time
by Matsumura and Nishida [12] for the small initial data, and for
€=0 the studies are in progress on the existence of the local solu-
tion by Ebin [3], Veiga [17] and Agemi [1].

Another interesting problem on the relations between compress-
ible fluids and incompressible fluids is analyzed by Ebin [2] and
Klainerman and Majda [9] when the fluids are perfect, the results of
which we knew after completion of the present work. The latter also
studies the case of viscous fluids under the hypothesis that the

flows are barotropic.

§ 2. Main results
For precise formulations of the main results of the paper we

introduce some function spaces. HQ,(2=0,1,2,°-°) denotes the L2—

Sobolev space of order % with the norm H . For 2=0, we simply

FE

write { We define for {=1,2,¢°-

( vy - {fx) ; f e L” and Df « Hl_l}
(2.1)

el g = el o+ ol y
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where L denotes the space of bounded measurable functions on R3.

By the Sobolev's lemma, there is an imbedding of 1 into ﬁP

2
. <
(2.2) |f|0 CO||f||2 for f e H® ,
where C0 is a constant independent of f, and ﬁ? denotes the sﬁace
of bounded continuous functions on R3, with the norm |-° 0 By

(2.2), for 222 there is an imbedding of HQ into VQ.

Let B be a Banach space with the norm I B"and T>0. (€(0,T;

B) denotes the Banach space of continuous functions u(t) on [0,T]

ith th 1 in B, with th = t .
wi e values in wi e norm || ul] 2(0,T;B) Ozzlelu( )||B
Banach spaces ﬂw(O,T;B) and LZ(O,T;B) are defined similarly.

The solution for (1.1) is sought in the following spaces. Set

QT=[O,T] X R3.

{(0>u,0) € C(0,T38%) 5 p, € £O,T;EST),

S
2.3 x°@Qp

2

(ut,,et) € C(.O,T;HS— )},

{(0,u,0) € EO,T;¥°) 5 o, € E(O,T;E° D),

Il

s
(2.4)  X5(Qp)
(u,,0.) e E(0,T;H5H)].
t’ t b b
We denote by YS(QT) and Yé(QT) the spaces defined by exchanging
(0,T;+) for Lw(O,T;-) in (2.3) and (2.4) respectively.

The following two theorems are the pfincipal contents of the

paper.

Theorem 1 Let s23 and T>0. Assume that the initial data and

the external force satisfy the conditions
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(2.5)  (0,u,8)(0) € v°, inf {p(0),8(0)} > 0,
X

(2.6) £ e 1.2(0,T;8%) n Z,r;5°5h

uniformly with respect to € ¢ (0,1]. Then there exists a positive

constant T0 (£T) independent of €, such that the initial value

problem for (1.1), € ¢ (0,1], has a unique solution (p,u,0) which

belongs to X‘SI(QT ) and satisfies vED(u,0) € LZ(O,TO;HS) and inf
0 Q

{p,6} > 0 uniformly in € : To

2.0 | euey®ll _ <2l eyl
L L
2 t 2
(2.8) ||D(p,u,e)(t)ns_l + EJ |iD(u,e)(T)|(SdT
0
) 2
< ¢, (I nto,u, )0 [l L) + £l 7, )

L (O,TO;HS)

(2.9) inf {p(t),8(t)} > 7 inf {p(0),6(0)}
X X '

for any t ¢ [O,TO] and a constant C1>l independent of €. Here TO

depends only on || (p,u,8)(0)]|| s » inf{p(0),6(0)} and £, and C

1
\Y X
depends only on |](p,6)(0)|l . and inf{p(0),06(0)}.
L X
Remark By this theorem we can show that the set of solutions

€ € L€ J= L R . o
{(p",u ,8 )}Ee(O,l} C-C(O,TO,V ) is unlfqrmly bounded and equi

continuous. Therefore by the Ascoli-Arzela lemma we can choose a
: E. €, €, T E. £, €,
convergent subsequence {(p J,u J,e J)}, such that (p J,u J,@ J)'->

(po,uo,eo) strongly in C(0,T Vs—l) as ej > 0. The limit function

05
., 0 0,0 © ] . e
(p ,u ,07) belongs to L (O,TO;V ) and satisfies the system (1.1),
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€=0. The convergence of (pe,ue,eg) to (po,uo,eo) as € > 0 is valid
" without taking a subsequence, because the solutions of (1.1), €=0,
are unique in Lm(O,TO;VS). Thus the system of a perfect compress-
ible fluid is obtained as the limit of the system of a viscous com-
pressible fluid as the coefficients u, u' énd K tend to zeré.

