goooboooogn
0 436 0 19810 156-173

156

A Language with Modified Block Structure for Data Abstraction
and Stepwise Refinement

TAKESHI CHUSHO KENROKU NOGI TOSHIHIRO HAYASHI
Systems Development Laboratory, Omika Works,
Hitachi, Ltd. Hitachi, Ltd.
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A new langquage was developed in order to support such recent
new programming methodologies as data abstraction and top-down
development by stepwise refinement without special abstraction
mechanisms., The basic structure of this language is introduced
by decomposing conventional block structure, That is, shared
data are separated from procedures and arranged in a hierarchy
of environment modules. A family of procedures is comprised in a
process module which is positioned under a suitable environment
module,

In addition, type definitions play an important role, not
only in data abstraction but also in stepwise refinement of data
structure., Depending on these usages, type equivalence is
checked by the combination of name equivalence and structural
equivalence. |

New compiling techniques were required for this language,
Separate compilation with complete type-checking is performed by'
using a library which reserves intermodule information,
Compiling speed strongly depends on the data structure of this
library which is frequently referred to because of the hierarchy
of modules., Object efficiency is also considered, and inline
substitution and a compile time facility are implemented.,
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1. INTRODUCTION

For the past few years, considerable effort has been spent
on improving software productivity, reliability, and
maintainability} This problem has now become more important
because of recent rapid increase in the amount of software
produced. Research has been dealing with almost every part of
the software development process and, above all, the greatest
attention has been focused on "structured programming,”
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The'meaning of structured programmihg has not been clearly
defined, but the essence of this approach is to produce a
program with high readability. There are well-known techniques
for structured programming, such as structured coding[5] and
program development by stepwise refinement({6,21]. Abstraction
techniques{12] and modularization techniques([15,17] have also
been investigated.

For practical use of these methodologies, a programming
language supporting them is necessary, and a few new languages
have been proposed such as CLU[14], Alphard[22], Mesal7],
Iotaf{16], Euclid{1ll], and Ada[9]. The first four are influenced
by Simulaé7 and the remainder by Pascal.

The authors have also developed a new language, SPL[8], for
industrial application software with a structure different from
the aforementioned languages. This language was designed to
support the following techniques:

(1) top-down development by stepwise ref inement;

{2) data abstraction;

{3) structured coding.

The first item is a key to a well-structured program. The
refinement of a program should be performed by refinement of
both data and procedures. Furthermore, at each step of program
- refinement, the corresponding program should be written, This
is because, if a program is written only at the final step, the
teadability of this program must be lost.

The second item is necessary for reliable data manipulation.
A few remarkable abstraction mechanisms have been already
proposed, such as cluster in CLU, form in Alphard, and
package in Ada. A simple mechanism, however, is preferable
because it is not easy for average programmers to master how to
use such abstraction mechanisms, ‘ '

These items (1) and (2) strongly affect the basic structure
of a programming language. Although block structure is commonly
used as a basic structure, it is not suitable for stepwise
refinement and data abstraction because its scope rule is very
strong and variable names and procedure names must'obey the same
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scope rule, as pointed out in paper[19] also. On the other hand,
if a totally new structure is introduced, current programmers
may hesitate to use the new language.

Therefore, SPL selects a third apprbach. That is, the
conventional block structure is decomposed so that only data
obey the static scope rule and procedures do not. Thus SPL was
designed while attaching importance to data and hae the
follow1ng features with respect to data:

(1) separatlon of shared data from procedures;

(2) hlerarchy of these shared data for the static scope rule;
(3) data_type defln;t;on;n

(4) Strong type-checkihg.

In relation to these features, new compiling techniques were
required. The SPL compiler achieves separate compilation with
complete type-checking by using a library which reserves
intermodule information. Compiling speed strongly depends on
the data structure of this library, which is frequently referred
to because of the hierarchical structure of modules,

Object efficiency which may be degréded by new methodologies
is also considered, and inline substitution of a procedure and
compile time facility are implemented[2]. Checking equivalence
of user-defined types is another problem, and it is resolved by
combination of name equivalence and structural equivalence,.

SPL has already been applied to many industrial systems and
its effectiveness in improving productivity and reliability has
been confirmed, This paper desctibes the main features of. SPL,
new compiliné techniques, and its performance evaluations.

