goooboooogn
0 436 0 19810 117-131

1.

17

Yet Another Environment-Retention Strategy
Hiroshi TOSHIMA

Department of Management Sciences
Faculty of Commerce

Otaru University of Commerce

ABSTRACT: The simple and usual stack operations are generalized
to handle the more complex data structure than the vector in the
manner like the stack, As a consequence of this generalization,
some environment-retention strategy can be described in terms of
the generalized stéck dpérations; Tﬁis strategy enables‘the\unnec-
essary local environments allocated in the heap to be instantane-
ously collected without recourse to garbage collections but

the binding environments to be retained so as to evaluate cor-
rectly the Lisp programs involving the functional values. As an
"obiterdictum", the method of the instantaneous collection of

the list created by the function evlis is briefly stated.
Keywords and phrases: . Lisp, Stack, A-list, Enviromment, Tree '
Structure, Functional Argument, Functional Value, Retention,

Garbage Collection.

Introduction

One of the most characteristic features in Lisp programming is that

one can return a function as the result of some computation. In fact, this

feature is not supporte& by most programming languages, e.g. ALGOL 60,

FORTRAN,Vetc. Following Allen's terminology‘[l], we shall call a returned

. *
function a functional value 1 as distinguished from a functional argument.

*1 Also called upward funarg.

-1~

118

The functional value, however, bears a hard nut to crack when one plans to
implement Lisp system. Consider the evaluation of the following form (cited
from Allen (1)).

flcons(A ; (BC)); gl function [car) ; function[cdr 313,

where

f(rpsa) a{rl,

function [AL [(x) 5 u(v(x)])]).

glu; v])

It is easily seen that the variable-value pairs corresponding to the form

g (function {car] ; function [cdr]] must be retained after the evaluation
of this form is over, LISP 1.5 interpreter works completely well for the
evaluation of the above form. As is well-known, LISP 1.5 interpreter is
characterized by an association list (abbreviated hereafter as A-list) which
represents an environment. Lambda binding adds the new variable~value pairs
to the A-list, After the evaluation of the specific form is over, the corre-
sponding variable~value pairs are retained against garbage collection if the
pointer to that pairs still exists. Thus, in LISP 1.5 interpreter, the A-
list retains the binding environment as long as it is needed and then it is
garbage collected when it is no longer needed. In this sense, LISP 1.5
interpreter makes it easy to retain the arbitrary environment. But the A-
list has two drawbacks when the retention of the environment is not neces-
sary. First, the unnecessary variable-value pairs occupy the memory.

Second, this occupation results in costly garbage collection. Due to this

expensiveness of the A-list in both time and space, LISP 1.6 interpreter

-2-

119

and MACLISP interpreter, etc. adopt the stack to store the variable-value
pairs. As the stack behaves in last-in-first-out fashion, the unnecessary
variable-value pairs are automatically deleted from the memory, so that the
memory management by the stack is less expensive than the one by garbage
collection. More specifically, in LISP 1.,6-like interpreter, the current
bindings are stored on the value cells and the previous bindings are saved
on the stack. The binding environment can promptly recovered by suitable
replacing of the contents of the value cells by the contents of the stack.
But there is one serious problem in LISP l.6-like interpreter. Unfortunately
LISP 1.6-like interpreter fails for the evaluation of the above form. Note
that LISP 1.,6-like interpreter leads to premature pdpping up of the binding
environment, i.e., the necessary variable-value pairs have been loét when
the formu(v{x)) is evaluated. In view of such a situation, Moses [7]
pointed out that a tree structure must be developed from what was originally
a linear stack and this tree structure must be backed-up and backed-down
upon entering the returned function. It should be noted that a tree struc-
ture is wusually linked only in one direction. Thus, to back-down a tree
structure can not be achieved without some inefficiency. As the A-list is a
tree, this is again the inefficiency of a tree structure. Summing up the
above discussion, to retain the environment, one must adopt the A-list or,
generally speaking, a tree structure. To keep the spatial and temporal effi-
ciency, one must adopt the stack., How can one reconcile these two?

In a response to Moses{ 7}, Sandewall(8) gave some solution to the
above problem. His idea is essentially same as the one adopted in IN’I‘ERLISP‘,‘l
{9]) . The function-construct evaluates to the usual funarg-triple, the

third element of which is not the A-list but the array involving variables

*] 01d version.