On the other hand we obtain the system of a viscous fluid as a '

perturbation of the system of a perfect fluid.

Theorem 2 Assume that the initial value problem for (1.1), €=0,

has a solution (pO,uO,GO)(t,X) such as

s+2 s+l
(Pgrigs0g) € CO TV, (0 a0 ) € C(O,T5H ),

(2.10)

inf {90,60} >0
Qp

for some s23 and a fixed T>0. If the initial data for (1.1), € €

(0,1}, satisfy

(2.11) L (p-,umuy,8-60) (0) = (0,v,0)(0) < B°

|

unifofmly in €, then there exists a constant €y € (0,1] depending
only on (po,uo,eo), ]l(n,v,c)(O)i|S and T such that the initial
value problem for (1.1), € ¢ (O,EO], has a unique solution (p,u,8)

. . S § s
(t,x) in QT . The solution satisfies c (p—pO,u—uO,G—eo) e X (QT)

and l-(u—u ,0-0,) € LZ(O,T;HS+1) uniformly in € € (0’80]
JE 0 0 : - :

- .
(2.12) || (p—po,u-—uo,e—eo)(t)ni * EJO” (u-u,6-0 )(T)||S+1

< 2o, (]| v, @12 + ¢y

3
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for any t € [0,T] and constants C2>l and C3>0 independent of £. Here

C., depends only on || p,,u.,0_|| » |l oy .50 | >
2 : 70’ +1 0o,t” 0,t 0
0070 e 0,375 C0,T8)
inf {p_,6_ } and T, and C, depends only on Ilp ,u.,0 l[ s
00 0°°0 s+2
Q o > | 0 0,139
inf {po,eo} and T.
Qp
§ 3. Linearized equations -
We consider the linearized system of (1.1)
0 N 0 .0
Pp,u(nav) - Tlt + Kp’u(ﬂ,v) =g 3
i I S ol i
Pp,u,e("’”’C) =v, + Kp’u’e(n,v,c) EBp,u,e<V’”":) g
(3.1)
i=1,2,3,
4 . _ 4 ok ) _ 4
Pp,u,e(‘;snsv) = Ct + Kp,u,e(V’C) SBp’u,e(E,ﬂ,V) g

4 .
where p, u=(ul,u2,u3), 0 and go, g=(gl,g2,g3), g are given func-

tions, and

0 - ] ]
( Kp,u(n’v) =utng. + PV%. ?
J 3
. ‘ . . p p
1 S _b 6
(3.2) Kp,u,e(n,v,c) wv + 5 ”x. + 5 cX. s
h| i ’ i
. op .
N Kg u e(";C) = uJCX + pce vi s
s " j v j
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i . _1 i o i i
Bp,u’e(vyn’;) o {qujXJ + (LH'U )ijxi + (uX.+uXi)

. k| : '
WJ&}M&X)*ﬂ&.W&&jﬂ&X)},
i j j i i
(3.3)

4 .1
Bp,u,e(c’”’V) = e {KCX'X + O (kn HKgT )

v i3 | ] N

uooi ] i 3 M S
+__
2 (ux.+ux.)(vx.+vx.) +u ux.vx.} >
i 3 i
where = 8) etc.
P, pp(o, )
First we regard the linear system (3.1) with a fixed € € (0,1]
as a single hyperbolic equation in 71 and as a parabolic system in

(v,Z). Then we have :

Proposition 3.1 Let s23, 2<{<s and T>0. Assume that (p,u,0) €

2e0,T;v%), inf {0,6} > 0 and g° € L2(0,T38Y) n &0, T;EY D), (g,e")
Q
T

€ C(O,T;Hg_l) and that (n,v,Z)(0) € HR. Then the initial value

problem for the linear system (3.1), € € (0,1}, has a unique solu-

2+

tion (n,v,7) € XQ(QT), (v,0) € LZ(O,T;H 1) which satisfies the

energy estimate

t
Go lown@l} +eof | eomll, a
0 .
C,t/e 2 tio 2
se Ul awooll} + [ 1@ e

(=)

C. (t ‘
2 fon (g.gh (0 ]2, a1

for any t ¢ [0,T] and positive constants v, C4 and C independent

5
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of €. Here Vv and Cg depend only on || p,0] . and inf {p,6},
: C(0,T;L ) Qp
and C4 depends only on || p,u,8| < and inf {p,0}.
C(0,T;V") Qr
Using this proposition, we also have a solution when the ini-

tial data belong to Vz.

