goooboooogn
0 436 O 1981 0 82-116

82

List Processing on A Data Flow Machine

Makoto AMAMIYA, Ryuzo HASEGAWA,

and Hirohide MIKAMI

Musashino Electrical Communication Laboratory, N.T.T.

Midoricho 3-9-11 Musashinoshi Tokyo 180 Japan

1. Introduction

The data flow machine, whose basic idea was’ offered by J.
B. Dennis [1] and for which several researches are pursued at
several places in the world ([2,3,4,5,6], 1is very attractive
concept as a computer architecture from the following view
points:
(1) The data flow machine exploits parallelism inherent. in
problems,'and executes it in a highly concurrent manner.
(2) The recent advances 'in VLSI technology are noteworthy. One
of the main problems of computer architecture is the way to
construct the systems which utilize a large amount of VLSI
devices. The data flow machine enables the implementation of
distributed control mechanism which is a key problem when making
use of VLSI devices. |
(3) It is a serious problem in software engineering how tb make a
program highly productive and easy to verify, test and maintain.
One solution for this »problem is to write side—-effect free

programs based on functional programming concept. The data flow

83

List Processing on A Data Flow Machine

machine effectively executes the side-effect free programs
written in a functional language such as pure lisp, due to the
parailelism.

(4) Non-deterministic execution will become one of the important
mechanism in computer systems, when making the problem solving
concept obtained in the AI research more applicable to the real
world problems. The data flow machine is expected to execute
non-determinism effectively due to parallel processing.

However, there exist many problems to be solved in order to
make the data flow machine actual in real environment.
Especially, from the view points of (3) and (4), it is necessary
to make clear the applicability of the data flow machine to the
non—numerical problem. This implies'the necessity of solving'the
problem of étructure memory construction. List processinénis
typical of non—numerical data processing. This paper discusses
list processing on a data flow machine, with thé Lisp data
structure and operations in mind. The main reasons why Lisp is
considered are that Lisp has simple and transparent structure in
program and data, and that it contains the basic problems in the
structure data manipulation even in the simple structure.

In conventional Lisp implementations, it is inevitable to
introduce the side-effect facilities such as prog-feature in
order to obtain efficient executions on von—-Neumann type
computers, i.e., high speed execution under the sequential
execution control environment and efficient memory usage under
the centralized memory management. However, if machines obtain

highly parallel execution under the data flow control

84

List Processing on A Data Flow Machine

environment, and if VLSI technology offers computer architecture
the high level functional memory devices, side—effect free 'and
pure functional list processing will make sense in practical use.

This paper shows that the data flow control is effective in
list processing. First, the parallelism in list processing is
discussed and it is pointed out that it can be achieved by
parallel evaluation of function arguments and partial execution
of function body. Then it is shown that the parallelism
increases drématically by introducing lenient cons concept into
the data flow execution control; that 1is, the 1lenient cons
brings data flow systems the pipelined execution among activated
functions because each activated function executes each data
item (in 1list) as soon as it is partially construéteé. The
effect of lenient cons on 1list processing is shown through
anaiyses of several programs.

Finally a garbage collection algorithm based on the
reference count method is discussed. The garbage collection is
also important problem in list processing in order to utilize the
memory cells effectively. The algoritm ié essentially parallel
in the sense that cells are reclaimed whenever it becomes
useless, independently of the foreground list manipulation.

All programs throughout this paper are described in the
language Valid [7] which is designed as a high level programming

language for the data flow machine presented in this paper.

85

List Processing on A Data Flow Machine

2. List processing under the data flow control environment

The remarkable effects of data flow execution control are
the followings.

(1) It exploits maximal parallelism inherent in a given program
both on a 1low 1level (primitive operation level) and on a high
level (function activation level).

(2) It effectively executes programs constructed based on the
concept of functional progamming which has no notion of program
variables and .side effects (i.e., re-writing the global
variables).

The parallelism of primitive operation level is obtained by
the data driven control principle; that is, each operation is
initiated without attention to other operations when all of
its operands have arrived. The parallelism of function
activation level is obtained by the partial evaluation mechanism:
(a) Each argument of a function is evaluated concurfently. (b)
The execution of a function is initiated when one of the
arguments of the function is evaluated, and the caller function
resumes its execution when one of the return values. is obtained
in the invoked function execution.

In conventional list manipulation, there exists a case in
which the partial execution of function evaluation is not
. effective, since an execution using a. list data which is
generatéd by another function has to wait until its construction
is completed. However if lenient cons concept is introduced, the

- consumer function which uses list elements partially can start

86

List Processing on A Data Flow Machine

its execution as soon as the producer function generates a
fragment of the 1list partially before it constructs the whole
list.

In this section, these parallel execution mechanisms are
examined through several examples, whose programs are written in

Valid. (Some of Valid features are described in Appendix A.)

2.1 Parallel evaluation of argquments

Programs written in Valid are equivalently transformed to
pure; functional representation, i.e., the form of ptefix
notation, and equally translated to data flow graphs. For
instance, Programl which reverses a given list in each level is
translated by the Valid compiler into the data flow graph‘ shown
in Fig.z.l; Block2 in Programl is equivalently represented in

the prefix notation
fulrev(cdr(x), cons(fulrev(car(x), nil), v)) .