120

freely used by the second element of funarg-triple, namely a function, and
their values at the time the function-construct is evaluated. When.the
funarg-triple is applied to its arguments, each element of the array is
pointed to indirectly from the stack(Sandewall) or the stack is made look
like it has a patch of the array (INTERLISP). These solutions use the stack
modified by thé data structure in the heép which is copied from the ehtries
of the stack; Recently, McDermott (6] proposed a new solution hunting down
this idea of "the stack enhanced by the héap". He allocates variable—valué
pairs oﬁ the stack, then moves them to the heaé if necessary. He also passes
bthe actualbparameters to the function via the stack. As a result of these,
he saves dfamatically on garbage collectioné. If the function-construct is
evaluateq fo the lambda express:i.on*l in the process of the application of
which to the arguments the free variables are bound to the proper values by
the usual lambda binding mechanism, this method is called the optional freeze
and is adopted by POP-2 and HLISP _[5] . Then the optional freeze dispenses
with indirect addressing from the stack or patching of the stack, so that
the same data structure in the heap is utilized every time the evaluation
of tﬁe form whose function part is the above lambda expression is done. So the
optional freeze can not fully reflect . the effect of the functions set and
setq on the environment but the implementation of the optional freeze is
relatively easy. |

Bobrow and Wegbreit [3] proposed the stack implementation of multiple
environments (spaghetti staéks) and showed that the functional value can be
handled ﬁroperly as a special case of multiple»environménts. Cleérly, their

method needs not any data structure in the heap. On the contrary, there are

*1 In fact, such a lambda expression can be easily constructed as a good
exercise to the Lisp buff! ’

121

the methods without the stack. Gleenblatt [4‘] proposed the following solu-
tion. If the value cells and a tree structure are used to represent an envi-
ronment, only one branch of a tree structure is active at any time. The nodes
along the path starting from the root of the tree to the last node of that
active brénch are assumed to be marked "down" and all other nodes marked
"ap". To back-up and back-down a tree structure from the current environment
tb the binding environment, traverse first a tree structure from the last
node of the binding énvirohment until the node marked "aown" is founé and‘
turn each pointers around on the way and remember that node. Then traﬁéf;e
neit a tree structure from the last node of the current environment to the
last node of the binding environment via the rememberéd node énd turh’each
pointer around on the way from the rememberéd node., Traversing é ffee struc-
ture must also accompany'swapping of the contents betweén the value celis and
tﬁe nodes. This establishes the Einding environment on the value cells;
Baker [2) developed the more elegant solution by pondering‘the abové écheme.
His method called "rerootipg" depends on continuous turning around of the |
pointers so as to make the current environment a new root. In this method,
the path from the binding environment to the currentrenvironment is always
easily traversed and the marks "down" and "up" can be dispensed with. Fur-
thermore, this rerooting leaves the form assoc{ v ; a) invariant for all
variables v and all environments a serendipitiously. But, as Baker pointed
out, this rerooting model is not necessarily most efficient since a tree
strﬁcture ig retained in the heap rather than on the stack, thus resulting
in costly reclamations.

In this paper we propose a new model which works completely well for
the Lisp programs involving the functional Yalues‘ Our model is similar

to a tree structure, the model retaining the necessary environment as long

122

as it is needed and it is garbage collected when it is no longer needed, or
it is similar to the stack, the model showing stack-like behavior so that
the number of costly reclamations may be detered as small as possible.
Essentially, our model does depend on the generalized stack operations.
Then, section 2 describes the generalized stack operations. Section 3 dis-
cusses the data structure of an environment and the operations to handle the
data structure of an environment as an application of the generalized stack
operations. Section 4 suggests some extentions and describes the concluding

remarks.

