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. On an Existence Theorem for Quasiperiodic

Differntial-Difference Equations -

M. ‘Kurihara and M. Hiraiwa

Faculty of Engineering, Yamanashili University

0. Introduction
We study a system of nonlineéf quasiperiodic differential-

difference equafions’of the form:

(0.1) . Sex(£)=X[t,x(t),x(t-1) 7. | |

Here a function f(t) of a real varlable t is called to be

quasiperipdic with périods:wo, w |

l’
as f(t)=f0(t,t,-'---,t) for some continuous function

AR if it is represented

o..-o,u with

fo(uo,ul,--}~-,um)_periodlc in‘eaqh Ugs Uy

w .....w N
0> ~1? - 2 m

To investigate the properties of quasiperiodic functions,

periods w

M. Urabel[l4] defined psuedoperiodic functions. A function f(t,u)
=f(t,u;,++-+,u ) of real variables t and u=(u;,*---*,u ) is .

called to be pseudoperiodic with periods w, and w=(m1,}--f-,wm)

0
if it 1is periodic in each u R L with periods Wys®tt e,

13
and in addition it_satisfies the equality

s o0 o.o‘ ’um)=f(t,u +(l)

+
£(t wysU 10>

1, ..'..’u"m-l-wo): :

It is shown [4] that a quasiperiodic function f(t) with periods
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WasWys® st ,0, is represented as f(t)=Ff(t,0) for some
continuous pseudoperiodic function F(t,u) in t and u=(ul,---~-,

um) with periods w, and w=(wl,-----;wm); In fact, f(t,u)=fo(t,

0
u +t,-~-~-,um+t). Moreover the pseudoperiodic function F(t,u)

1

is shown [5] to be uniquely determined for a quasiperiodic
function f£(t). In what follows, f(t,u) is called to be a
continuous pseudoperiodic function corresponding to a given
quasiperiodic function f(t).

We associate with the system (0.1) a system of nonlinear

pseudoperiodic differential-difference equations of the form:
d
(0.2) agx(t)=X[t,u,X(t),X(t—T)].

In’this papef we provebtwo main theorems séyiﬁg fhat one
can always assure the exlistence of an exact éuasiperiodic |
solution of the system (0.1) and an eXaét péeudoperiodic
solutioh of the sysfem (0;2) by éhécking several conditions on
:anrobtainéd approximate solution and furthér they give a method
to obtaln an error Bound‘oftthé'apprbiimate solution. Finallji
we give a numerical'example of a system of nonlinear
quasiperiodic differential-difference eqﬁations to apply our‘
maih theorems. |

The analoguous theorems were originally proved by M. Urabe
[51[6]1[7] for systems of nonlinear quasiperiodic and
§Seudoperiodic differential'equations;\Afferﬂhim T. Mitsui [2]
completedAnuméricél—analytical methods of M. Urabe's with |
precise a posteriori estiﬁéte and ga?e'éome nuﬁerical éXampleS
for quasiperiddié differeﬁtiél'eqﬁatidns. T
Throughout the paper we assume without any loss of
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generality that mi>p fgr i=0,1,**+++,m and that the reciprocals
of these periods are rationally linearly independent [5].

In Section 1 we define the regularities of pseudoperiodic
differential operators and quasiperiodic ones. Further we give
.theorems concerning Green functions for these operators. In
Section 2 we state our main theorems. InvSeétign 3 and 4 we
prove our main theorems by using the facts givénbin Sectibn 1.

In Section 5 we give an example to apply our last theorem.