In thié expression, the two arguments cdr(x) and cons{...)
of the function fulrev are evaluated in parallel, and before
evaluating the argument cons(...) , its two arguments fulrev(...)
and y are evaluated in parallel, and so on. Thus the evaluation
of a function, in general, proceeds from the inner to the outer
(i.e., innermost evaluation), and this results in the highly
parallel evaluation of the .innermost arguments. This is
equivalently said in other words; each evaluation is independent i
of the other evaluations under the condition that the eQaluation“

is initiated only when the values of all of the arguments are

87

List Processing on A Data Flow Machine

obtained, (which is called a data-driven control).

programl -- Mirror image of tree X Y

fulrev: function (x,y) return (list)
= case '

null(x) => y;

atom(x) -> x:

others -> clause
u = cdr(x):; DGb Nj

v fulrev(car(x),nil);
block2 w cons(v,Y);
return fulrev(u,w)
end

end

Fig.2.1
Data flow graph of fulrev

The parallelism in Lisp 1.5 interpretation [8] is also
achieved by implementing the interpreter based on the data flow
control concept. An implementation is represented in Appendix B.
In the implementation, the parallel execution is exploited in the
evcon and eval recursion. In the course of argument evaluations,
evlis forks eval function for each érgumentdand each evaluated
argument value is consed finally. The parallel eval activation
in evlis is effective. The following program written in
m-expression uses divide and conquer algorithm for factorial
calculation.

fact[m;n]
= [equal[m;n] -> n;

t -> times{fact[m;quotient[plus(m;n];2]];
: ‘ fact[addl[quotient[plus{m;n];2]]1;n}]]

SO S S U |

88

List Processing on A Data Flow Machine

Evcon also has a possibility for parallel execution. The
implementation in Appendix B uses loop control according to the
Lisp 1.5 semantics in which the predicate parts of cond
expression are evaluated sequentially. However if evcon is
implemented by recursion as shown below, eval which evaluates the
predicate part is activated in parallel.

Evcon: function(s,c,a) return(list)
= if c=nil then novalue
else clause

if Eval(caar(c),a) then Eval(cdar(c),a)
else novalue;

Evcon(s,cdr(c) ,a)
end

Where a signal value is used for the top 1level activation of

chon; Evcon('s',c,a).
in order to make effective use of parallel control in evcon,
the conventional Lisp program must be modified. For inétance,
the conventional equal function is modified to
equalx;y]
= [and[atom[x];atom[y]] -> eqlx;yl;

not[or[atom[x];atom[y]]] -> andl[equallcar(x];carlyl];
equal [cdr[x];cdr([yl]];

t -> f]

Parallel execution of evcon has the potential to
non~deterministic control {91, though the incarnation of
mechanism and integration to semantics of Valid are the problems

to be solved.

2.2 Partial execution of function body

The parallelism based on the parallel evaluation of

83

List Processing on A Data Flow Machine

arguments of each function is 1limited because the nesting of
arguments is limited in source text. This restrictions on
parallelism, however, can be overcome by executing function body
partially.

If the data—-driven control principle is applied to the
function activation, as in the case of primitive operations,
every function is activated only after all of its arguments are
evaluated. In this case, the unnecessary time is wasted in each
function activation by waiting for the completion of all its
argument evalu;tions. On the other hand, the partial execution
of function body enables each value of arguments to be passed
into the function body immediately when it is evaluated, and the
ekecution'of the body to.proceed partially every time the value
is passed into. In the same way, it enables each of the return
values to be passed back to the calling function as soon as it is
genérated, and the <calling function to resume and proceed the
execution partially every time the return value 1is passed back
from the called function. Where each function is permitted to
return multiple values (i.e., the tuple of values) under the data
flow control environment.

This mechanism has an effect that each function call has
been replaced by its body initially, and that the parallel
evaluation of arquments: goes beyond the barrier of function
invocation and restrictions mentioned above.

For instance, the function partition is activated when the
argument cdr(x) or y is evaluated in the function sort of

Program2, which sorts a list x by Quicksort algorithm. In the

90

List Processing on A Data Flow Machine

case of this program, as the evaluation of y means the evaluation
of the expression list(car(x)) , the value of cdr(x) will be
generated just before the y is generated. So that, when the
second argument is passed into the partition body, then-part or
else~-part will be ready to run. The function partition returns
three values. In the else-part of the partition body, for
instance, the values wl, w2 and w3 are generated by the function
partiction and are used in return expression, so if each of wl, w2
and w3 is returned immediately when it is generatéd, each of
these values is used and passed back to the <calling function;
for example, in case of xl=yl, wl and w3 are passed back to the
calling function directly, while w2 is appended to 1list(x) to
generate a new 1list which 1is passed back. The innermost
recursion phase of partition returns each of three values nil, y,

and nil, independently.

Program2 -- Quicksort program

sort: function (x) return (list)
= if x=nil then x
else clause
y = list(car(x)):;
[yl,y2,y3] = partition(cdr(x),y):;
return append(sort(yl) ,append(y2,sort{y3)))
end;)

partition: function (x,y) return (list,list,list)
= if x=nil then (nil,y,nil)
else clause
[wl,w2,w3] = partition(cdr(x),y):
x1l = car(x); yl = carl(y):
return
case
xl=yl -> (wl,append(list(x1l),w2),w3)
x1<yl -> (append{list(xl),wl),w2,w3)
x1>yl -> (wl,w2,append(list(xl) ,w3})
end

enda;

-
14
.
7’

I

List Processing on A Data Flow Machine

In this way, many partition functions are activated and are
executing their body partially. As the same may be said of the
function sort, Program2 sorts the input 1list x in the highly
parallel execution.