2. The Generalized Stack Operations

As stated in the previous section, the A-list is inefficient in the
memory management. Instead, if the (linear) stack is used to store the
variable-value pairs, only thing to do is suitable managing of the stack-top
pointer, which is a rather simple operation. In fact, the stack-top pointer
needs to be modified only by one upon pushing or poping of one item, But the
(1linear) stack, i.e., the vector, is not so relevant as the vehicles to
express the more complex data sturcture. So the efficiency and the power of
expression are not capable of coexistence for the usual (linear) stack. In
what follows, we shall somewhat extend the stack operations so as to handle
the more complex data structure than the vector in the fashion akin to the stack
and, as in the previous section, use the Lisp terminology freely. The global
pointers gl and g2 shall represent the stack-top pointer and the free memory
pointer respectively. Generally the initial value of gl is NIL. First,

consider the following pushing operation.

push(x : £} = [mull(f) —> gl := cons2{gl ; x } ;

123

T—>gl:=f[gl;x]]),
cons2{x ; y) =prog[[z] ;

(mll1[g2)—> reclain [}) ;

7z = g2 ;

g2 :=cdr (g2} ;

rplaca(z ; x) ;

return[rplacd [z ; ¥y J1),

where x is the data structure to be pushed down and f is a functional argu-
ment. which allows the arbitrary op'ei'a’fions on gl and x. If the vector of the
cells is preserved somewhere in advance and gl initia'lly points to the first
cell of the vector, the function cons3 defined as follows makes the function
push behave the usual pushing operation except for the redundant linking

information.

cons3(x;y) =prog((2] ;
[eq[gl ; LIM)—> return{ERROR)] ;
z :=gl+1;
rplaca(z ; x } ;

return [rplacd {z ; ¥y} 1],

where LIM is the 1ength of the vector. In this case, the function pﬁsh must
be called as push [x 3 function [cons3]} . In the general case, the function
push is called as push [x ; NIL] . Note that the free memory pointed to by
22 is not required to be contiguous but it may consist of the cells chained
by each cdr part, namely, it may »e a list. Remember that the arbitrary

data structure can be constructed by using the function push and suitable

124

setting of gl.

Second, consider the following popping operation.

pop(x] =prog [[] ;

g0 := 0 ;
[mull{x)]—>go(L2]] ;
L1 g0 = g0+ 1 ;

{mull{eval [car(x)])} —> return[gl :=car (g1}) ;
null (car{x} }—> go[L2]] ;
x:=cdr[x]) ;
go (L1} ;
L2 g0 =03
rplacd [cadr(gl) ; g2] ;
g2 =gl ;

return (gl := car (g1) }]},

where x is a list of the forms and g0 is a global variable, If the value of
some element of x is NIL, returning of the memory occupied by the unnecessary
data structure (i.e., garbage) to the free memory pool is skipped and the
cause. of this skip is accessible by gO whose value indicates the position of
the cause in x. If any element of x is not NIL or x is NIL, garbage are
returned to the free memory pool. In both cases, gl is suitably modified. It
should be noted that the data structure to be popped off is expected to be
non-branched and, in general, to have a pointer to the last cell of the data
structure at cadr part of the data structure, i.e., cadr(gl} must show

the location of the last cell. If the functionm pop is implied to apply to

the data structure constructed by the function push, the data structure to

-8~

125

be pushed down must have the same structure. For the generalized popping
operation, the’function pop is called as pop[:NIL] s which causes returning
of the memory. But, for more general case, the function pop must be called
as pop [(cl C2 eeoee cn)] where ci's are the possible causes of the above
skip.

We expect that the Lisp system not only has the functions push and pop
similar to the above as the primitives but also these operations can be
executed by the hardware instructions. Recently;mamy computers ‘including
the micrcomputers become to have the instructions relating to the stack
operations. They are, however, too simple to handle the complex data struc-
ture in view of above explanation. Our functions push and pop try to gener-
alize the simple stack operations. In fact, if the vector of the cells is
assumed to exist, push{ x ; function cons3}) and pop [(NIL)) represent
the usual simple pop and push operations. But these are the extreme cases in
our stack operations. The functions push and pop in general do not assume
the vector but permit the data structure to take the form of the arbitrary
list structure. The unnecessary part of the list structure is retruned by
the function pop just as the simple stack operation achieves the efficient
memory management. In the conventional Lisp system, the unnecessary variable-
value pairs in the A-list are garbage collected intermittently. In contrast
to this conventional Lisp system, our function pop dispenses with garbage
collections as to an environment completely at least for the case of pop

(NIL] . This will be explained in the next section more detailedly.

