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Fixed Point Theorems in Nonlinear Analysis
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Tokyo Institute of Technology

Let X be a given set and consider a mapping T of X into
X. Then a point x such that Tx = x 1is called a fixed point
of T. Furthermore consider a mapping T of X into 2X (the set
of all subsets of X). Then a fixed point for T is a point x
such that x € Tx. A fixed point exists under suitable
conditions of T and X. The theorems concerning fixed points
are the so-called fixed point theorems and they are very
useful in nonlinear analysis.

Let H be a real Hilbert space and let C be nonempty
closed convex subset of H. A mapping T: C = C 1s called non-
expansive on C, or T e Cont(C) if HIrx - Tyl < lx - yl for
every X, y € C. Let F(T) be the set of fixed points of T,
that is, F(T) = { z e C : Tz = z }. Then, the set F(T) is
obviously closed and convex. Let S = { S(t) : t =201} be a
family of nonexpansive mappings of C into itself such that
S(0) = I, S(t+s) = S(t)3(s) for all t, s € [0,») and
S(t)x is continuous in t € [0,») for each x € C. Then, S
is called a nonexpansive semigroup on C. The fixed point set
F(S) of S is defined by

F(S) = { x e C: S(t)x = x forall ¢t e [0,») }.
The first nonlinear ergodic theorem for nonexpansive mappings

was established by Baillon [ 1 J: Let C ©H, T & Cont(C) and



71

F(T) # ¢. Then, Cesdro means

n-1
k
k%o T X

S

Sn(X) =

converge weakly as n =+ « to a fixed point of T for each

Xx € C. A corresponding result for nonexpansive semigroups on
C was given by Baillon [ 2 ] and Baillon-Brézis [ 3 ]. Non-

linear ergodic theorems for general commutative semigroups of
nonexpansive mappings were given by Brézis-Browder [ 6 ] and

Hirano-Takahashi [ 13 ].

In this talk, we prove a nonlinear ergodic theorem for
non-commutative semigroups of nonexpansive mappings in a
Hilbert space. By the same method, we give a necessary and
sufficient condition for a non-commutative semigroup to have
a fixed point. This is a generalization of Pazy's results
[ 15 1, [ 17 1. Secondly, we give a necessary and sufficient
condition under which a variational inequality [ 22 ] defined
on unbounded sets in a Banach space has a solution. Using
this, we solve the complementarity problem [ 14 ], [ 23 ] and
a fixed point theorem. We also establish a necessary and
sufficient coﬁdition under which thé minimax equality oﬁ un-
bounded sets holds. Finally, using the Ky Fan-Browder fixed
point theofem [ 7 1, [ 10 1, we obtain Fan's existence theorem
[ 9 ] concerning systems of convex inequalities in topological
vector spaées. Then we present a'generalization of the Hahn-

Banach theorem and a separation theorem on a linear space.
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§1. Nonlinear ergodic theorem.

Let S be an abstract semigroup and m(S) the Banach space
of all bounded real valued functions on S with the supremum
norm. For each s € S and f e m(S), we define elements fs
and £° in m(S) given by r (t) = f(st) and £5(t) = f(ts) for
all t e S. An element p e m(S)¥ (the dual space of m(3S))
is called a mean on S if luyl = u(1) = 1. A mean p is called
left [right] invariant if u(f ) = u(f) [ w(£%) = u(r) 1 for
all f € m(S) and s € S. An invariant mean is a left and
right invariant mean. A semigroup which has a left [right]
invariant mean is called left [right] amenable. A semigroup
which has an invariant mean is called amenable. Day [ 8 ]
proved that a commutative semigroup is amenable. We also know

that uw € m(S)¥ 1is a mean on S if and only if
inf{ f(s) : s € S} <u(f) <supl f(s) : s € S}

for every f e m(S).
Now we prove a nonlinear ergodic theorem for noncommuta-
tive semigroups of nonexpansive mappings in a Hilbert space.

The proof employs the methods of [16], [20] and [21].