1. Reguiarity of Liﬁéar Differential Systems
Let_A(t,ﬁ) be a continupusvsquare matrix pseudopériodic'in
t and u with periods wo and'w. Denote by L a.pseudoperiodic
differential operator of the form:
=4y _
(l.l)} Ly.—dt A(t,u)y._

M. Urabe [4] called the operator L to be regular if there is a
continuous square matrix P(u)=P(ul,-----,um) periodic in each
Upseoere,Uy with periods Wys* ot e,w, satisfying the conditions

as follws:

(1.2) P(u)2=P(u)

(1.3) | ||U(t,u)P(u)H;KOe—Ot for t>0,
(1.4) JUCt,u) [E-P(u) ] <K e ™% for t<0,
(105) | P(U."’yU)O)U(»U)O,‘U.)=U(UJO,U~)P(U.),

where E is the unit matrix, U(t,u) 1s the fundamental matrix of

the linear differential system Ly=0 satisfying U(0,u)=E, KO and

0 are some positive numbers and | | denotes any norm.
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M.'Urabe-[M] proved the'follbwihg theorem:

Theorem 1.  Suppose that the pseudoperiodic differential
operator L defined by (1.1) is regular. Then L has a Green
function G(t,s,u) with the property

(1.6) uG(t,s,u)u;Ké‘O‘t'sl

for all t, s and u and for some K>0 and 0>0. Here the Green
function is given in the form:

| U(t,uw)P(w)U  (s,u) for ts

G(t,s,u)= -1
-U(t,u)[E-P(u)]U “(s,u) for t<s,

where U(t,u) is the fundamental.matrix bf the linear system
Ly=bysatisfying U(O,u)=E and P(u) is a matrix in the definition
of regulérity of L. Moreover fof any continuous pseudoperiodic

function f(t,u) with periods w, and w the differential system

0
Lx=f(t,u) has a unique solution x=x(t,u) pseudoperiodic with

perlods mo

and w and it 1s given by

[e0]

’(1{7) “ X(t,u)=J G(t,s,u)f(s,u)ds.

Let A(t) be a square matrix gquasiperiodic in t with

periods WosWys®® oo 0 and denote by A(t,u) the continuous

l,
pseudoperiodic matrix corresponding to A(t). The quasiperiodic

differential operator L defined by

(1.8) Ly==£-A(t)y

is called to be regular if the cbrresponding pseudoperiodic
differential operator L defined by

i1s regular.
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Concerning quasiperiodic  differential operators, M. Urabe
[4] also proved the theorem as follows: .

Theorem 2. Suppose that the quasiperiodic differential
operator L defined by (1;8) is regular. Then L has a Greeéen
function G(t,s)=G(t,s,0) with the property

(1.10)  |6(t,s)]<ke™01E=5]

for all t and s for some K>0 and ¢>0, where G(t,s,u) is a Green
function of the pseudoperiodic differential operator E;
corresponding to L. For any quasiperiodic function f(t) with

periods Wy »W

R, and it is given by

(o]

(1.11) X(t)=J G(t,s)f(s)ds.

—®
It is noted that a quasiperiodic fundtioh is almost
periodic [3]. It is seen [7] that a regular quasiperiodic
differential operator L in (1.8) is also regular as an almost
periodic operator. The notion of regularity of almost periodic’
operators was introduced by S. Burd, Ju. S. Kolesov and M. A,

Krasnosel'skii [17.

2." " Main Theorems

We prove the theorem on a system of pseudoperiodic
differéntial—difference equations (0.2) as follows:

Theorem 3. Let D be a bounded domain in N-dimensional
Euclidean space‘RN with any norm | |. X[t,u,x,y] in (0.2) is
assumed to be a continuous function mapping from the'space‘
RxRUXDxD into RN, pseudoperiodic in t and u=(ul,°°-'-,um) with
periods

O‘andfw=(wl,'-ii-,wm)jand'COntinuously'differentiable
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with respect to (x,y) in DxXD. Suppose that the system (0.2) has
an approximate solution x=x0(t,u) pseudoperiodic in t and s
with periodS“wO and w such that xo(tju) in D for all t and u,

dxo(t,u)/dt is continuous of (t,u) in RxR™ and that

(2.1) xo(t,u)—X[t,u,XO(t,u),Xo(t—T,u)]H;r

15
dt
for all t and u. Further suppose that there are a positive
number ¢, nonnegative number « aﬁd ¢ and a continuous matrix
A(t,u) psuedoperiodic in t and u with periods Wy and w

satisfying the conditions that the pseudoperiodic differential

operator L defined by (1.1) is regular, D includes Dd defined

by

(2.2) D6={X|HX—xo(t,u)H<6 for some (t,u) in RxR"},
(2.3) lelt,u,x,y1-A(t,u)|<k/M

and

(2.4) l¥lt,u,x,y1<u

for any (t,u) 1in RxR™ and any (x,y) in DéxDé’
(2.5) - k+Mu<l and Mr/(l-k-Mp)<S§.
Here ¢[t,u,x,y] and ¥[t,u,x,y] are the Jacobian matrices of the
function X[t,u,x,y] with respect to x and y respectively and
M=2K/0, where K and ¢ are positive numbers in (1.6) for a Green
function G(t,s,u) of L.