The partial execution of function body has also an effect on
the Lisp 1.5 interpreter, because the interpreter executes Lisp
programs in high parallelism due to the partial execution of each
body of the function eval, evlis, and evcon.

The function activation and argument passing- mechanism for
the partial function execution is implemented as shown in
Fig.2.2. The data flow graph of Fig.2.2(c) represnts the

activation control of the function
[ylly2100-lyn] = f(x1,x2,o..xm)

The copy node, which creates an new environment for the
activated function (or makes a new copy of the body in logical),
is initiated by the or-gating nodes when one of the - tokens
(values) has arrived. The orgate implementation uses t/f switch
as shown in Fig.2.2(b). When the new environment is created and
the body ‘is ready to run, the token "in" (instantiation name of
the activated function) is sent to link nodes and rlink nodes.
Each 1link node passes each argument value x1, x2, ..., xm to the
body of the activated function every time each value has arrived.
Each rlink node passes information of the place where the return
value is sent to. This information yl', vy2',..., yn', each of

which is determined at compilation time corresponding to yl, y2,

+s., yn, are attached to each return value to identify its

92

List Processing on A Data Flow Machine

destination.

-X1 X2 eee Xm

LU 7] g "

Yy Y Y h n 3
1i2ees In ik O(nk)- - - @in

’ . . link) e+« (rlink
(a) Function invocation node

body of
f
return)e.. (return N
- r v
Y‘ e o0 Yn
(b) Orgate implementation (c) Function activation control

Fig.2.2 Fuction activation mechanism

2.3 Lenient cons and parallelism by pipelined processing

Although the partial execution of function induces higher
parallelism, it is not sufficient for maximally exploiting the
parallelism inherent in the given program. For instance,
Program2 1is expected to execute in a highly parallel fashion
among activated functions of sort and partition, This
parallelism, however, does not work well for reducing the
execution time in the order, because the time spent to sort the
list of length n is proportional to the square of n in the worst
case. (Though it is proportional to n in the best <case.) The
reason is that; as each of the value yl, y2 and y3 is not
returned until the append operation is completed in the partition

body, the execution of sort function which uses those values must

33

List Processing on A Data Flow Machine

wait until they are returned, and the waiting time is
proportional to the length of the list data made by the append
operation. ‘

The Lisp interpreter is another example which shows that the
parallelism is not maximal. As the operation of the apply to
each evaled value which is returned from the function evlis must
wait until all of the evaled values are constructed to a list by
the.cons operation which resides in the last part of the evlis
body, the execution of 1lisp function body can not proceed
partially.

‘If the former parts of the 1l1list which are partially
generated -are returned in advance during the latter parts are
appended, the execution which uses the former parts of the 1list
can proceed. Thus the executions of the producer and the
consumer overlap each other. As the append 1is the repeated
operatipns of cons as Program3 shows, this problem can be solved

by introducing leniency into the cons opreation.

Program3 -- append

append: function (x y) return (list)
= if x=nil then y
else cons({car(x) ,append(cdr(x),y))

The lenient cons, which is slightly different from the idea
of "suspended cons" [10], means the following. For the operation
of cons(x;y), the cons operator creates a new cell and returns
its address as a value in advance before its operahd X or y
arrives. Then the value x and y are written in the car field and

the cdr field of the cell respectively, when each of them has

94

List Processing on A Data Flow Machine

arrived at the cons node. In the implementation, the cons
operator is decomposed into three primitive operators, getcell,
writecar, and writecdr as shown in Fig.2.3. The getcell node is
initiated on the arrival of a signal token, which is delivered
when the new environment surrounding the cons operation is
created. The getcell operator creates a new cell, and sends its
address to the writecar node, the writecdr node, and the nodes
waiting for that cons value. Each memory cell has, in addition
to the garbage tag, the car-ready tag and the cdr-ready tag each
of which controls read accesses to the car field and the cdr
field. The getcell operator resets the both ready tags to
inhibit read accesses. The writecar (or writecdr) operator
writes the value x (or y) to the car field (or cdr field), and
sets the ready tag to allow read accesses to the field.

The lenient cons has a great effect in list processing. It
naturally implements the stream processing feature in which each
list jitem is processed as a stream [4,11] for programs which are
normally written without the notion of stream according to list

processing concept.

signal X Y
attribute | c ar cdr
getcell I
garbage
z=cons(x,Y)] N COQ(') — car-ready
(wr € writecdr cdr-ready
' .
z
(a) Cons mechanism (b) Data cell structure

Fig.2.3 Lenient cons implementation

95

List Processing on A Data Flow Machine

3. Evaluation of the lenient cons effect

The parallelism enhanced by the effect of pipelined
processing which lenient cons brings about is analyzed so as to
estimate the lenient cons effect. The sieve algorithm to find
prime numbers and the Quicksort algorithm in chapter 2 are taken
as examples. ‘ |

" The followings are assumed in the evaluation of parallel
algoritnm:
(1) There exist an infinite number of resources, namely the
operation units (processors) required for calculations are
available at any time, and the time for resource allocation and
the network delay is ignored.
{2) The execution of any operation completes in a unit time.