Corollary 3.2 Assume that (p,u,9) and (go,g,gé) are the same

as Proposition 3.1 and that (n,v,Z)(0) € VQ. Then there exists a
unique solution (N,v,Z) é Xé(QT), D(v,T) € LZ(O,T;HK) of the ini-

tial value problem for (3.1), € ¢ (0,1].
2 . RS = 5 |
Proof. For any (N,v,Z)(0) € V', there exists (n",v',z') €V

n632+l such that

e 2l A _ ‘ Q/
(3'5) (nsvsC)(O) = (ﬂ,V,C)(O) - (n',V',C') e H
Therefore we seek the solution of (3.1) in the form

(3.6) - (N,v>2)(t,x) = (M',v',2")(x) + (N,v,2) (t,x).

The equations for (ﬁ,G,S) are

0 A A /\O i A A A ;/\i
Pp’u(n,V) =8 Pp,u’e(V,n,C) =8 >
3.7
4 AA A _ ~4
Pp,u’e(C,ﬂ,C) =8 ’
where gi = gi—Ki (n',v',?;')+€Bi (v';n',z') etc. Applying
Psu,0 : psus6” 7’ '
Proposition 3.1 to the problem (3.7)-(3.5), we have a unique solu-

2+

tion (1,9,0) e X(Qp), (0,8 ¢ L7(0,T;H"), and consequently the

desired solution of (3.1) by (3.6). This completes the proof of
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Corollary 3.2.
Next we show the solution (n,v,Z) € XQ(QT) of (3.1), € € (0,11,

satisfies the uniform energy estimate with respect to €.

Proposition 3.3 Let s23, 1<{<s and T>0. Assume that (p,u,8) €

Yo(Qp), VED(u,0) « 12¢0,1;8%), inf {0,6} > 0 and 6, « £2¢0, ;850
0 .
T

uniformly in € € (0,1] and put

2 t 2 2
(3.8) HD(p,u,e)(t)HS_l + gJ HD(u,G)(T)HSdT <E”,
0

2 (t 2 2
(3.9) 1pt<t>10+J0|et<T);0 ar < N2 .
Further assume that (go,g,g4) € LZ(O,T;HQ) n Lw(O,T;HQ-l) and
M,v,2)(0) € Hz uniformly in €. Then the solution (n,v,Z) € YQ(QT),
(v,Q) € LZ(O,T;H2+1) of (3.1), € € (0,1], satisfies the uniform

energy estimate in € :

t
G100 | awo®l) +ef | ol a
0
C, (t+/t) t
<cie’ Ul w0 O3 + J I e%,8.8% (D) 15 at}
0

for any t € [0,T] and constants C6>1 and C7>O independent of €.

Furthermore the solution has a regularity (n,v,Z) € C(O,T;HQ). Here

C, depends only on | e,0]| - . and inf {p,6} and c, depends
only on || p,u,8]| . » inf {p,6}, E and N.

L7(0,T;L7) Q.

Corollary 3.4 Assume that (p,u,6) and (go,g,gé) are the same as

Proposition 3.3 and that (n,v,Z)(0) € VQ uniformly in € ¢ (0,1].

Then the solution (n,v,Z) ¢ Yé(QT), D(v,Z) € LZ(O,T;HR) of (3.1),

10
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€ € (0,1], satisfies the uniform estimate in €

t
(3.11) || D(n,v,c)<t>|l§_l+ ef I D(v,C)(T)H,%dT
0
C_ (t+/t) t
scge!  Alpmwol; ,+ jou D, 5,5 (05, ar}

for any t ¢ [0,T], where C6 and C7 are constants in (3.10). Further-

more we have a regularity (n,v,g) € C(O,T;Vz) for 222.

Proof of Proposition 3.3. First we show (3.10) uhder the assump-
tions that (p,u,0) € Y (Q ), (g - ) e 1.7 (0,T;H ) uniformly in

€ and (n,v,l) € Y (Q ). Then the estimate (3.10) is also wvalid
under the assumptions of Proposition 3.3 by use of the Friedrichs'
mollifier.