Then the given system (0.2) has a uniqﬁe solution x=%(t,u)

pseudoperiodic in t and u with periods w, and w lying in DG for

0
all t and u. Moreover it satisfies the inequality
(2.6) ux<t,u)-xo(t;u)n;Mr/(l-K-Mu)

for all,t and u.

We also prove the theorem on a system of quasiperiodic
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gifferential-difference equations (0.1) as follows:

Theorem 4. Let D be a bounded closed domain in R with
“any norm | |. X[t,x,y] in (0.1) is assumed to be a continuous
function mapping from RXDXD into RN quasiperiodic in t with

eriods W.,w,,*****,w_and the pseudoperiodic function
p 0 m

lﬂ
X[t,u,x,y] corresponding to X[t,x,y],is continuously

differentiable with respect to (x,y) in DxD. Suppose  that the
system (0.1) has an approximate solution x=x0(t) guasiperiodic

in t with periods wo,w TrertLwy such that the continuous

1)
pseudoperiodic function io(t,u) corresponding to xo(t) is
continuously differentiable with respect to t for all t and u,

xo(t) for all t and
(2.7) S, (8)-XIt,x,(8) ,x, (6-1) I <r

for all t. Further suppose that there are a positive number §,
nonnegative numbers k and u and a continuous matrix A(t)

quasiperiodic in t With periods wo;w °~---,wm satisfying the

1}
conditions that the quasiperiodic differential operator L
defined by (1.8) is regular, D includes D6 defined by

D5={X{"X—X0(t)”<6 for some t in R},

(2.8) [olt,x,y]-A(t)] <x/M
and | .
(2.9) lvlt,x,yll<u

for any t in R and any (x,y) in DGXDG’

(2.10) K+Mu<l and Mr/(l-k-Mp)<S$.

Here o[t,x,y] and ¥[t,x,y] are the Jécobian matrices of the
function X[t,x,y] with respect to x and y respectively and
M=2K/0, where K and ¢ are positive numbers such that a Green
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function G(t,s,u) of the pseudoperiodic.differentialkpperator’i
in (1.9)Jcorresponding to L satisfies the inequality

(2.11)  [8(t,s,w]<ke™® 15

for all-t, s and u.

Then the given system (0.1) has a unique solution x=ﬁ(t)
quasiperiodic in t with periods WysW sttt 0 lying in D(S for
all t. Moreover it satisfies the 1nequality
(2.12) [ 2(8)=xy(6)] e/ (1-k-Mu)

for all t in R.

3. Proof of Theorem 3

We denote by PC(RXRm,RN) the space of continuous functions
x=x(t3u) pseudoperiodic in t and u wirh periods Wy and w
mappipgﬁfrom R%Rm into RN and define the_norm

il gmmaxt]x(s,w] | (5,u) in RxE™)
for any X=X(f,u) in PC(RXRm,RN). Rewrite the given system k0.2)
in the fbrm: | | »V o |
(3.1) %Exét)=A(t,u)x(t)+f(t,u;x)
where
f(t,u;x)=X[t,u,x(t,u),X(t—T,g)]—A(t,u)X(t,u).
For the given approximate solution x=k0(t,u) we put

(3.2)  Sgro(t,w)=KlE,u,xo(E,u),xg(5-,u) I+h(t,u).