(3) The time required for function linkage is ignored.

3.1 Sieve program to find prime numbers

Program4 finds prime numbers using the sieve method of
Eratosthenes. Each cons operation appeared in this program is
implemented with lenient cons. ’The cons operation is initiated
by a signal s when a block which contains the cons operation is
opened.

Primenumber (n) obtains the sequence of prime numbers by
sieving the sequence (2 3 ... n) generated by intseq(2,n). The
lenient cons enables intseq to send out the sequence of numbers
(23 ... n) one after another. To illustrate it more clearly, a

data flow graph of intseq(m,n,s) is shown in Fig.3.1l. Where s

36

List Processing on A Data Flow Machine

is a signal value name which does not appear in source text but
is generated by compiler.

When the function intseq(m,n,s) is initiated, if m is not
greater than n the getcell node is fired and the new cell address
obtained is returned immediately. Then the value m and the value
of intseq(m+l,n,s) 1is written into the car and cdr part of the
new Cell respectively when each of them has arrived.
Consequently, intseq sends out new numbers one by one every time
it is initiated. Sieve(n,s) holds the first (car(n)) of the
sequence sent from intseq, and invokes the function delete to
remove the numbers in the rest (cdr(n)), which are divisible by
car(n). The function delete sends out the elements indivisible
by car(n) one by one, which in turn are passed to the sieve
function recursively. In this way, the executions of intsegq,
sieve and delete are overlapped.

Table 1 traces the invocations of intseq, sieve and delete,
and depicts how the algorithm works. Each row gives the sequence
of numbers generated in each invocation. The intseq generates
the sequence of numbers (2 3 ... n) one by one in a unit time.
The top level sieve is initiated immediately when the first
element of the sequence is returned from the intseq. After the
activation, the sieve immediately invokes the delete1 r where the
suffix represents invocation sequence number.

The delete]_takes the sequence (2 3 ;.. n) from the intseq,
and deletes the numbers which are divisible by 2. The deletei
which is initiated in the i-~-th 1level sieve takes the output

sequence of the deletei_1 ; and deletes the numbers which are

97

List Processing on A Data Flow Machine

divisible by the i-th prime number. The deletel returns values
one unit time after the intseq, as seen from the table.

As the time needed for invocation of the‘delete in the sieve
is constant and tﬁe deletei returns values one unit time after
the deletei_1 returns the value, the sieve returns the ith prime
number i units time after the intseq returns that number.

Since there are n/log n primes asymptotically in
{2,3,...,n}, the computation time needed in this program is

n+n/log n, i.e. the order of n.

Program4 -- Sieve program

primenumber: functjon {(n) return (list)
= sieve(intseq(2,n))

sieve: function (n) return (list)
= if n=nil then nil
else cons(car(n),
sieve(delete(car(n),cdr(n))))

delete: function (x,n) return (list)
= if n=nil then nil
else if remainder(car(n),x)=0
then delete(x,cdr(n))
else cons{car(n),delete(x,cdr(n)))

intseq: function (m,n) return (list)
= if m>n then nil
else cons{(m,intseq(m+l,n))

98

List Processing on A Data Flow Machine

titatytats

- Table 1 Execution of primenumber(2,n) .
N N

2 3 4 5 6) 8 9
\ NN\ NN \ N
k] 5 7 —— 1 . 13 Pl 19

ﬁ.t

2345678910 12 4 6 18 20 2 % 28 0O RN

4]
-7

1
)
. 7 4 \ f re
' | [H H ! r: '
Pl)] !
3 \s 7] ol i v3 nd 4 b9 2 12] 5 b1 W)
..\ T T : : .
J 7 01 v 7l 19 b |2 e '
) ...j\ﬁf T — : :
7 Wl vprae oA \
. \ e r —
: whai [g]]
" by 7 M B B N —
1 17 g 123 !
"5 byl - — : —
]
' 17 he '
*6 byld— —— B
Fig.3.1 Data flow graph d :
of intseq *7 by —
4
"8 by 3

3.2 Quicksort program

This section analyzes the computation time of the quick sort
program described in Section 2.3. To simplify the analysis, the
worst case behavior of the algorithm is investigated. (Where the
worst case means the case in which input data are in the reverse
order.) It is assumed that the time required for the append
operation is propotional to the length of a list to which another
list is appended. Table 2 traces the function invocation sequence
to illustrate the action of sort((3 2 1)).

Let y be (x1 x2 ... xn), where X, > X1 for i = 1, 2,
esey nN-1, The function sort(y) acts as follows. The activated

35

List Processing on A Data Flow Machine .

function partitionl partitions a list into three lists yl1l, yl2,
and yl3 each of which contains the elements less than, equal to,
and greater ﬁhan x1, respeétively. For the input data of the
worst case yll is (x2 x3 ... xn), yl2 is x1, and yl3 is nil.
The result of sort(y), the top level activation of the sort, is
obtained by appending the result of append(yl2, sort(yl3)) to the
result of sort(yll). Due to the 1lenient cons effect, the
function sort(yll) is invoked immediately after the first element
of yll, i.e. x2, is obtained. The values yl2 and yl3 are
réturned from the partitionl 2N(yll) units time after the first
value of yll is returned from that function, since it takes
N(yll) wunits time for the first element’of y (=x1) to be passed
into the innermost recursion phase of the partitionl where yl2
(=(x1)) and yl3 (=nil) is generated, and it takes the same time
for those values.to be returned. (where N(yi) means the number
of ‘elements in yi.)