Now we apply Dk (0<k<q) to (3.1)

p? u(Dkn;Dkv) - % v
3.12) | 2} 0%, = ¢MRav,o)
P,u,0
4 k. k_ k. 4k ,
Pp’u’e(D C,D nsD V) =G (nsV9C) N
i,k - ki ki k i
where G777 "(M,v,Z) = D g -[D ,Pp,u’e](n,v,c) and [D ’Pp,u,e](n’v’C)
= DkP; (v n,t) Pp (Dkv;Dkn,Dkg) etc. Noting that (3.12), €=0,
’ ’
is a symmetrizable hyperbolic system in Dk(n,v,c), we multiply the.
. . pc
equations of Dkn, Dkv1 and Dkﬁ by g Dkn, pDkvl and —EX-DkC re-
spectively and integrate them with respect to x € R3 :
L p
(3.13) ) J 0 p¥nep®  (0¥n;p%v) + epfute P e(D v3D5n,05z)
k=0 o D,

11
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pc L P
k k. _k
+—Yp C‘P4 (Dkz;;D n,Dwdx = ) | £ Dkﬂ'GO’k(n,v)
0 P,u,0 = e
k=0
.. pc
k k. 4,k
+ oot Ry, + = D L6 (v, D)dx .

Integrating by parts, we obtain

(3.14)  the left member of (3.13) >

N

0 2

3¢ B ® *+evyllvacllyy
2

- C(l + !pt’etlo)ll T\,V,C”Q’ - ECH ﬂ,V,CHQ H V’C”QA‘]_

for any t € [0,T] and constants Vv.>0 and C>0 independent of €, where

1

we defined the energy norm by

(3.15) Eﬁ(t) =

I~

J E e(Dkn,Dkv,DkZ)(t)dx
k=0 O,

Po 1 12 2. P 2 .
with Ep’e(n,v,t_}) == In|“+o|v| + |z|“. The function E,(t) is

equivalent to the norm ||(n,v,c)(t)|l§ :

2 : 2
(3.16) 0L1|| n,v,;HQ < E, < ocZH ”’V’C”Q

for constants ul<a2 independent of €. Here Vys 0y and o, depend
only on || p,6]] - w and inf {p,8}, and C depends only on || p,
u,0f o and inf {p,8}.
In order to estimate the right hand side of (3.13) we need the
. k _j .
estimates for [D ,Pp’u,e](n,v,c) :
4 9 K .
S AR S SRES TUR AN B R IG R A PR
3=0 k=1 >
4 9
17 k ]
G T e gt |l s ool
j=1 k=1 >

+ (@ + || p@,0) || )|l o, ll, 4

12
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Taking into account the definitions of Gl’k(n,v,c) and P; u e(v;n,c)
B b E]

etc., we obtain by (3.14) and (3.17)

5 2 0 4p2
(3.18) g Ey(e) +ev [lv,zllf, < e see'll]

2
+ ¢ + el pe,®) I + lo,0. 1) nwvsclly

for any t € [0,T] and a constant C=C(vl) independent of . The esti-
mate (3.10) is obtained by the integration of (3.18) with respect to
t € [0,T], where we use (3.16) and the conditions (3.8) and (3.9).
Finally we show (n,v,C) € C(O,T;Hl). Apply the Friedrichs'
mollifier ¢6* to (3.1). Then (na,vs;éa) = ¢6*(n,v,c) belongs to
Loy c o . j j,6 i,8
C(0,T;H") and satisfies (3.1) with g’ replaced by g , where g

BN i 1 = 9g*PT ;
= ¢6“g "[(p(S*,Pp,u’e](n,V’C) and [quic’Pp’u’e](n,V,C) - ¢6*Ppsu9e(v’

[l

”’C)‘P;,u,e(va;”a’ca) etc. Therefore the difference (6,3,8)6’6,
(né_nd"VS_vé"Cﬁncﬁ') satisfies (3.1) with gJ replaced by gj’é--gj’CS .
Apply the estimate (3.10) to the system for (ﬁ,@,i)d g
A A A 2 t ~N D 2
3.19) || (9.0, 50l + SJOH v,0) s 61 (Dl dt
4 .t
A A A 2 ., ., ' 2
s el @90, ol + 1| 116 H@lljen .
8,6 2 520 Jo L

. . ]
Since g3’6—gj’6 + 0 strongly in LZ(O,T;HQ) as 6,8' -~ 0, we have
(ﬁ,G,E)G 5 -+ 0 strongly in4f(0,T;H£) as 8§,8' > 0, which implies
9 .
(né’vd’CG) + (Nn,v,g) strongly in CKO,T;HQ) as § + 0. Thus we have

(N,v,T) € C(O,T;Hz). This completes the proof of Proposition 3.3.