Note that h(t,u) belongs to PC(RxR™,RV) and that

(3.3) In(t,u)|<r
for any (t,u) in RXRm‘by (2.1). The eQUality (3.2).,can be:

rewritten in the forms of (3.1) as follows: ~
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(3:.8)  Spxo(E,w=Alt,wWxg(E,w)+E(E,usx ) +h(t,u)

Note that f(t,u;xo) is in PC(RXRm,RN). Applying Theorem 1 to

the system (3.4), we have

(o8]

(3-5)  xpltw=] alt,s,u)[E(s,u5mp)h(s,u)1ds,

oo
where G(t,s,u) is a Green function for the pseudoperiodic
differential operator L. |

To seek an exact pseudoperiodic solution of the system

(0.2), we consider the iterative process
(3.6) Xn+l(t,u?=f G(t,s,u)f(s,u;xn)ds

for n=0,1,2,¢++++. We can prove that the above process can be

continued infinitely in the space PC(RXRm,RN) and that

(3.7) | ” Xn+l_xn” Ci(K+MU)nl| Xl_Xouc
and
(3.8) [ %p17%ol 028

for n=0,1,2,+++++, In fact, for n=0 (3.7) is evident. Since
xl(t,u)=J G(t,s,u)f(s,u;xo)ds,

it follows from (3.5) that

Xl(t,u)—xo(t,u)=—j G(t,s,u)h(s,u)ds.

-0

Then by (1.6), (3.3) and (2.5) we have

(3.9) I %) -x, | q<Mr<(1-k-My) §<8.

This proves (3.8) for n=0. To prove our statement by induction,

let us assume that the iterative process (3.6) has been
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continued up to n-1 and that we have obtained (3.7) and (3.8)

up to n-1. We can make xn+l(t,u) by the relation (3.6). Then

(3.10) (t,u)—xn(t,u)

Xn+l
=J G(t,s,u){X[s,u,xn(s,u),xn(s—T,u)]

—X[s,u,xn_l(s,u),xn_l(s—T,u)]

—A(s,u)[xn(s,u)—xn_l(s,u)]}ds

T 8 (s,u),x0( )]
=) ,S,1 ; s,u,x (s,u),x (s-t,u

—A(s,u)}[xn(s,u)—xn_l(s,u)]deds

.00 1 E
+f G(t,s,u)f W[S,u,xe(s,u),xe(s—T,u)]
. 0 n n

x[x (s-1,u)-x__;(s-1,u)]deds,

where

Xg(t,u)=xn_l(t,u)+9[xn(t,u)—xn_l(t,u)]

for 0<6<l. It follows from (1.6), (2.3) and (2.4) that

D L r1s ) e Sy LG ] S

This implies the relation (3.7) by the assumptionrof induction.

Moreover it follows that

n

(3.12) “xn+l—xouCiiZO(K+Mu)onl—XOHC;[l/(l—K—Mu)]ﬂxl—xOHC
<Mr/(1-k-Mu)<S§.

This proves (3.8).

4Theh we obtain an infinite sequence {xn(t,u)} in the space

PC(RXRm,RN) by the iterative process (3.6). It is easily seen

-10-
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from (3.7) and (2.5) that the sequence {Xn(t,u)} is uniformly
convergent to a function X(t,u) in PC(RXRm,RN). Further letting
n to infinity in (3.12) and (3.6), we have (2.6) and
%(t,u)=J G(t,s,u)f(s,u;&)ds,

which implies that d&(t,u)/dt=A(t,u)R(t,u)+f(t,u;R)=X[t,u,
2(t,u),&(t-1t,u)]. Thus x=X(t,u) is our desired solution in
PC(RXRm,RN) of the system (0.2) lying in Ds for any (t,u) in
RxR" and satisfying (2.6).

In order to prove the uniqueness of pseudoperiodic
solutions of the system (0.2), we consider another solution
x=%'(t,u) in the space PC(RXRm,RN) of the system (0.2) lying in

D. for any (t,u) in RxR™, Then we have d&'(t,u)/dt=X[t,u,

S
' (t,u),&'"(t=-1,u) ]=A(t, )& (t,u)+f(t,u;&"), which implies
[>¢]

ﬁ'(t,u)=J G({t,s,u)f(s,u,&')ds.