Then, in the computation of sort(yll), the second levei
activation of the sort, the function partition2 generates three
values y21, y22, and y23. (y21=(x3 x4 ... Xn), y22=x2,
y23=nil.) Due to the lenient cons effect, the partition2 returns
the first element of y21, i.e. x3, one unit time after the
partitionl returns the element x3. As it takes C (a constant,
which equals 2 in this case) units time for each activated
partition to generate the second element after generating the
first elemenﬁ, the first element of y21 is returnedv Cl (=C+i)
unicts time after the first element of yll is returned. Since yl2

and yl3 are returned at time 2N(y)=2n, and y22 and y23 are

100

List Processing on A Data Flow Machine

returned at time Cl+2N(yll)=2n+C-1, y22 and y23 are returned C-1
units time later than yl2 and yl13. In the same way, the
partition3 which is invoked in thé computation of sort(y2l) .
returns the result y31 (=(x4 x5 ... xn)) Cl units time after the
partition2 returns the result y2l, and returns the results y32
(=x3) and y33 (=nil) C-1 units time later than the results y22
and y23, and so on.

Since the n partition functions are activated for sorting n
elements, it takes n(Cl) units time until the last partition
completes. Each result of the partitions has to be constructed
to a list by the append operation. Since it takes n units time
for the first element to be returned from the top level append,
and it takes n-1 units time for the append operation to be
completed, the total computation time for sorting n elements is
Cln+2n-1, i.e. the order of n.

In the best case, the total computation time is the order of
log n, because the partitioning operation reduces the length of
each list to the half, and the invocation tree of the sort
function is balanced with the height of log n; that is, the

execution acts on the divide and conquer strategy.

101

List Processing on A Data Flow Machine

1 J7IN, ouvem 4) £ 40 >
T - = T T T
0 ey ("€x)2100
' ' EIRY ' __.) - ' (56K 3200 L85 do
T T Tt T Y T T
b —> “ m » +Il_ (**£)2300
' R T 1 T 1 Y Y 1 T T -
h ! _....m.»..»il 5 > 1 € v
v ' Y 4 T Y T T
. \r 1 x ¥ :»\ Nr c/=> ./ (1t4)a108
v T] T t T T T T
! A t) / 1158y 33000 B8Ry e
T T ¥ T T T T - ¥ T
| " I ,/ (£25)a208
T T 7 .| T T T T T Y
—Fy = “ te'utls) / t
1 LI | T T || 1 ¥ v '
_) : _ ! : ﬂh.wn..«“ : (:;_ JL7¢ _ _, _ 1 t a1ed
L 1
te T 1) .\~) ¢ ¥ :»(iy) ¢ L A.// ~:.3.u.o-
1 T ' L] R T H 1 T 1 1 H] 1 .
” Ao £) £y & - / (1E%%) 30818540
T Y T 1 = \ T 1 T Y Y
“ . T T _.. 1 . / .:»33-
" R N T " ,
T v)
! I \ T T T T “ T T :...n::. T (e .:_ # '
Y Tt T T T Y T T T T T T 1T "
| ! GafoC?ot2) (¢ 24t2) (7 'T2) (e Wy 1 t 3vd
T T — | T ; T _» “ — T T T T
bertr) tr) 'B% ' ¥ /oy, « 5 , t)a10n
T T T Y 1 Y T T T T T T T T
[R4 1A 134 tY Tt 01 [[} L 9 1 14 t t
(T z €)3308 —— @seo 3siom ay3 Jo ardwexy g aTdel

102

List Processing on A Data Flow Machine

4. Garbage collection

As many data are copied, used, and thrown away very often in
the course of the side-effect free data manipulation, it is very
important to resolve the problem of how to utilize structure
memory cells effectively, namely the effective garbage collection
methoa under the parallel processing environment.

Although mark-scan methods are generally used.as a garbage
collection method in the conventional machine, ﬁhe reference
count method is adopted here. The reason is that; (a) Since the
data tokens which are pointers to 1list data entries in the
structure memory are scattered in the various parts of the
machine such as instruction memory units, communication networks
and operation units [11,12], it is very difficult to extract the
active cell without suspending the execution. (b) As the list
manipulations have no side effect and every list is made only by
the cons operation, no circular lists are created.

This section presents a fundamental method, though it is not
efficient, in order to intréduce the basic idea at first, then
describes a revised method which is much more efficient.