13



47

§ 4. 1Invariant set under iterations

We consider the linear system of (1.1) :

PO v =0, BL o (nnD) = £, 11,2,3,
(4.1)
p* (¢sn,v) =0
p,u,e -l y b

with the initial data

4.2)  (n,v,2)(0) = (p,u,0)(0).

Let (n,v,%) be a solution of the problem (4.1), (4.2). We show that

the mapping (p,u,0) > (n,v,Z) has an invariant set in the following

L]

sense. We introduce the set Z; Z;(M,m,E,N) : (p,u,B) € Z; means

that (p,u,0) € X3(Qp), vED(u,0) ¢ L2(0,T58%), inf{0,8} > 0 and 0 «
LZ(O,T;Hs—l) and that

(Al eyu,® @) ||, <M, inf {p(0),0(0)} 2m >0,
L X

2 t 2 2
@3 | oG @2, + eJ | DCu,0) (1) || 2 dt < E2
S~ 0 S

2 F 2 2
méw%+J|%ﬁﬂomsu for t e [0,T].
0

First we note that if (p,u,0) € Z;(M,m,E,N) and if (n,v,Q) €
Xs(QT), VED(v,L) € LZ(O,T;HS) is a solution of (4.1), € ¢ (0,1],
satisfying for any t € [0,T]

t 2

I Dt v,y @ |12 +—sj I n(v,0) (0|2 ar < &%,

0

then ct € LZ(O,T;Hsml) and the estimate

14
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Gy In (o) ]% + jt[c (02 a1 < ¢, (1+T)E
: t 0 0 t 0 U8

holds for any t ¢ [0,T], where C8=C8(M,m,E) is a constant independ-
ent of € and N.

Now assume the conditions (2.5) and (2.6) in Theorem 1 and set

M= 2| (0,u,®) ()] _, m= % inf {p(0),6(0)} ,
L X
2 2 2
4.5) [ Ex = 2c (I n¢p,u,®) 17 + IFE]7, s )
s L7(0;t 3HY)
2 _ 2
Np = Ggl + DE, ,
where C6=C6(M,m) and C8=C8(M’m’ET) are constants in Proposition 3.3

~and (4.4) respectively.

Proposition 4.1 Let s=3 and T>0. Assume that the initial data

(4.2) and the external force satisfy the conditions (2.5) and (2.6)
respectively and set the conmstants M, m, E_and N_ by (4.5). Then
there exists a positive constant T0 (£T) independent of € e (0,1]

; =z; (M,m, E
0 0

(4.2) has a unique solution (n,v,2)(t,x) for any € ¢ (0,1] which

such that if (p,u,B) € Z ), then the problem (4.1),

0°No
S = =
belongs to' the same ZT , where EO—ET ,and‘NO NT .
0 0 0
Proof. By Corollary 3.2 (%=s) we have a unique solution. (n,v,Z)
€ X@(Q ), D(v,Z) € L2(0,T ;HS). _And by Corollary 3,4 (%=s) the
TO 0

solution satisfies

t
.6) || D(n-,v,c)(t)lli_1 + EJ | p(v,2) (1) |l§dT
0
C7(t+/f) 2 2
< C6 e (|]D(p,u,9)(0)||s_l + || £]| 2 )

L0, t;H%)

15
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<,;‘ec7(To+/EE)E2 c 2
T2 0 0
C7(T0+/T6) o o
for any t € [O,TO] provided e < 2, where C7=C7(M,m,EO,NO)

is a constant in Proposition 3.3. Next integrating (4.1) with re-

spect to t € [O,TO], we have a constant C9=C9(M,m,E0) independent

of € such that

” (nsV:C)(t)” . < H (p,u,@)(O)H .
) L L,

+ Cy (B + | £]] 5 )(Ty + /EB) <M,

e, 1)

inf {(n(t),2()} > inf {0(0),0(0)} - CE (T, + V) = m

X X
for t e [O,TO] provided that Cg(E0+‘|f[| -1 )(TO+/T6) <
C(O!T()!H )
Il (p5u,®)(0)|] _ and 2c9EO(TO+/EB) < inf{p(0),8(0)}, where we use
L X

(4.6). Finally from (4.4) and (4.6) we have

t
2 2 . 2 2
In (0 [ + JO'Ct(T)Io dt < Cg(1 + T()Eq = Ng

for t e [O,TO]. This completes the proof of Proposition 4.1.