Using the relations (1.6), (2.3) and (2.4), we have
(3.13) | -2 < Cetmu) | 2-2"] 4
by the same arguments as those in proceeding from (3.10) to

(3.11). It follows from (2.5) and (3.13) that nﬁ-ﬁ'uc=o. This

proves the uniqueness of pseudoperiodic solutions of the system

(0.2) 1lying in Dy for all t.

b, Proof of Theorem 4

At first we use for the proof of Theorem 4 the following

lemma proved by M. Urabe [5].

Lemma. Let fi(t) (i=1,2,°*+++,n) be arbitfary/functions
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quasiperiodic in t with periods w -----,wm and fi(t,u)=

Oawla
fi(t,ul,u2,°----,um) (i=1,2,+++++,n) be continuous
pseudoperiodic functions corresponding to fi(t) respectively.
Then for arbitrary t and u to any positive number € corresponds
a number & such that ”fi(t,u)—fi(i)ﬂ<e (i=1,2,+++++,n).

Now we are inra position to prove Theorem 4. Let Eo(t,u)
be the continuous pseudoperiodic functioﬁ corresponding to
xo(t). Then by Lemma for arbitrary t and u'to any positivé

number & corresponds a number & such that

(4.1) Iz (t,u)-x,(E)] <e.

Since Xo(t) is in D for all t, Eo(t,u) is in D=D for all t and
u, where D is the closure of D. Let X[t,u,x,y] be the

continuous function pseudoperiodic in t with periods wy and w=

(wl,---°-,wm) corresponding to X[t,x,y]. The function
dio(t,u)/dt—i[t,u,io(t,u),io(t—T,u)] is continuous and

pseudoperiodic in t and u with periods w, and w=(w. ,*****,w

0 1° m).

Therefore by Lemma for arbitrary t and u to any positive number

€ corresponds a number £ such that

d
(h.2) &
(5% (8) XLt x4 (£) 10 (5-T) 1 _ | <e.

io(t,u)—i[t,u,io(t,u),io(t—T,u)]}

Then by the assumption (2.7) it follows that

(4.3)

”%gio(t,u)—i[t,u,io(t,u),io(t_T,u)]”<r+€.

Since e is arbitrary, letting e to +0 in (4.3), we have

(4.h) io(t,u)-i[t,u,io(t,u),Eo(t-T,u)]”ir J

k=
dt

for any (t,u) in RxR".

~12-
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Consider x such that

1.5 leEy(e,wl<s.

Then there is a pos1t1ve number 6 <o such that

(4.6) "X X, (t u)"<6 <s.

Let € be an arbitrary positive number such that

(4.7) 0<e<6- 6

Since x (t u) is continuous and pseudoperlodlc in t and u w1th
periods wo and w, by Lemmma, there is a number g€ such that v
[x,(t,u)-x (E)ﬂ<e Then by (4.6) and (4 7) we have Hx -X (£)H<6
It follows from the assumptlons of Theorem 4 that

(4.8) | Dg={x: | x-x% X, (t u)"<6 for some t and ul} in D.

Let 3[t,u,x,y] and ¥[t,u,x,y] be the Jacoblan matrices
with respect to x and y respectively. Moreover let A(t u) be
the continuous pseudoperlodlc matrlx correspondlng to A(t)
Lemma for any positive number € satlsfylnf (4 7) there ex1sts a
number & such that ﬂxo(t,u)—xO(E)H<e, H{¢[t,u,x,y]—A(t,u)}
-{o[&,x,y]-A(&)}| <e and HW[t;u,x,y]—W[E,x,yjn<€;'Then for any x
satisfying (4.6) we have HX—XO(E)H<6.7By>the assumptions (2.8)
and (2.9) we obtain H5[t,u,x,y]-ﬁ(t,u)ﬂ{(K/M)+e and
190t ,u i,y]“<u+e Since € is an arbltrary p031t1ve number
satisfying (4.7), letting € to +0, we have
(4.9) 130t ,u,x,y]-E(t,u)]| /M
(4.10) 190t ,u,x,y]]<u.