In the method presented here, each data cell has the
reference counter field which is updated every time the data cell
is accessed. The reference counter handling algorithm in the
fundamental method is written in Algol-like langquage for each
primitive list operation in the following. Where r(x), z and 4
denote the reference count field of the cell x, the value of each

operation, and the number of operation nodes which are waiting

103

~ List Processing on A Data Flow Machine

for the value z, respectively.

procedure Car(x,d):
begin
z := car(x);
Red (x):
r{(z) := r(z)+d

end

procedure Cdr(x,d):

begin
same as Car(x,d)

end
procedure Atom(x);
beqin X
z := atom(x):
Red (x)
end
procedure Eq(x,y);
begin
z := eq(x,y);
Red(x);
Red (y)
end
Pprocedure Cons(x,y,d);
begin
z := cons(x,y):
r{(z) :=4d
end
Procedure Red(x);
bedgin
r(x) := r(x)-1;
Af r(x)=0 then begin
Red(car(x)):
Red (cdr (x))
end
end

One problem'of completeness in the reference count method
occurs in the execution of a conditibnal expression. In the case
of if p then f(x) else g(y) , for 'exampie; as g(y) is never
executed when p is true, the reference count of cell y is left

un-decremented, and as a result, the cell y is never reclaimed

104

List Processing on A Data Flow Machine

though it 1is a garbage in virtual. 2@n order to avoid this, a
special operator erase, which executes only the procedure Red, is

prepared. (Fig.4.1)

If P then f(x)
else 9(y)

Fig.4.1 Conditional expression
and erase operation

The reference count handling overhead is serious because
updating the reference count 1is needed in all operations, not
only in the five primitive operations but in the switch and gate
operations as shown in the case of conditional expression. The
number of reference count updating can be reduced by eliminating
the redundant wupdating if it 1is possible to make use of the
structure in high level language, i.e. the block structure and
scope rule.

In stead of implicitly updating the reference count in every
operation, the revised method explicitly updates it by using the
increment and decrement operators which the Valid compile?
generates by making use of several Valid features which are
suitable for eliminating the redundant reference count handling.
The reference number of a cell indicates the number of value
names which denote the cell in the program text. Where the value
names are explicitly defined in the value definition or

implicitly defined in such cases as cons values and function

105

List Processing on A Data Flow Machine

values. The reference number of the cell which is newly denoted
in a block 1is incremented when the block 1is opened and
decremented when closed. As all value names are defined uniquely
in a block and are local to the block defining them, due to the
features of Valid, each value name refers only one cell and the
cell is never referred by the value name outside the 'Biock.
Therefore the reference number is incremented only once even if a
number of operations refer the value within the bloék.

A Valid source program fragment, for instance,

[x,y] = clause
x = El; y = E2; z = E3;
return(E(x,y) ,x)

end;

is compiled to the data flow graph shown in Fig.4.2. Where E1,
E2, E3, and E represent expressions. The return expression
generates two values which are implicitly denoted by retl and
ret2 then explicitly denoted by x and y in the environment
outside the block. The reference number of local values x, y and
z should never be decremented before the feference number of
return value retl énd ret2 are incremented, so as to prevent the
cells ' pointed by the return values from being reclaimed during
the transient time of return value passing. The‘and—gating node
and gating nodes keep the order of increment and decrement

operation safe for garbage collection.

106

List Processing on A Data Flow Machine

r--- r—--°C ---—-
! | I r —-=7
| £ ! oy :
| ! ! | ! '
; X ! | 1 :
[' \ 1 !
! | I ! :
i
: \ | | :
| £ | [!
’ 1 I l J
| : -
{
: @cb Incr :
| | |
! '
! |
h]
| |
| |
| .
: rety :
L]
x Y
Fig.4.2 Fig.4.3
Reference count management of Reference count management in the
local value name expression with cons operation

Even if they are not denoted explicitly but are obscured in
expressions, values of cons operations or function invocations
have to be treated as denoted in order to prevent cells created
by cons operation or function body from being reclaimed. So the
expression containing cons operation or function invocation as
sub-expressions is interpreted as being composed of the pseudo

blocks. For example, the expression

E(.e.,f(cons(x,y), car(x)), ...)

is interpreted as

107

List Processing on A Data Flow Machine

clause
u' = clause z'=cons(x,y); return z' end;
v' = f(u',car(x));

return E(eeesV',ees)

end

and compiled to the graph shown in Fig.4.3. Where f represents a
function invocation. The readers should note that-the éetcell
operator initializes the reference number of the created cell to
one, and the function body, when it returns values, increments
the reference number of the cell pointed by the returned value.

Another problem on safety arises in the case of 1lenient
cons. As for the above example, if the value x or y is pointed
to by the cell newly created in this block, its reference count
must not be decremented before it is made sure that the increment
operation of each reference count is completed, since, through
the write-car or write-cdr operation, each of the cells is to be
pointed by the cell created by getcell operation.

The general rule for the cons operation to guarantee the
safeness in garbage‘collection is :

In the cons operation

cons {(u,v) u= Ex (Xx1,X2,¢+0,%Xn)

vzsy (Y1,¥2¢eee,ym) ,

where Ex and Ey are expressions composed of value names

xl,...,xn, and yl,...,ym each of which is a name denoting each

value explicitly or implicitly (; namely, <cons or function

1068

List Processing on A Data Flow Machine

invocation 1is replaced by xi or yi), the decrement operation of
the reference count of each cell pointed by x1, ..., xn, vl, ...,
and ym 1is postponed until the increment operation of the

reference count of the each cell pointed by u or v is completed.

5. Conclusions

This paper discussed some issues in 1list proceséiﬁg‘ under
the data flow control environment from the view point of
parallelism. The basic philosophy of the data flow machine
architecture presented in this paper is that the highly parallel
execution is achieved by the data flow control concept both on
the primitive operation 1level and on the function activation
level. The mechanism of partial execution in each functidn was
shown to be effective to exploit the parallelism in list
processing through some examples including an implementation of
lisp interpreter, then the lenient cons mechanism was shown to
exploit ﬁhe parallelism maximally, through the analysis of two
programs, parallel sieve program to find prime numbers and
Hoare's quick sort program, which proved each execution is the
order of linear time.