THEOREM 1. Let C be a nonempty closed convex subset of
a real Hilbert space H and S be an amenable semigroup of non-

expansive mappings t of C into itself. Suppose that
F(s) = N{F(t) : t € S} # ¢.

Then, there exists a nonexpansive retraction P of C onto F(3)
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such that Pt = tP = P for every ¢t € S and
Px € co {tx : t € S} for every x € C, where co A is the

closure of convex hull of A.

PROOF. Let u be an invariant mean on S and x € C. Then
since F(S) # ¢, {tx : t e S} is bounded and hence, for
each y in H, the real-valued function ¢t = {tx, y> is in m(3).
Denote by ut<tx, y > the value of yu at this function. By
linearity of u and of the inner product,  this is linear in y;

moreover, since
lu <tx, y>I < - s%p]<tx, o < (sgp”tx”)-“y”,

it 1s continuous in y, so by the Riesz theorem, there exists

n X
a 0

€ H such that
ut<tx, y> = LX4s y>

for every y € H. Setting Px = Xgs we have
Px € co {tx : t ¢ S}

In fact, if Px £ co {tx : t € S} , then by the separation

theorem there exists a Yo € H such that
(Px, yy» < inf{ <z, y> : z ¢ co {tx : t e S}}
S0, we have
. < - g
1€f {Ex, y0> ut<tx, y0> {Px, y0>

< inf{ <z, yo) : z € co {tx : t € S}t}
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< inf {tx, y,.>
£ 0
This is a contradiction. Let s € S. Then we have
2 2
0 < - - -
I tx XOH I stx sxOH
< Jltx - sx Il2 + 2{tx - sX SX . — X.»
0 0’ 0 0
2 2
+ stO - xOH - lIstx - SXOH

and hence

2
0 < - - -
ut( ltx - sx 17 + 2dtx - sx, sX, x0>
2 2
+ sto - XOH - listx - SXO“ )
= p lltx - sx II2 + 2{x,. - sX SX . - X D>
t 0 0 0’ 0 0
2 2
+ sto - XO“ - uthx - SXO”
= 2{x. - sX sx - x> + llsx. - x II2
0 0’ 0 0 0 0
- _ _ 2
“XO sxOH
This implies 8Xy = Xy for every s € S and hence we have

sPx = Px for every s € S. From

{Psx, yy = ut<tsx, yy> = ut<tx, y> = {Px, y>
and
2
{Px, y> = ut<th, y> = Ut<Px, y> = <Px, y>,
it follows that Ps = P for every s € 3 and P2 = P. At

last, we prove that P is nonexpansive. In fact, we have
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Ipx - Pyl? = (px - Py, Px i Py) = u (tx - ty, Px - Py
< (S%p ltx - tyl)-lpx - pyl
< Ix - yl-lpx - Pyl
for every x, y € C.
As a direct consequence, we have

COROLLARY 1. Let C be a nonempty closed convex subset of
a real Hilbert space H and S be a commutative semigroup of non-
expansive mappings t of C into itself. Suppose that F(S) # ¢.
Then there exists a nonexpansive retraction P of C onto F(3)
such that Pt = tP = P for every t € S and Px e co{ tx

t € S} for every x € C.
By the method of Theorem 1, we can prove the following

THEOREM 2. Let C be a nonempty closed convex subset of a
real Hilbert space H and S be a left amenable semigroup of non-
‘expansive mappings t of C into itself. Then, F(S) # ¢ if

€ C such that { tx.: t € S }

and only 1f there exists an 0

X0

is bounded.

As direct consequences, we obtain Pazy's results [ 15 ]

and [ 17 7.

COROLLARY 2. Let C be a nonempty closed convex subset of
a real Hilbert space H and T be a nonexpansive mapping of C into

itself. Then, F(T) # ¢ if and only if there exists an element
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X~ € C such that the sequence { Tnxo :n=1, 2, ...} is

0

bounded.