2. PROGRAMMING LANGUAGE
2.1 Requirements

In our industrial application software, the conventional
high level language has been Fortran which was extended for
description of real-time operations. A new language, however,
was required for improving productivity, reliability, and
maintainability because Fortran-like languages are not suitable
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for recent new programming methodologies., The following items
are major requirements for the new language:

(R1) Access right to shared data among tasks should be
represented more precisely because errors of shared data
manipulations often occur,

(R2) The shared data should be sometimes encapsulated by

‘ data abstraction mechanisms. ' ‘

(R3) Top-down development by stepwise refinement of both
data and procedures should be supported, as each step
corresponds to the individual program. o

(R4) Strong type-checking is necessary -for. high reliability.

(R5) Control statements should be restricted for high

~ . -readability of control flow.

(R6) A drastic change of programming language 'is not
preferable for avarage programmers who are familiar with
conventional languages. " .

2.2 Decomposition of block structure

Block-structured languages may satisfy a part of the
requirements, However, the main defect of block-structured
languages is that, by definition, procedures and data obey: the
same scope rule, For example, consider encapsulating some data
and defining several procedures for data manipulation. These
procedure names must be available outside a block in which the
data are defined, because these procedures should be referred to
by users of the data and the data should not. Furthermore, the
data must be defined outside these procedure definitions because
the data are referred to by these procedures. This is not
possible with block-structured languages.

In order to solve this problem, the block structure is
decomposed in the new language, SPL, while preserving only a
scope rule of shared data. SPL was designed on the basis of this
basic structure and has the following features which satisfy
aforementioned requirements: e
(1) separation of shared data from procedures;

(2) hierarchy of these shared data for precisely
representing the scope;
{3) type definition for data abstraction and stepwise

refinement of data structure;
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(4) global scope of user-defined type names and procedure
names; )

(5) interface specifications of user-defined types and
external procedures which are used without their
definitions; v

(6) an exit statement instead of a goto statement;

(7) inline substitution of procedures and compile time

- facility.

A sample program is given in Figure 1 and Figure 2 for
explanation. Figure 1 shows the hierarchy of modules, and Fiqure
2 shows the definitions of Figure 1 modules Pl, E2, and P2, In
SPL, there are two types of modules, namely, an environment
module and a process module, The environment module is composed
of declarations of variables, constants and data types, as well
as specifications, from which a tree structure can be
constructed to precisely represent these scopes, as shown in
Figure 1. '

The process module is a set of procedures called functions
and is positioned under a suitable environment module as its
descendant, Every module can refer to only shared data declared
in its ascendant environment modules.

In Figure 2, the new data type STACK and its operation PUSH
TO are introduced in Pl, and they are defined in the descendant
modules E2 and P2 respectively. These are not only a sample of
stepwise refinement for data and procedure, but also a sample of
data abstraction because the detail structure of the type STACK
can be referred to only from P2 including operations for the

type.

Item (5) is necessary for complete type-checking. The
interface of the procedure ERROR is explicitly specified in E2
because this procedure is referred to without the definition.
The control statements in SPL are if, repeat, begin/end,
exit, return, and stop statements, and excldde‘a goto
statement. The exit statement is used for an exceptional exit
from a block. Item (7) contributes to the improvement of object
efficiency of a modularized program., For example, since the
option of the procedure PUSH TO is open in P2, the reference
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to this procedure in Pl is replaced by its body. At this time,
the %if statement is executed and object codes for error
checking of stack overflow may be emitted.

2.3 Data abstraction

The data abstraction mechanism is simple as is clear from
the sample of abstract type STACK shown in Figure 2, That is,
the detail structure of a user-defined type can be referred to
only from the defining module and its descendant modules,
although the user-defined type name and the procedure name can
be referred to from every module., According to this scope rule,
an abstract type is defined as follows: _

(1) The detail structure of the type is defined by using type
definition in the lowest descendant module among a hierarchy
of environment modules, This type is able to have
parameters,

(2) All procedures manipulating data of this type are defined
together in a process module, which is only one positioned
under the environment module defining the type.

Thus data of this type are encapsulated so that the detail
structure can be referred to only from procedures manipulating
data of this type. Any module outside these two modules can
declare a variable of this type and gain access to this variable
by using manipulation procedures for this type.