Then the garbage collection mechanism based on the reference
co;nt method was described. The algorithm works well as a
parallel garbage collgction algorithm in the sense that the
garbage is reclaimed all the time, concurrently with the
foreground list operations.

Although the architecture of the data flow machine was

169

- List Processing on A Data Flow Machine

omitted in this paper, the characteristics of the machine , which
is based on associative memory and logic-in-memory concept, are
that the machine is composed of many modules so as to realize the
parallelism which can be exploited logically. The details are
described in [10,11].

There remains many problems to be solved in order for the
machine to be available in practical use. Several works are in
ptogrees to examine the effectiveness of the theory described in
this paper. These include the construction “of isoftware
simulator, the design of experimental Hardware system, - and the
implementation of Valid compiler. The simulator, the first
version of which is now running, is to collect the statistical
data which exhibit the effect of lenient cons, the effect of cons
strategy and memory partition, the garbage <collection overhead,
etc. The design of experimental hardware system offers the data
to estimate the cost performance. The Valid compiler which
generates the object code for the simulator and experimental
hardware is a tool for establishing the programming system based
on the functional programming_ methodology, on the data flow

machine.

References

[1] Dennis,J.B., "A Preliminary Architecture for a Basic Data
Flow Processor", The Second Annual Symposium on Computer
Architecture, Jan., 1975, pp.126-132.

[2] Plas,A., "LAU System Architecture: A Parallel Data-Driven

116

List Processing on A Data Flow Machine

Processor Based on Single Assignment”, Proceedings of the
International Conference on Parallel Processing, 1976,
pp.293-302.

[3] watson,I. and J.Gurd, "A Prototype Data Flow Computer with
Token Labelling", AFIPS Conference Proceedings 48, 19789,
PpP.623-628. |

{4] Arvind, K.P.Gostelow and W.Plouffe, "An Asynchronous
Programming Language and Computing Machine", Réport TR 114a,
Department of Information and Computer Science, University of
California, Irvine, California, December, 1978.

[5] Davis,A.L., "The Architecture and System Method of DDMl: A
Recursively Structured Data Driven Machine", Proceedings of the
Fifth Annual Symposium of Computer Architecture, Apr., 1978,
pp.210-215.

[6] Reller,R.M., G.Lindstrom and S.Patil, "An Architecture for a
Loosely-Coupled Parallel Processor", UUCS-78~105, University of
Utah, Salt Lake City, Utah, 1978.

[{7] Amamiya,M., "A Design Philosophy of High Level Language VALID
for Data Flow Machine", Proceedings of IECEJ Annual Conference,
1981, NO.1486, in Japanese.

[8] McCarthy,J. et.al., "Lisp 1.5 Programmer's Manual", MIT
Press, Cambridge; Massachusetts, 1960.

[9] Dijkstra,E.W., "Guarded Commands, Non-determinacy, and Formal
Derivation of Programs", Comm.ACM, 18, 8, 1975, pp.453-457.

[10] Friedman,D.P. and D.S.Wise, "CONS should not evaluate its
arguments", Automata, Language and Programming, S.Michaelson and

R. Milner, Eds, Edinburgh Univ. Press, 1976.

11]

List Processing on A Data Flow Machine

[11] Dennis,J.B. and K.S.Weng, "An Abstract Implementation for
Concurrent Computation with Streams", Proceedings of
International Conference on Parallel Processing, 1979, pp.35-45.
[12] Amamiya,M., R.Hasegawa and H.Mikami, "A List Processing
Oriented Data Flow Machine Architecture”, Proceedings of Meeting
on Symbol Manipulation, IPSJ, 13-3, 1980, in Japanese.

[13] Amamiya,M., R.Hasegawa and H.Mikami, "List Processing
Oriented Data Flow Machine and 1Its Software Simulator”,
Proceedings of Meeting on Cdmputer Architecture, “IPSJ, 40-8,

1981, in Japanese.

Appendix A. Brief description of Valid langquage features

Valid is a high level language designed for programming on a
data flow machine. The name "Valid" is the abbreviation of VAlue
IDentification language. The basic philosophy of design is that
Valid semantics supports programming based on functionai concept.,
while its syntax offers the conventions to write programs in
Algol style. This appendix describes some features which helps
readers to understand sample programs in this paper.

The characteristics of Valid are as follows.

(1) The basic structure of Valid is expressions and definitions,
i.e. Valid has no concept of program variables and assignments,
instead the values are denoted by §alue names, if necessary.
This concept is different from single assignment concept in the
sense that variables only.mean the names which are assinged to

each value.

112

List Processing on A Data Flow Machine

(2) A Valid program consists of function definitions, macro
definitions and value definitions. A function (or macro)
definition defines a function name and its body "which returns
multiple values. The body 1is an expression. Functions are
invoked in the execution time by their names, while macros
replace their names by their bodies at the compilation time.
Value definitions also define multiple values. For example, the

value definition
[x1,x2,...,Xxn] = expression

defines n values generated by expression and denotes them by
value names x1, x2, ..., xn.

