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PROGRAb4 AND ABSTRACT

1. T. Atsumi (Kagoshima University)

Johnson scheme and the fundamental relations of t–designs.

The foilowing results are given: Theorem le Vh =
Wh,hMh is an eigenspace for M:M2 (2 =lr...,t-h).
Theorem 2. Let (P, B) be a t-(v,]:,Z) design (i.e., Steiner

system) such that for any block B of B, the set of points

outside B, with blocks of the form B’ - (BAB’) where B’ is

a block with lBAB’l = t-1 is a 2-(v-k,k-t+1,c) design for

some integer c. Then W2,2M2 is an eigenspace for the
adjacency matrices of the Steiner system ¡P, B).

2. N. Ito (University of rllinozs at Chicago Circle)

Classifzcations of Hadamard 2-designs !r ZIe

iii
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There exist ll02 non-isomorphic 2-(23,ll,5) designs

(see [4]). Based on this classification we consider a few

ideas on the classification of Hadamard 2-designs.

M. Jimbo (Science University of Tokyo)

Cyclic neofields and cyclic 2-designs.

There is the ciose relation between the concept of

the neofields and that of the 2-designs with block size 3.

Zn this paper we shall show that the existence of the cyclic

2-designs of block size 4 is equivalent to that of some

cyclic neofields.

N. Hamada (Hiroshima University)

The geometric structure and the p-rank of an affine triple

system derived from a Moufang loop.

H.P. Young showed that there is a one to one corres-

pondence between affine tripZe systems and exp. 3-Moufang

loops (ML). Recently, L. Beneteau showed that (i) 3 S

lz(E)l s 3n-3 for any non-associative exp. 3-ML (Er’) with

IEI = 3n where n ) 4 and Z(E) is an associative center of

(E,’) and (u) there exists exactly one exp. 3-D4L, denbted

bY (Enr’)r such that IEnl = 3n and lz(En)l = 3n-3 for any
integer n ) 4. The purpose of this paper is to investigate

the geometrzc structure of the affine triple system derived

from the exp. 3-ML (Enre) using the transitivity of the
parallehsm and subsystems and to compare with the structure

of an affine geometry AG(n,3).

.
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J. Ogawa (University of Calgary)

Non-existence of certain block designse

Tn the non-existence proofs of symmetrical BTBD and

PBZBDr a more or iess systematic method is the use of the

Hasse-Minkowski p–invariant under the rational congruence

of quadratic forms. !n this article an exposition of the

Hasse-Minkowski p-·invariant and its use for deriving

necessary conditions for existence o£ symmetrical BZBD and

symetricaZ and reguiar PBZBD are presented.

K. Ushio (Niihama Technieai College)

On bipartite decomposition of a complete bipartite graph.

A complete bipartite graph K is said to have a
nlin2

bipartite decomposition if it can be decomposed into a union

of line-disjoint subgraphs each isomorphic to a complete

biPartite graPh Kkl,k2e !n this paper, a theorem which
states a necessary and sufficient condition for a complete

bipartite graph K to have a bipartite decomposition is
nl,n2

given. And several corollaries are also given.

S. Kageyama (Hiroshima University) and T. Tanaka

(Hatsukaichi High School)

On group divisible designs.

Generalizing methods of constructions of Hadamard

group divisible designs due to Bush (1979)r some new

families of semi-regular or reguiar group divisible designs

are produced. E‘urthermorer new nonisomorphic solutions for

some known group divisible designs are given, together with

v



useful group divisible designs not iisted in Clatworthy

(1973) .

8. K. Sawada (Nagoya :nstitute of Technology)

T-matrices of a special form.

It seems that recent advances in the construction of Hadamard

matrices owe much to Baumert-Hall array and Williamson matrices.

In order to construct a new Baumert-Hall array, Cooper and Wallis

considered T-matrices. A T-matrix is, by definition, a set of

four circulant (1,O,-1)-matrices Xl, X2, X3, X4 of order n, such

that only one of ak, bk, ck and dk is non-zero, where ak, bk, ck,
dk (k=O,1,...,n-1) denote the fir”st rows of Xl, X2, X3, X4

respectively, and satisfies XIXIt+X2X2t+X3X3t+X4X4t=nln· Cooper
and Wallis showed that if there exist T-matrices of order n, then

a Baumert-Hall array of the same order can be constructed by using

them.