8§ 5. Proof of Theorem 1
We consider the system (1.1), € € (0,1], of a viscous compress-—

ible fluid :

P) (p3u) = 0, BL(u30,0) = £, i=1,2,3,

p, p,u’
(5.1)
P (5p,u) = 0
p,u’e ’p,u b

16
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with the initial data (P,u,0)(0) satisfying (2.5). Let us introduce

[e.¢]
the successive approximate sequence {(D,u,e)n(t,x)}n=0 as follows :

(5'2)0 (p,uae)o(t,x) = (6;0’6) s

where p and 6 are constants satisfying inf p(0) < p < || p(®) | _
X L

inf 6(0) <6 < || 6] _ -
L

X
. (o su) =0, bt (w30 ,0) = £,
n-1’n-1 ° " Pa-1"%n-1""n-1 * ™ P
.2 | P e ..g (B30 ,u) =0,
n pn—l’ n-1°"p-1 0

(D,Uae)n(o) = (p,u,0)(0), n=l,2,°-

By Proposition 4.1 the sequence (p,u,e)n is uniformly bounded with

respect to n>0 and € ¢ (0,1]

(5.3) (O,u,e)n € Z for all n> 0 .

s
Ty

We show the convergence of the sequence (p,u,e)n . Subtract
the system (S.Z)h from (5.2)n+l . The difference (p,,u,e)n = (pn+l

—pn,un+l-un,8 l-en) satisfies

n+
P bay =g, Bt (G ,p.6) =gt
p>u_'n’ n ’ psu_,0 " n’n’n ©n °’
n’ n’ n
4 A ~ A 4
(5.4) PD ,u ,0 (en9pnsun) = gﬂ ’
n’ n’’n
C (0,8 (0 =0,  n=l,2,-e
i _ i i .
where g~ = ~{P (u_s3p_ -0 )-P (u_3p_ 50 )} etc.
n pn,un,en n’"n’"n pn—l’un—l’en—l n’"n’'n

17
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Apply Proposition 3.1 (%=s-1) to (5.4). We have (B,G,é)n e £(0,T;

Hs—l) and .

- e
(5.5) ||(p,u,e)n(t)||§_l + €vJo” (u,e)n(T)llidI

C, t/e (t c. 4 & .
< e 4 {J llgg(T)llz_ldI + ?g- z J,{‘gg(T)lli_sz} )
0 j=1 Jo

By the estimates for composite functions we know a constant C inde-

pendent of n>0 such that

P

‘ 4 ’
0 - A A
.6 lellyy: jZlH ng1”5-2 < cll (0,0, i v 1

Substituting (5.6) into (5.5), we have for t ¢ [O,TO],

t

I 6,8,8 ol | < c€<TO)j I 5,6,8)__ @I % ar .

, v 0 v

Therefore as n > « the limit exists such as (p,u,G)n +»(b,u,9)
strongly in CLO,TO;VS—I) for every fixed € ¢ (0,1]. On the other
hand it follows from (5.3) that D(u,e)n; > D(u,6) weakly in LZ(O,TO;
HS) and that D(p,u,e)n" + D(p,u,;0) weakly in Hs_l for every fixed
t e [O,TO], where ﬁ' and‘n"=n"(t) are subsequences of n and n' re-
spectively. Thus the limit (p,u,8) is a solution of (5.1), € €
(O,i], satisfying (p,u,0) € Y?(QTO) aﬁd D(u,8) € LZ(O,TO;HS). Then
by Corollary 3.4 we have (p,u,9) ¢ C(O,TO;VS). The estimates 2.7,
(2.8) and (2.9) are consequences of (5.3), where we‘take C1 = 2C6 .

This completes the proof of Theorem 1.

18
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§ 6."  Approximation of the viscous fluids by the perfect fluids

Let us assume that (p GO)(t,x) is a solution of (1.1l), €=0,

0>%o0’
satisfying (2.10). We seek the solution of (1.1), € ¢ (0,1], in the

form
(6.1) (p‘,?u,eé (t,x) = (po,ub,603 (t,%) + £(M,v,L) (£,%)

Substituting .(6.1) dinto (1.1),. then we have the system for (n,v,i) :

0 0.
v+ =g’ =0,

~0 _
[ Pp,u(MV) =By

~i . _ i i T i
Pp,u,e(vfn’;),—<PQ,u,6(anf7)v+ M ‘ﬁ,v,;) - eLp,e(y)‘

(6'2) gl(p’e), i=1:2s39

a4 = ok

= . - B 4 N — 4 ’ .
Pp‘,u,e(#;‘an’v) - Pp,“u,:e(CQn,V) + M (TI,V,C) E‘Lp’e(v,C)‘

|

f g (pse),

where (p,u,0) and pd are given by (6.1) and (3.1) respectively,

p,u,b
and.