COROLLARY 3. Let C be a nonempty closed convex subset of
a real Hilbert space H and S =‘{ S(t) : t 2 0} be a nonexpans-
ive semigroup on C. Then, F(S) # ¢ 1if and only if there

exists an element x. € C such that { S(t)x, : >0} is

0

bounded.

§2. Variational inequalities,

Let E be a real reflexive Banach space and C be a closed
convex subset of E. A mapping T: C > E*¥ 1is said to be mono-
tone if (Tx-Ty, x-y) = 0 for all x, y € C, and hemicontinuous
on C if for any u, v € C, the mapping t » T(tv+(l-t)u) of
[0,1] to E¥*¥ is continuous when E¥ is endowed with the weak#¥
topology. Alsc T is said to be coercive on C if for some
ue C,

lim (Tx, x-u)/Ixl = 4+,

x| >
XEC

A mapping F: C » E said to be nonexpansive if for any x, y € C,
IFx - Fyl < lx - yl. We note that if E is a real Hilbert space
and F: C » E is nonexpansive, then I-F is a monotone mapping

of C into E. Let H, K be nonempty closed subsets of the Banach
space E, then we denote by 9.,K the set of 2z € K such that

H

U(z) h'(H—K) #Z ¢ for every neighborhood U(z) of z and by iHK

the set of z e K such that U(z) N (H-K) = ¢ for some
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neighborhood,U(z),of Z.

 ‘THEOREMw3. ‘Let C be a nonempty closed éonvex4éubset of
a reflexive Banach spaée'Euand.T be a mohotone énd hemicoﬁtinuous‘
mapping of C into E¥. Then the followinggconditiéns,are
equivalent.

) >0

(1) There exists x, € C such that (TXO, yFXO

O .
for all y € C3

(2) there exists a bounded closed convex subset K of C
such that for each =z € 9.k, there exists y EriCK which

satisfies (Tz, y-z) < 0.

PROOF. First we show that (1) implies (2). bLét'xO be an
element of C such that (TXO, y—xo) =0 for all y € C. Set
q = HXO_yOH where y, € C and y, #_XO’ and K = {x_e C:

I'x XO" d}. Then we have Xof:ch. L;t z € 3
monotonicity of T, it follows that (Tz, z-x) = (Txy, z-x

K. By the

0

2 0. Therefore, we have (Tz, x,-2z) < 0. Next we show that

0
(2) implies (1). Let K be a bounded closed convex subset of

C which satisfies the condition (2). Since K is weakly compact

convex, there exists x, € K such that (Txo, X—XO) =0 for

0
all x e K (ef. [41,[51). If x, e igK, then forJgach y e C
we can choose A >0 so small thét i = Xy+(l—X)xd lies in'K.
Then (TXO, Ay+(l—x)xo—xo)‘> O\ and hence A(Txd, yfxo) = d.'
Xoie 5CK, then,

by the hypothesis, there exists Zy € iCK such that '(Txo,

Z24-Xg). S 0. Since (Txy, X-x5) = 0 for all x e-K, we have

Cancelling A, we have (Txd, y-%5) = 0. If

K, for each

_ > ; . o .
(Txo, X zo) 0 for all % ewC, Since zy € 1,
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y € C, there exists A > 0 such that x = Ay+(l—A)zO lies in Kk,
Then A(Txo, y—zo) = 0. Cancelling A, we have (Txo, y—zo) = 0,

Then since (Txo, Z -XO) 2 0, we obtain (TXO, y—xo) = 0.

0

The following corollaries are direct consequences of Theorem 3,

CORORALLY 4. Let C be a nonempty closed convex subset of g
reflexive Banach space E and T be a monotone hemicontinuous
mapping of C into E¥. If T is coercive on C, then there exists

X~ € C such that (Txo, y—xo) = 0 for all y e C.

0

PROOF. It 1is sufficient to show that the coercivity

condition implies the condition (2) of Theorem 3. By the

~

definition of coercivity, there exist y € C and positive
numbers ¢, k such that Uyl < c¢ and (Tx, x-y) = klxl for
x € C with Ixl = c. If we set K = {x ¢ C: Ixl < ¢}, then

it is obvious that K satisfies the condition (2) of Theorem 3,

Corollary 4 has a very interesting interpretation when C

is a closed convex cone.