3. The Data Structure of an Environment and the Operations upon an Envi-
ronment

The following sort of the data structures is cailed the local envi-

‘126

ronment where X, Y,..., 2 are variables and 4, B,..., C are values.

T=H sl Tl

K I3 3 5 — ¢ [

An environment consists of the cells whose cdr parts point to the local en-

vironmepts and whose car parts are chained_in'one diregtion. The local en-
vironment is created by the function pairlis upon lambda binding and collected
by the function apply upon the completion”ofkthe evaluation of the corre-
sponding form if it is no longer”nggded. Note that the variable-value pair ;
on the local environment is.noﬁ an usual dotted pair but is a non—b:anched
list. So»the local environment is»nothing other than the non-branched A-list.
The car part of the first cell on the local environment points to the lasf
cell on the local environment. Thanks to the existence of this pointer to the
last cell the collection time ofvthe local envirénment is constant regardless
of the length of the local environment. Note that the non-branchedness of

the local environment is beneficial to returning of the cells constituting
the local environment to the free memory pool. In fact, the procedure of thé
collection of the local enﬁironment and the cell pointed to by gl is simply
described by po;)[NII.] where gl is the global pointer to one of the cells

on an environment. This explains why the cells on an environment are car-
chained each other, not cdr-chained.

Whether the specific local environment may be collected or not is
controlled by the global flag, say, g4 and the entry infthe car part of the
second cell on the local enviromment. If g4 is NIL, tﬁe current local en-
vironment must be retained unconditionally and otherwise the car part of
the second cell on the current local enviromment must be checked. If it is

NIL, the retention of the current local environment is necessary and other-

-10-

127

wise the retention is not necessary. The suitable control of g4 and the car
part of the second cell on the local enviromment guarantees the versatile
environment-retention strategy for the functional value. For example, the
car part of the second cell is found to be NIL in the process of the
collection of the local enviromment, g4 is set to NIL because all the local
environmrnts accessible from that local environment must be retained. Thus,
the full process of collection of the local environment is described by

pop [(g4 caddr{gl])] . If g0 = 1 then there is nothing to do more and if
g0 =2 then g4 must be set to NIL. The search of an environment begins from
the current local enviromment pointed to by gl indirectly. If the search of
the current local enviromment is unsuccessful, the downward local environments
are searched until the value of variable is found. When the value of variable
‘is found outside the current local environment, it might possibly save the
search time afterward to add the grasped variable-value pair to the current
local environment as the new entry. To follow the change of the environment
by the functions set and setq, the new entry to be added must consist of the
pointer to the original variable-value pair, i.e., the new entry must show.
the indirect addressing.

The retained local environments will eventually be reclaimed by garbage
collections. Thus our system described above recovers the memory as effi-
ciently as LISP 1.6 interperter does when no functional values are found in
the Lisp program. As mentioned in section 1, LISP 1.6 interpreter can not
evaluate correctly the program involving the functional values. But our -
system works completely well for such a program as LISP 1.5 interpreter
does. In this case, garbage are not so efficiently collected as in LISP 1.6
interperter. The part of the memory used for the local enviromments is

retained and eventually reclaimed by usual garbage collections. In this

-11~

128

sense, our system shows intermediary behavior between LISP 1.5 interpreter
and LISP 1.6 interpreter. If all the car parts of the second cells in the
local environment are set to NIL, then an environment takes the similar form
as the A-list in LISP 1,5 interpreter. On the contrary, if all the car parts
of the second cells in the local environments are set to non-NIL, then our
system can not also evaluate correctly the program involving the functional
values as in LISP 1.6 interpreter.

To digress: As our system does not use the stack, the evaluation of the
actual arguments given to the function is performed by the usual function
evlis. The cells are consumed by the function evlis each time the form is
evaluated. But those cells become garbage as soon as lambda binding of the
evaluation of the form is over. Then the huge consumption of the cells by the
function evlis is a fatal drawback of the function evlis. It is one of the
reasons for the frequent garbage collections, e.g. in the case of deep recursion.
The gain from the stack-like action of an environment mentioned above might
be offset by this consumption if we let the function evlis be as it is. Thus,
the instantaneous collection of those cells might contribute the promotion |
of the spatial efficiency of our system. We shall use two global variables
g20 and g21 whose initial values are NIL's for the instantaneous collection
of those cells. Variable g20 will point to the last cell on the list created
by the function evlis and variable g2l will point to the first cell on the
list created by the function evlis. Now the value of g20 is set by the

function evlis as follows,
evliis{m) = (mull(m)—s prog [(]

(mll1[g2) —s reclaim [}) ;

g20 := g2) s

-12-

129

T—> cons2 [eval [car(m]] ; evlis[cdr(m] J] J.