L TN P, » “Pg
i S U § _b. 9,
f6.3) M (n,v,g} = v‘uo’Xj + n{(‘))p Po, + (F’)p Go,xi

)

X,
1

*eltg Pox. T g So,x

} etec.,
0,%, .

i 3
+
O,X.)(VX Vx )

i 1 R

(6.4) L (v) =={(p + 1.6
S 0,x, 0 . .

0, P 070,x, 5 3 i

[ ' 3
+ (UDDO,Xi + USGO,Xi)VXj} etc.,

19
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i N >, L -3 .
. ,0) = = {uu + (uHuDu ¢ + .
(6.5) & (0,9) o] { 0,x.x ( ) 0,x.x, ( pp0,x,‘u6e )

s X LA, O,X,
13 J1 J
L . j’ L
) (g g ) G p0 eeo Jto.x, ) et
J 1 J
_ 1 o o o :
where a = J a(p +€Tn,6'+€TC)dT .
0 0 0

We write M3 and Lg 6 as follows :

b

WM,v,0) = Wn+wvt v de 20,1500,

4
(6.6)
L ’e(V,C) Likvxk + Lékcxk sy J=lyee 4,

|

If (p,u 9) MJ LJk and gJ are glven functlons, then (6 2) is a -
linear system in (n v,C) whose pr1n01pal part is 1dent1cal w1th that

of (3.1). Therefore the arguments in 83 are appllcable to the lin-

ear system (6.2) w1th sllght'modlflcatlon.

Proposition 6.1 ‘Let s23 and T>0.

(i) Let 2<f<s. In add1t10n to the hypotheses of Proposltlon 3.1
we assume that MJ and LJ 'e C(O T;V ) Then the 1n1tlal value prob—

lem for the linear system (6.2), € € (0,1], has a unique solution
2 .. 2 2 i e :
Mm,v,0) e X (QT), (v,z) € L"(0,T;H” ") which satisfies the energy

estimate (3.4) for C, replaced by a constant C] depending ohly on

4 4

C, and [[Pﬁ,Lq .
4 i .8
C(0,T;V")

(i) Let 1<8<s. 1In addition to the hypotheses of Propos1t10n 3.3
we assume that Mi,Lik € L (0 TV ) ‘uniformly in €. Then the solu-
tion (n,v,Z) € YZ(QT), (v,0) ¢ L (O,T;Hg ) of the linear system .

(6.2), € € (0,1], satisfies the uniform energy estimate in € :

, . |
6.7) || (n,v,0)(t) Ilﬁ + 8J | (v,2) (D) Hiﬂ' dt
0
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¢; (/) 2 (Y, 0 & 2
<c, e {l vl + | I g8, at},
6 2 0 2
for t € {0,T], where C; is a constant depends only on C7 and |]Mi,
j o . _
Lik” © ,» and C6 and C7 are given in Proposition 3.3. Fur

L0, T;V®%)

'3
thermore we have a regularity (n,v,Z) € £€(0,T;H").

Now let us assume that (p,u,8) in (6.2) is given in the form
(6.8) (p,u,0) = (p03u0’eo) + E(T]',V',C') s

and let (n,v,Z) be a solution of the linear system (6.2). Then we
show that the mapping (n',v',z') - (n,v,Z) has an invariant set
w;(R,K) for some R and K : (n,v,Z) € w;(R,K) means that (n,v,Z) €