COROLLARY 5. Let C be a nonempty closed convex cone in
a reflexive Banach space E and T be a monotone hemicontinuous
mapping of C into E¥. If T is coercive, then there exists an

Xy € C such that —TXO e C¥ and (Txo, xo) = 0 where

C¥ = {u e E¥: (u, x) <0 for all x e C}.

PROOF. By Corollary 4, there exists x, € C such that

0]
(Txo, y-xo) 2 (0 for all y & C. It follows from Lemma 3.1

of [14] that -Txy € C*¥ and (Txo, xo) = 0,
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COROLLARY 6. Let C be a nonempty closed convex subset of a
Hilbert space H such that 0 € C and T be a nonexpansive mapping
of C into H. 1If there exists a bounded closed convex set K ¢ C
such that 0 e i,k and Izl < Izl for a11 z € 3,K, then

there exists an e C such that

%0
"xO—TxO“ = min{"y—TxO" :ye Cl.

Particularly, if T mapps C into itself, there exists e C

%0
such that Tx, = xo.

PROOF. It is obvious that the mapping I-T of C into H is
monotone and hemicontinuous. Since Tzl < Izl for all
7 € BCK, we have (z-Tz, -z) SO0 for all =z ¢ BCK. Since
0 e 1K, K satisfies the condition (2) of Theorem 3. Therefore
there exists x5 € C such that (XO—TXO, y-xo) = 0 for all
y € C. Hence we obtain “xo—TxO" < "y—TxOH for all y e C.
Particularly, if T mapps C into itself,’we have min{“y-TXO“:

y € C} = 0 and hence Txg = Xg-

§3. Minimax theorem,

Next we consider a minimax theorem and establish a necessary
and sufficient condition under which the minimax equality on

unbounded sets holds.

THEOREM 4. Let X, Y be reflexive Banach spaces, and let
ACX, BCY be nonempty closed convex sets. If F i1s a function
on A x B such that for each y € B, F(-,y) 1s an upper semi-

continuous concave function on A and for each x € A, F(x,*)
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is a lower semicontinuous convex function on B, then the

following conditions are equivalent.

(1) max min F(x,y) = min max F(x,y);
XehA yeB oY yeB xeA A

(2) there exist bounded closed convex sets K € A and
L € B such that for each (x,y) € (BAK x L) U (K x 8BL), there

exists a (u,v) € 1i,K X igL which satisfies F(u,y) = F(x,v).

A

PROOF. First we show that (1) implies (2). If (1) holds,
then there exists (xo,yo) e A x B such that F(Xo,y) = F(xo,yo)
> F(x,y,) for all (x,y) € A x B. Let K = {x & A: "xo—x" <
I xo—a”} and L = {y e B: "yO—y" < "yo—b"}, where a € A,
beB, x #a and y, # b. Then we have (x,,y,) € iAK x 1L
and F(xy,y) > F(xo,yo) > F(x,yo) for all (x,y) e (3,K x L)

U (K x aBL). Next we show that (2) implies (1). Let K and L
be bounded closed convex sets which satisfy the condition (2).
Then, by Theorem 3.8 of [4], there exists (xo,yo) e K x L

such that F(x,yo) < F(Xo,yo) < F(xo,y) for all (x,y) &€ K x L.
Let (Xo,yo) € iAK X iBL. Then for each x € A we can choose

A >0 so small that Ax+(1—k)x0 € K. Since F(-,y) 1s concave,

we have

F(x ) = F(Ax+(1-M)x,5,) Z AF(x,y,)+(1-M)F(x4,¥,)

0°Y0

and hence F(x,yo) < F(xo,yo). Also we obtain that

F(x5,¥,) < F(xy,y) for all y € B. so, (1) holds. Let
(xo,yO) € (BAK x L) U (K x BBL). Then by the condition (2)
there exists (u,v) € i,K ¥ igL such that F(u,yo) = F(xo,v).