This proves that (4 9) and (4 10) are valid for any (t,u) in
RxR™ and (x,y) in DdeG | 7
By (4.4), (4.8), (4.9) and (4,10) we see that ali the

conditions of Theorem 3 are fulfilled for the pseudoperiodic

-13-
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differential system

(4.11) %Ex(t)=i[t,u,x(t),x(t—T)].

Hence by Theorem 3 it is seen that the éystem‘(u.li) has a
solution x=x(t,u) pseudoperiodic in t and u with periods wb and
» such that '

(h.12) | x=% .|| ~<Mr/(1-k= Mu)<6

%ol o<
Put &(t)=%X(t,0). Then x= x(t) 1is a solution of the system (O 1)
qua51per10dlc in t w1th periods wo,w -;---,wmi It follows from

(U 12) that "x -x <Mr/(1 K— Mu), which implies (2.12).

ol o
It now remains to prove the unlqueness of qua51perlodlc
solutions. Let x= ﬁ(t) be an arbltrary solutlon of the system

(0. l) qua51perlod1c in t with perlods w ,w ---'-;w lying in
0 m

13
Dg for all t. Then we have dﬁ(t)/dt=X[t,ﬁ(t),ﬁ(t—T)]ﬁA(t)ﬁ(t)+
{X[tgﬁ(t),ﬁ(t;f)]—A(t)ﬁ(t)}. By Theorem 2 for the régulaf

operator Lkwe have
(1.13)  2(6)=[ 6(5,8)(XLs,8(s),8(5-1)1-A(s)8(3) ) ds.

Suppose that the system (0.1) has two solutions'x=ﬁ(t) and
x=8'(t) quasiperiodic in t with periods wo,wl,----é,mm lying in

DG for all t. Then we also‘obtain

(4.10) 'ﬁ'(t)=J 6(t,5){X[5,8' (s),8" (5-1)1-A(s)R" (3) }ds.

Making use of the same arguments as those in proceeding from
(3.10) to (3.11) for the relations (4.13) and (4.14) and noting
the assumptions (2.11), (2.7) and (2.8), we have

(4.15) [ 2-2"] <(2K/0) (k/M+u) | 2-2"] Gttt | x-x

I o< Ig-
It follows from (2.10) and (4.15) that uﬁ—ﬁ'nc=0. This proves

=14-
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the unlqueness of quasiperiodic'solutions’and thus completes

the proof of Theorem 4.

5. An Examp}e"_'”

In order:FO}appiy Theorem_ﬁ, we'give an example'introduced
and computed'by:M.'Hiraiwa [8].‘Qonsider'a system of
differentiaiQdifferehce equations of the form:

dt l(t) x (t)

(5.1)
a_
at* 2

(t) —cost+lcos/2t 2x, (t) gx (t)+—€x (6o 1)

The right member of (5 1) denotes X[t x(t) x(t-=1)] for x(t)“
(Xl(t)’x2(t2>fiTh? functlon X[t,x,y]~ls smooth of (t,x,y) in
Rngsz anquqasiperiodic in t with periods 2m and 2ﬂ/V§, Note
that the function

%5

(5.2) X[t u X,y] 2

1
X1 8 > 16y1

Ecost+lcos/2(u+t) 2X.

2
is the pseudoperiodic one corresponding to X[t,x,y];f':“t?'

By using the Galerkin's procedure and carrying out by a
digital computer, we can obtain an approximate solution of the
system (5.1) of the form x (t) (x (t), dx (t)/dt) Here Xg(t)=’

T (t t) and

(5.3 70 (u ,u,)= { ( +B )}
) 1(ug U, |p;§u apeos D,V u) 51n(p v,u

where p=(p1,p2) is a pair of integers with |p|=|p1|+|p2|,
(p,v,u)=p1vlu1+p2v2u2 for vl=1 and‘v2=/2. The coeff1c1ents o
and Bp in (5.3) are computed as indicated in Table. It is noted
that the function xg(t) is quasiperiodic with periods 2m and
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Table. The coefficients of Tg(ul,ug)