The function definition

f: function (al,a2, ..., an) return (bl, b2, ..., bm)

= expression

defines the function £ which has formal arquments (value names)
al, a2, ..., an and returns values of type bl,b2, ...,bm.

(3) Valid has a block structure. A block is a set of
definitions. 1In a block all value definitions are sequence free,
namely each value definition is evaluated in parallel within the
block. In Valid, the delimiter semicolon (;) which delimits
value definitions is used in the different meaning from Algol.
The semicolon (;) separates two constructs in parallel, i.e. A;B
is identical to B;A, while the delimiter comma (,) separates two
constructs keeping the sequence, i.e. A,B is not same as B,A.

Functions and macros may be defined in any block locally.

113

List Processing on A Data Flow Machine

All function names, macro names and value names can be
refered from other plaées in the 'program text under the
constraints of scopé rule as in Algol; i.e., every identifier
denotes a local value which may be refered within a block
surrounding its definition. A block becomes an expression, and
value(s) of the block is generated by a return expression
occurring in the block.

(4) All iteratiohs are described based on the recursion. The

conventional loop 1is described in the recurrence expression of

the following form.

for (<iteration value names>) : (<initial values>)

do <block including recur expression>

Othef features of Valid as a general purpose high level
language whose explanation is omitted beéause they have nothing
to do with the discussion of this paper includes;

(5) Vvalid permits several data types. Those include Boolean,
integer, real, array, record, list, and signal. Each value is
specified with its type name (if necessary).. VSince' this paper
dgals with only the list type, type specification is omitted.

(6) Parallel expression based on fork-join concept which is
powerfull for describing blocks .executable parallelly such as

vector operation.

Appendix B. Data flow implementation of Lisp 1.5 interpreter

Though each function of Lisp 1.5 interpreter is defined as a

114

List Processing on A Data Flow Machine

recursive function, it 1is necessary to reconstruct those
functions so as to realize the efficient execution control as in
the case of the conventional von Neumann machines. The functions
implemented from this view point on the data flow machine are
described in Valid. The implementation 1is based on the
principles of that: (1) The tail-recursive structure, which has
no parallelism, is implemented by the 1loop control so as to
reduce the function invocation overhead. (2) The parallelism
is exploited only from the non tail-rgcursive strﬁcture. For
example, the functions apply and eval are implemented by the loop
in which programs applyl and evall execute alternatively, while
the function evlis which has non tail-recursive structure forks

eval functions.

Program5 -- Lisp 1.5 interpreter

Apply: function (fn,args,alist) return (list)
= for (x,y,z):(fn,args,alist)
do clause
(t,xx,yy) = Applyl(x,y,2);
xxx = if t then xx
else clause
{tl,x1,y1l,21] = Evall(xx,yy):
x2 = if tl1 then xl1
else recur(xl,yl,zl);
return(x2)
end;
return(xxx)
end;

115

List Processing on A Data Flow Machine

Applyl: macro (fn,args,alist) return (list,list,list)
= for (x,y,z):(fn,args,alist)
do case
atom(x) -> case
x='car' -> return('t',caar(y),nil);
x="'cdr' -> return('t',cdar(y),nil);
x='cons' -> ngturn('t',cons(car(y),cadr(y)),nil);
x='eq' -> return('t',eq(car(y),cadr(y)),nil);
others -> recur(Eval(x,y),y,z)
end;
car(x) 'lambda' -> clause
x' = caddr(x);
y' = Pairlis(x,y,2);
return(nil,x',y")
end;
car(x)="'label' -> clause
x' = caddr(x);
z' = cons (cons (cadr(x),caddr(y)).z);
recur(x',y.z"')
end | '

end;
Eval: function (e,a) return (list)
= for (x,y):(e,a)
do clause
[t,z1,22,23] = Evall(x,y);
= jf t then zl
else clause '
[tl,yl,y2] = Applyl(zl,z2,2z3);
if tl1 then yl else recur(yl,y2)
end;

return (xx)
end:;

Evall: macro (e,a) return (list,list,list,list)
= for (x,y):(e,a)
do
case.
atom(x) -> return('t',cdr(Assoc(x,y),nll,nll),
car(x)="'quote' -> return('t',cadr(x),nil,nil);
car(x)-'cond' -> clause
[x',y'] = Evcon(cdr(x),y):;
recur (x',y')
end;
others ~> clause
yl = car(x);

y2 = Evlls(cdr(x),y),

y3 = Y;

return(nil,yl,y2,y3)
end

116

List Processing on A Data Flow Machine

Evconl: macro (c,a) return (list,list)
= for (x,y):(c,a)
do if Eval(caar(x),y) then return(cadar(x).,y)
else recur(cdr(x),y) :

Evlis: function (m,a) return (list)
= if null(m) then nil
else clause
x = Eval(car(m) ,a);
y = Evlis(cdr(m),a);
gﬁtﬂm(cons (x,y))
na;

Assoc- function (x,a) return (list)
= for (yl,y2):(x,a)
do case
null(y2) -> return(nil);
equal (yl,caar(y2)) -> return(car(y2));
others -> recur(yl,cdr(y2))
end;

Pairlis: function (v,e,a) return (list)
= for (x,y,2):(v,e.a)
gg if null(x) then return(z)
else clause

x' = cdr(x):;
y' = cdr(y);
z' = cons(cons(car(x),car(y)).z):

recur(x',y',z")
end;