Since F(x,yo) < F(xo,yo) < F(xo,y) for all (x,y) € K x L,
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we have F(u,yoj-=\F(xo,yo),= F(XO,V); ‘For each x € A, we
take A > 0 so small that Ax+t(1-A)u € K. Then

F(xg550) = F(x2+(1—k)u,yo)’> xF(x,yO)+(1—k)F(u,yO)

= AF(X’yO)-'-(l—}\)F(XO’yO) .
Hence we obtain that F(x,yo) < F(xo,yo). Also we obtain that

F(xo,yo) < F(xo,y) for all y e B. Theis completes the proof.

COROLLARY 7 (ecf.[l4]). Let X, Y, A, B and F satisfy the
assumptions as in Theorem 4. If-there'exists (Xo,yo) € A X B
such that

1im {F(xq,y) - F(x,yq} = =,
Il Ty o0 0 0

(x,y)€eAXB

h we have a in F = mi ax F(x .
bhen we have yak §ip FOLY) = pap gag FOv)

PROOF. It is cleaf from the hypothesis that there exists
k > 0 such that for every (x,y) € A x B with Ixl+lyl >k
we have F(x,,y) -F(x,yy) > 0. Let K = {x € A: ﬂxo—x“ < k}
and L = {y e B: "yo—yﬂ < k}. Then for every (x,y) €
(BAK va) U (K x BBL), we obtain F(Xo,y) > F(x,yo). so, we

obtain Corollary 7 from Theorem 4.

§4, Systems of convex inequalities.

Fan first proved the following lemma, and then Browder

gave a different proof of it.
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LEMMA 1(Ky Fan-Browder). Let X be a nonempty cémpact
convex subset of a separated linear topological space and T be
a multi-valued mapping on X such that for each x £ X, Tx is
a nonempty convex subset of X and T—ly ={xeX:ye Tx }

¢ X such that x. € Tx

is open in X. Then there is an x 0

0 0°
Using this, we prove the following result obtained by Fan

[ 91 which plays crucial roles to prove the main theorems.

LEMMA 2(Fan). Let X be a nonempty compact convex subset
of a separated linear topological space and {fv :v e I} be a

family of lower semicontinuous convex functionals on X with

values in (-», +x]. If for any finite indices Vi Vo >V,
and for any n nonnegative numbers Al, Ag, ey An with
n
.Zlki =1, there is a y € X such that
i=1

n
. )\if\)i(y) < O ]
i=1 o

then there i1s an x € X such that
fv(x) <0 for every Vv e I.

PROOF. Suppose that for each x € X there is a v ¢ T
such that fv(x) > 0. Setting G, = {x e X : £,(x) > 0} for
each v e I, {Gv : v.e I} is an open covering of X. Since
X 1s compact, there is a finite subcovering {le, sz,"' s
Gvn} of {Gv : v e I}, Let &> 8,5 '°* , g, be a partition of
unity corresponding to {le’GVZ’ cee Gvn}’ i.e., each g; is
a continuous mapping of X into [0,1] which vanishes outside of

Gyys while
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for every x € X. Then put
n N
D(x,y) = Z gi(X)f“i(y)’ (x,y) ¢ X x X,
i=1

and
d(x) = D(x,x), x € X.

Since d is lower semicontinuous on X by [22, Lemma 3], d takes

its minimum m. Hence we have
d(x) »>m > 0, x € X.
Now we define a multi-valued mapping T on X by
Tx = {y € X : D(x,y) <m}, x & X.

Then Tx is nonempty and convex by hypothesis and
T_ly = {x € X : D(x,y) <m} 1is open. Therefore there is an
X € X such that d(xo) <m Dby Lemma 1. This is a contra-

diction. This completes the proof.