P | p p

( 0, 0) .3795834E+00

(1, 0) -.1574205E-01 ~.6167170E-01
( 0, 1) .56067T71E-02 -.1574205E-01
( 2, 0) .4749099E-0L .2953473E-01
(1, 1) .1342754E-04 .5606771E-02
g 0, 2) .1948652E-05 .3961999E-04
-1, 1) .2778561E-03 .4749099E-04
( 3, 0) .40266L46E-07 .5281227E-05
(2, 1) .1739084E-07 .1342254E-04
(1, 2) .2720843E-07 .1967783E-08
% g, 33 .4725222E-07 .19u8352E-02
-1, -. - -. 2E-0
(-2, 1) Z: 369385228 137788855203
(4, 0) . 9457390E-09 -.1037135E-07
( 3, 1) .1770202E-09 .40266U46E-07
(2, 2) .2757679E-09 -.9750039E-08
(1, 3) .1413319E-07 .1739084E-07
( 0, 4) .3151296E-08 .1704890E-08
2-1, 3) -.2259874E-07 .2720843E=07
-2, 2) .6152877E-08 -.4391073E-07
(-3, 1) .4286024E-07 .4795622E-07

j=s}
]

.6693911E-06 W= .4736636E+00
2m/v2 and Eg(t,u)=Tg(t,t+u),is the pseudoperiodic'function
corresponding to Xg(t), o ; ’

Denote that Hx(t)H=max{|xl(t)|,lxg(t)|} for any function
x(t)=(xl(t),x2(t)).kFor the obtained approximation xo(t) the
positive number r in (2.6) and w satisfying '

(5.4)

are also computed as indicated in Table.

max{ﬂxo(t)":t in R}<w

The Jacobian matrices of'X[t,x,y] with respect to x and y

are derived in the forms:
‘ 0 1
olt,x,y] '
-2 .-1/8

- ~16-
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-0 o}
(5.6) ¥lt,x,yl=| .
yl/8 0

We choose a matrix A(t) in the assumptions of Theorem 4
as follows:
_ 0 0
(5.7) A(t)=A(t,u)= >
-2 =1/8
.which is quasiperiodic and pseudoperiodic. The fundamental
matrix U(t,u) with U(0,u)=E (the unit matrix) of the linear
'system-

(5.8) Ey=%%—ﬁ(t,u)y=0

is given in the form:

cosAt+(1/8A)sinAxt (1/)A)sin)t
U(t,u)=e"(1/8)¢

-(2/\)sinxt ‘cosAt-(1/81)sinAt
where A=/2-(1/64). If we choose P(u)=E, the axioms (1.2)-(1.5)
are fulfilled. Hence, the pseudoperiodic differential operator
L in (5.8) is regular. Therefore the quasiperiodic differential
operator L defined by Ly=dy/dt-A(t)y is regular. A Green
function G(t,s,u) of the operator L is given-as follows:

_ U(t-s) for t>s

G(t,s,u)=

- 0. for t<s

and hence |G(t,s,u)|<Kexp[-(1/8)|t-s|],. where K=v2(V/2+1)/AX.

For any x in DG defined in the aséumﬁtions of Theorem‘ﬁ we
have | x|<8+[x,(t)]<8+w by (5.4) and thus Hf[t,x,y]”=(l/8)ly1|i
(6+w)/8. The inequality (2.8) automatically holds. In order for
all assumptions-of Theorem 4 concerning the system-(5.1) to:be
fulfilled, it is sufficient that we choose k=0, u=(d6+w)/8 and a

positive number § satisfying the relations (2.10); that are,
-17-
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(5.9) M(8+w)/8<1 and Mr/[1-M(8+w)/8]<8,

where

(5.10) °~ M=2K/(1/8)=16V/2(V2+1)/X.

Actually we can choose 6=4.1768UHX10_6 so as to satisfy the-
relations (5.9) and (5.10).

Hence it is concluded by>Theoreme that there exists
uniquely an exact solution x=ﬁ(t)=(ﬁl(t)5ﬁ2(t)) of the system
(5.1) quasiperiodic with periods 2m and 27m/vV2 1lying in Dg for
all t and it satisfies the error estimation of the form:

I%(t)-xy (t)] <6=h.176844x1075.
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