To set the value of g21 and to collect the list created by the function evlis,
we must replace in the function eval the form apply f car [e] ; evlis {cdr

[e]]] by the form

prog [[2] 5
z := apply [findfun [car{e] } ; g2l := evlis[cdr(e])]
[mull{g20]—> return {z)) ; | '

rplacd [g20 ; 20] ;

g2 = g21 ;
220 := NIL ;
g21 := NIL ;

return(z] J,

where e is an argument of the function eval and the function findfun ulti-
mately evaluates the function part of the form e to find the function. When
car (e] is the lambda expression, the list created by the function evlis
can be collected immediately after lambda binding occurs in the function

apply by the similar technique as mentioned above.

4. Suggestions on Some Extentions and Concluding Remarks
It is not difficult to extend our system so as to have a primitive
retain [] by which the car part of the second cell in the current local envi-
7 ronment is set to NIL to make all the local environments that can be reached
from the current local environment be retained. The coroutines and back-

tracking might be brought to realization if the primitive retain[] is

13-

130

properly used. More complex operations are also possible. The specific local
environment can be retained by controlling the value of g4. In fact, after
invocating the primitive retain [] the local environment will be retained
if g4 is not set to NIL in the function apply.

So far deep binding was assumed in our model. If one wants to adept
shallow binding strategy, the Baker's rerooting algorithm [2] can be em-
bodied in our scheme. In original Baker's model all the pointers linking each
variable—valﬁe pair must be turned around. Rerooting in our model; however,
requires onl¥ the pointers linking each cell on an envirqﬁment to be turned
around., This will cut down the rerooting overhead time substantially.
Furthermore, our model with rerooting will achieve the more efficient memory
utilization than the original Baker's model since the unnecessary iocal envi-
ronments are collected instantaneously in our model. Thus, our model with
rercoting will be less expensive in both time and space‘than the original
Baker's model.

We have presented the moael with an environment consisting of the local
environments involving the non-branched A-lists and explained that our model
shows the intermediary behavior between the A-list and the stack.’Thus, our
model works completely well for the Lisp program involving the functional

values with the sufficient efficiency.

-14-

131

References

(1) Allen, John, Anatomy of LISP, McGraw-Hill, New York, 1978.

(2]

(3]

(4]

(5)

(6]

(7)

Baker, Jr., Henry G., "Shallow Binding in Lisp 1.5", CACM, Vol. 21,

No. 7 (July 1978), pp. 565-569.

Bobrow, Daniel and Wegbreit, Ben, "A Model and Stack Implementation of
Multiple Environments", CACM, Vol. 16, No. 10 (October 1973), pp. 591-
603,

Greenblatt, R., "The LISP. Machine", Working Paper 79, M.I.T. A.I. lab.,
Cambridge, Mass., November 1974.

Kanada, Yasumasa, "Problems in the Impementation of HLISP, and Trans-

porting REDUCE-2", Proceedings of Programming Symposium at Tateshina,

Information Processing Society of Japan, 1974, pp. 14-20.
McDermott, Drew, V., "An Efficient Environment Allccation Scheme in an

Interpreter for a Lexically-scoped LISP", Conference Record of 1980

LISP Conference, 1980, pp. 154-162.

Moses, Joel, "The Function of FUNCTION in LISP or Why the FUNARG Prob-

lem Should be Called the Environment Problem", SIGSAM Bulletin, No. 15

(July 1970), pp. 13-27.

(8)Sandewall, Erik, "A Proposed Solution to the FUNARG Problem", SIGSAM

(9]

Bulletin, No. 17 (January 1971), pp. 29-42.

Teitelman, Warren, INTERLISP Reference Manual, Xerox Palo Alto Re-

seach Center, Palo Alto, California, 1974.

-15-