A functional p defined on a linear space E into the real
field R is said to be sublinear if p(x+y) < p(x) + p(y) for
all x,j € E and p(rx) = Ap(x) for all A >0 and all
x € E. If E is a linear space, wé denote by E¥ the dual space
of E which is“the set of all linear functional from E into the
real field. In our proof of Theorem 5, we shall need, not
only Lemma 2, but also Lemma3 %elow, which is a special case

of the Hahn-Banach theorem.
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LEMMA 3. If p is sublinear on a linear space E and

X~ € E, then there is an f € E¥ such that f(x) < p(x) for

0
all x € E and f(xo) = p(xo).

PROOF. Let F be the product space RE, then F is a linear

topological space. If we put

X, = I [-p(-x), p(x)],
xek i

then XO 1s a compact convex subset of F. We consider

a sequence {fn} in X, defined by

0

fn(x) = p(x + nxo) - p(nxo), X € E.

Since X, is compact, there is a subnet {f_ } of {fn} which

0 Ny

converges to fo € XO. It is easily seen that

—p(y-y) < Ty(x) = £,(y) <p(x-y)

for all x, y € E. If X € R, then there is @, such that

A+ n,, >0 for all o > o - Hence

fo(xxo) = lgm (p(kxo + nuXO) - p(naxo))

1§m.((k + 0, p(xy) - np(xy))

Xp(xo).
If we put

X, ={feX -p(y-x) < f(x) - £(y) <p(x-y),

X, y€ E and f(kxo) = Xp(xo), X e R},

then Xl is nonempty. It 1s easily seen that X1 is compact and
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convex. We consider a commuting family .{TIjl : p e R} of

continuous affine mappings of X

1 into itself defined by

(Tuf)X = f(x + uxo) - f(uxo), feX, xeBE.

By the Markov-Kakutani fixed point theorem, there is an

fl € Xl such that

fl(x + uxo} = fl(x) +>fl<uXO>’
for every x ¢ E and u e R. Hence if we put

X, = {f X

5 1 P(x + uxO) = f(x) + f(uxo);

for every x € E and u & R},

then X, 1s nonempty. Furthermore X, is compact and convex.

2 2

We consider a commuting family {Ty : y € E} of continuous

affine mappings of X, into itself defined by

2

(Tyf)x = f(x +y) - £(y), f e X x € . E.

2)
By the Markov-Kakutani fixed point theorem again, there is an

f2 €-X2 such that

fz(X"*' Y) = f2(X> + fz(y)a X, yg E.
Hence if we put

Xy = {feX : flx+y) = 1)+ £(y), x,y € E},

then X, is nonempty compact and convex. We consider a

3
commuting family {SU : W > 0} of continuous affine mappings of

X3 into itself defined by
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. _flux)
(5,)x . ,  feXg,

By the Markov-Kakutani fixed point theorem, there is an

f X such that
3 € 3 tha

4 >
f3(UX) uf3(X), u 0.

This implies that f_, is linear, so the proof is complete.

3

THEOREM 5(Hirano-Komiya-Takahashi). Let p be a sublinear
functional on a linear space E, let C be a nonempty convex
subset of E, and let f be a concave functional on C such that
f(x) <p(x) for all x e C, then there is an fO e E¥ such
that f(x) < fo(x) for all x € C and fo(y) < p(y) for all

y e E.

PROOF. Let F be the linear topological space RE with the

product topology and let X, be the compact convex subset

0

T [-p(-x), p(x)]
X €E

of F. Let B = {g € E¥ : g(x) <p(x) for all x € E}, then
B is nonempty by Lemma 3. Since XO is compact, B is compact-

convex. For each x € C, we define a real valued functional

GX on B by
G (g) = f(x) - gx), g €B.

By Lemma 3, for any x € C, there is a g € E¥ such that

.o A A .o
Gx(g ) <0. If X1, Xo, > X € C and 10 "o» s

A >0 with Z A, =1, then
n 1
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M3
>
(&)
om
p—
|
M3

A (£(xy) = g(x))

i=1

< £ Zoyx) -e( Z Ax,)

i=1 i=1
<
G (g)
for all g e B, where =z = Ekixi e C. Henée, by Lemma 2,
there 1s an f; € B such that Gx(fo) <0 for all x & C,

that is, f(x) < fy(x) for all x e C and fy(y) < p(y) for

all y ¢ E.