In this paper we consider T-matrices of prime order p=‘’ 1

(mod 3), of a special form. Such a p can be uniquely written as

ct2+3B2, ct =- 1 (mod 3), B¿o. Let g be a primitive p-th root of
unity, y a primitive root of p, w an element satisfying w !￥ 1,

w3 =- 1 (mod p), and Fl(x), F2(x), F3(x), F4(x) generating functions
Of Xl, X2, X3, X4 respectively. Then H=¡T¿ for the automorphism
T:c- cW is a subgroup of order 3 of Galois group of Q(4)/Q. We

.
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consider T-matrices satisfying the following conditions: (i) Fl(4)

is invariant under H; (ii) F2(c), F3(4), F4(g) are transformed

cyclically by T, in th.is order; (iii) Fl(1)=oe and F2(1)=F3(1)=
=F4(1)-tB; (iv) Fl(c)Fl(c-1)+F2(c)F2(c-1)+F3(c)F3(c-1)+F4(4)F4(c’1)
=p·

We conjectured the existence of T-matrices of the above form

and have searched for them for p=13, 19, 31 and 37 by an electronic

computer. Our result is that there exist much more T-matrices of

the above form, compared to the usual Williamson matrices in our

form, appreciably more than we have expected.

9. M. Yamada (Tokyo Woman’s Christian University)

On the Goethals-Seidel matrices of a special type.

Whiteman proved the following theorem. If p is a prime and

q=2p-1 is a prime power, then there exists an Hadamard matrix of

order 4(2p+1). I.e. Let A,B,C,D be circulant matnces of order

2n with elements ± 1, let the number of 1’s in any row or column

of A be n-1, and the number of 1’s in any row or column of B,C,D

be n. If

AtA + BtB + CtC + DtD = 4(2n+1)I - 4J, (1)

then

A BR CR DR X

-BR A -tDR tCR Y
H= -CR tDR A -tBR Z

–DR -tCR tBR A W
-tx tY tZ tW K

V”



is an Hadamard matnx of order 4(2n+l), where J is the square

matnx of order 2n with every element 1, Ra fundamental back

circulant matrix of order 2n, X,Y,Z,W 2nx4 matrices defined by

X=(w,w,w,w), Y=(w,w,–w,-w), Z=(w,-w,w,-w), W=(-w,w,w,-w) with the

column vector w consisting of 1’s, and K the circulant matrix

of order 4 whose top row is (1,-1,-1,-1).

We interprete his construction by using the theory of a

fimte field. We let: I2 the umt matnx of order 2, Ip the umt
matrix of order p, T a fundamental circulant matrix of order 2,

Tp a fundamental circulant matrix of order p, g a primitive
element of GF(q2), 4p a p-th root of umty, x the Legendre
character of GF(q), s the trace from GF(q2) to GF(q), and ip the

quadratic chracter modulo p. We define ar=x(2)x(SqreP),
p-1

b . =x (2) x (sg r) , a nd A,B ,C ,D b y A =- (I2” T) XIp ” (I 2- T) Q .iiFl a4 . Tpr ,
p-l p-1

B= (I2-T)Q.=.ob4.Tpr, C=D”(I2’T)QrZ.1¢(r)Tpr+(I2-T)QIp. Furthermore
we deftne Q=B+i-PA, U=(1+i)C, so that the left-hand side member

**

of the equation (1) can be expressed as QQ +UU . Diagonalizing

Q, we have e=e21 (-i)r{x(sg2r)+iPx(sg2r’P)}cpr for the eigenvaiue
p-1

1 of T and diagonalizing IJ, we have n=rZ.1th(r)4pr for the eigenvalue
-le We know that e is the ratio of a Gauss sum over GF(q2) to a

Gauss sum over GF(q), and n is a Gauss sum over GF(p). The diagonal
**

elements of QQ and UU when diagonalized, are 4q and 8 for the

eigenvalue 1 of T, and 4 and 8p for the eigenvalue -1, but the

sum of these is 4(2p+1) in both cases.
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10. K. Yamamoto (Tokyo Woman’s Christian University)

On the Williamson equation generalized.

I£ A,B,C,D are circulant (1,-1)–matriees of order n satisfying

AA*+BBt”CC*”I)Dik=4nl, then thev will give rise to an Hadamard matrix

of order 4n o£ the Goethals-Seidel type. Assume n be odd and denote

the first row of A by (ao,al,...,an.1) and sirailarly £or B,C and D.

I£ ao=bo=co=do=1 and aibicidi=-1 £or i¿1, then the above equation
is iqitten as

( i +2.iiA; eTn xFn ) ( i ’2 ,31i emx’ra ) + ( i + 2..;iB e!n xM ) ( i ’2.ilB emx”’ Ui ) ”

+(1+2,IEil er,i)eM)(1”2,,iilL ernx”M)+(1+2 .;iDI emitM)(1+2.IFDemx’M) d=-:· 4n (mod xn-1)
a generalization of the Williamson equation, where A,B,C,D is now a

partition of the set {1,2,...,n-1} . The above equation seems to

have much more solutions compared to the usual Williamson equation.

’
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