XS(QT), VE(v,T) € LZ(O,T;HS+1) and Ct € LZ(O,T;HS—l) and that

2 t 2 2
I awo@I? +ef | o2, a s,
(6.9) 0
2 (" 2 2
In. ()52 + | lz (|5 dt =K for t e [0,T].
t 0 0 t 0
We note the following. Let (po,uO,GO) satisfy (2.10) and (n',
v',g") € W;(R,K). And we choose a constant 80 € (0,1] as
(€ C.R < || pysu.,0 || , 2¢.,CR < inf {p_,8.},
0] 0’700 S 00 0’70
0 €0, T;17) Qp
(6.10) | 6e2r” = (1+D) || (o, 0,00 || 2 .
C(0,T;H”)
6€§K2 < (1+T)||pO % t||2 0.
’ ’ C(O,T;ﬁ)
where C0 is a constant in (2.2). Then (p,u,8) given by (6.8) sat-
isfies
(6.11)  (p,u,0) e Z;(M,m,E,N) for € ¢ (0,1 ,
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where we take the constants as follows :

1
M= ZIID su.,0 ll w » W=7 inf {p.,0.} ,
07070 e 0,517 2o °°
2 ' 2
(6.12) | B = 2(1+T)|lD(OO,uO,90)|IC' s
(0,T;H)
2

Z
n

2
2P0, el o pat)

Then the coefficients of (6.2) have the estimates :

6-13) Iy, | o SCp LI s, -~ n
C(0,T;V) j C(0,T;H™)
for € € (O,EO] and constants Clo and Cll independent of €. Here ClO

and C,, depend on ]]po,u S

11 08l 41 and |l og,ug,8,]] 2

e,1;v°h e,1;v"+)
respectively. Furthermore if (n,v,Z) € XS(QT), Ve(v,z) € LZ(O,T;

Hs+l) is a solution of the linear system (6.2), € € (0,80], satis-
fying
2 t 2 ~2
I (v, @ |l + e[ I oI, dr < &",

0

then we have Ct € LZ(O,T;HS—l) and

2 t 2 ~2 2
\
(6.14) |gt(t)|O + Jolgt(r);o dt < CL(1+T) (R™+C] ;)
) independent of ¢, where C, is a con-

for a constant C'=Cé(C 8

8 8°C10

stant in (4.4).
Now we determine the constants R and K :

c;(T+/T) 2 2
- cq e (] (v, @ [ + )

7]
I

(6.15)

~
I

. 2 2
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6 and C; are constants.in Proposition 6.1 (i) . Then by

(6.11), (6.13), Proposition 6.1 (i), (i) and (6.14) the set wi(R,K)

where C

is invariant under the mapping (n',v',z') > (n,v,0)

Proposition 6.2 Let s>3 and T>0. Assume that (pO,uO,GO) and
(n,v,2)(0) satisfy (2.10) andktZ.ll) respectively and set the con-
stants R and K by (6.15). Also assume that (p,u,0) is given by
(6.8) with (n',v',z') € W;(R,K). Then there exists a constant 60 €
(0,1] depending only on (pO,uO,GO), ||(r],v,C)(O)HS and T (cf. (6.10)
and (6.15)), such that the initial value problem for the linear
system (6.2) hés a unique solution (n,v,Z)(t,x) for any € € (O,EO],
which belongs to the same W;(R,K).

Finally we solve the nonlinear system (6.2) by the successive
approximation scheme. We introduce the sequences {(H,V,C)n(t,x)}:;

0
and {(p,u,e)n(t,x)}n=0 as follows :

(6-16)0 (U,V,C)O(t,x) =0,

(6-17)0 (p,u,@)o(t,x) = (DO’uO’GO)(t’X)’

ﬁg (nsv) =0,
n-1’"n-1 n

~i i

Ppn_],un_l,e _l(vn’nn’gn) -8 (pn—l’en—l)’
(6.16) - n

n ~4 4
P (zsn_sv) =g (p .50 ),
pn—l’un—l’ n-] p onomn n-1" n-1

(M,v,0)_(0) = (M,v,2)(0),

(6.17)  (p,u,8) (t,%x) = (pg,uy,0,) (t,x) + e(n,v,2) (t,x),

n:l’z’o-o
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By Proposition 6.2 and (6.11) the sequences (n,v,C)n‘and (p,u,@)n

are uniformly bounded with respect to n=0 and € ¢ (O,EO]
s s
(6.18) (ﬂ,V,C)n € WT(R,K), (Q,U,e)n € ZT(M,m,E,N)

for constants in (6.15) and (6.12). The convergence of the sequence
(n,v,C)n is shown in the same way as §5, by using Proposition 6.1
(i) and (6.18). Thus as a limit of (n,v,c)n we obtain a solution
(n,v,c) of (6.2), and consequently a solution (p,u,8) of (1.1) for

any € € (0,80]. This completes the proof of Theorem 2.
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