COROLLARY 8(The Hahn-Banach theorem). Let p be a sublinear
functional<n1alinearspaée E, let L be a linear subspace of E,
and let f be an element of L¥ Such that f(x) < p(x) for all
’x‘s L, then there is an f, € E¥ such that fy(x) = f(x)

for all x € L and fo(y) < p(y) for all y € E.

PROOF. By Theorem 5 there is an f, € E¥ such that

0
fo(x) > f(x) for all x € L. Since L is a linear subspace of

E¥, we have fo(x) = f(x) for all x & L.

Let p be a sublinear functional on E. For two nonempty
subset A and B of E, we consider a number p(A,B) given by

inf{ p(x - y) : x e A, y € B }.

THEOREM 6 (Hirano-Komiya-Takahashi). Let p be a sublinear
functional on a linear space E. If C and D are nonempty convex
subsets of E such that p(C,D) > -, then there is an f e E¥

such that

inf{ f(x) : x € C } = p(C,D) + sup{ f(y) : y € D}
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and f(x) < p(x) for all x & E.

PROOF. We again consider the compact convex subset
B=1{ge E¥% g(x) < p(k) for all x € E } of the linear
topological space F. Let Py = p(C,D). For each x € C, we

define a functional GX on B with values in (-, +»] by
Gx(g) =sup { gy -= x) : ye D} + Py» . & € B.

Then GX is lower semicontinuous and convex. Also we have that

if x , Xx_ € C and A A An =2 0 with

l)
in = 1, then

So, if we can show that for each x € C, there is a g € B with
Gx(g) < 0, then we obtain, by Lemma 2, that there is an f € B

with Gx(f) S0 for all x € C. Hence we have
sup{ f(y - x) : y e D} + Py <0
for all x e C; that is,
sup{ f(y) : y € D } + Py < inf{ f(x) : x € C }.
Then
Py < inf{ f(x) : x € C } - supl f(x) : y € D}
Sinf{ f(x -y) : xe C, y € D}
<inf{ p(x -y) : xe C, y e D}
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Hence we have that f(x) < p(x) for ali x € E . .and
inf{ f(x) : x e C } = p(C,D) + supl f(y) : y € D }

Now to complete the proof, we need only to shbW‘fhat fof each
x € C there is a g € B with GX(g) < 0. Let xe& C. Then
for each ¥y elD, we define a continuous affine fuctional Hy on
B by o

‘ Hy(g)’ = g(y - x) + po: g € B.

By Lemma 3, for each y € D, there is a g € B such that

g(x - y) = p(x -y). Hence we have

il

Ho(g) = -g(x - y) *+ pg

= -p(x - y) *+ pg
<0 .

Hence, by Lemma 2, there is a g, € B such that Hy(go) <0

for all y & D. Therefore we-have
- : <0
GX(gO) sup{ Hy(go) 'y e D} Q.

Let N be a normed linear space and N' the dual space of N,
that is, the set of all continpous linear functional from N into
R. For two subsets A and B of N, the distance d(A,B) between

A and B is given by inf{ Ix -yl : x ¢ A, y € B }.

COROLLARY 9. If C and D are nonempty convex subsets of
a normed linear space N such that d4(C,D) > 0, then there is

an f e N' such that [Ifl =1 ‘and
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inf{ f(x) : x e ¢ } = d(¢,D) + sup{ £(y) : y € D }

PROOF. By Theorem 6, there is an f & N' such that

f(x) < Ixl for all x € N and

inf{ f(x) : x € C }

d(c,D) + supl{ f(y) : y € D 1,

Then
d(C,D) = inf{ f(x) : x e C } - sup{ f(y) : y € D }
S<inf{ f(x -y) : x e C, y e D}
< inf{ Irl-lx -yl : x e C, y € D}
= lIrla(c,p) .
Since d(C,D) > 0, we have Ifl > 1 and hence Ifl = 1.
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