2.4 Stepwise refinement

SPL is provided with the following features for program
development by stepwise refinement:

(1) A type definition for stepwise refinement of data structure,

(2) A program module can be written at each step of program
refinement,

(3) A procedure name can be composed of several words in order
that the procedure reference may express the function of this
procedure as precisely as possible,

A sample is given in Figure 2. After the type STACK and its

operation PUSH TO are used in Pl, they are refined in E2 and P2

respectively. '
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Another example is selected from our actual programs,
Through stepwise refinement, we developed a program for analysis
of paging behavior in an SPL library mentioned later, as
reported in paper[2]. The final hierarchy of this program is
shown in Figqure 3(a). First, variables and constants referred to
from every module in the whole system were declared in
environment module E_A, and top level procedure was defined in
process module A, as shown in Figure 3(b). Then, three functions
referred to in A were refined, The second function ANALYZE
PAGE_SEQUENCE and its environment module are shown in Figure
3(c). The two variables in E_C are referred to from three »
functions referred to in C. The data type PAGE-SEQUENCE in E_A
was refined in E_B as follows: ’

- type PAGE_SEQUENCE = array (MAXNO);

3. THE COMPILER
3.1 The outline

The translation of an SPL program can be divided into the
following four tasks:

(1) syntax and semantic analysis of a source program;

(2) inline substitution of an open procedure;

{(3) interpretation of compile-time execution statements;

(4) code generation.

There are two basic problems in the design of an SPL
compiler. The first is the processing order of (1), (2) and (3).
In the macro facility of an assembly language and the
compile-time facility of PL/I, substitution and interpretation
are performed on a source program before analysis. This method,
however, has two defects that an open procedure can not be
referred to before defining it, and grammatical errors can not
be detected until the expanded program is analyzed. In the SPL
compiler, substitution and interpretation are performed together
after analysis of a source program, because SPL promotes
top-down programming such as the development of a referring
module prior to a referred to module.

The second problem is how references to variables,
constants, user-defined types, and procedures are connected to
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their declarations and definitions. This problem is complicated
because the declarations and definitions often belong to a
module which is different from a module referring to them and
because these modules are compiled separately. In the SPL
compiler, a library is introduced in order to reserve
intermodule information, Compiling'speed strongly depends on the
data structure of this library, which will be mentioned later,
since it is frequently referred to because of the hierarchy of
modules, -

As a result, the basic construction of the SPL compiler was
designed as shown in Figure 4. An environment module is analyzed
by using information from the ascendant environment modules in
the library, and then, registered in the library. A process
module is dealt with in the same way, and furthermore, it is
expanded, interpreted, and translated into object codes if the
module includes definitions of procedures with the option main
or sub,

3.2 Separate compilation

Separate compilation is necessary in order to apply modular
programming to large-scale software, For example, when applying
Pascal for practical use, it is often extended to achieve
modularization and separate compilation[10,12]. A key to
separate compilation with complete type-checking is the
aforementioned library, whose necessity has been discussed a
little in CLU[13] and Ada[9] also. The SPL 1ibrary is composed
of an environment module library(EML), & process module
library(PML) , and a user-defined type table. .

3.2,1 EML :

The most important.point of the design of EML is the
representation of the tree structure of environment modules. The
simplest way to achieve this structure is to compile every
environment module independently and to preserve them and their
tree structure individually. In this way, however, a lot of time
is spent gaining access to the declarations of variables and
constants, because they are searched for in turn from the !
referring module to the ascendant modules., In the SPL compiler,
when an environment module is analyzed, information about the
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ascendant modules is extracted from the library as an initial
environment. New information about the module under analysis is
added to this initial environment and is held in the library as
if the environment module and the ascendant modules were
originally one module. Thus EML can be referred to quickly, and
compiling speed is thereby improved.

3.2.2 PML

PML includes an intermediate language program and an
interface table of procedures in addition to the same
information as EML., The intermediate language program is emitted
by compiling a process module., Each entry of the interface table
contains a procedure name, the parameter types, and a pointer to
the procedure body translated to the intermediate language, and
is used for type-checking of procedure,references. This table is
reserved séparately from the other information in PML for the
following two reasons:

(1) When a procedure is referred to before the definition,

- only the interface specification must be reserved.
(2) Any procedure can be referred to from any module without
respect to the place in which this procedure is defined.

3.2,3 The user-defined type table

This table reserves interface specifications and definitions
of user-defined types and is independent of EML and PML for the
same reasons as in the aforementioned procedure interface table.

3.3 Checking of user~defined types

How to check the equivalence of user-defined types is an
important problem because it may restrict the usage of
user-defined types. For example, is an assignment statement A=B
correct when A and B are declared as follows?

type T=integer;

var A:T;

var B:integer;
Generally, two definitions of type equivalence are
considered[20]. One is called "name equivalence," that is, two
variables are considered to be of the same type only if they are
declared together or if they are declared using the same type
identifier. Therefore, A=B is not correct. The other definition
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is called "structural equivalence," that is, two variables are
considered to be of the same type whenever they have components
of the same type structured in the same way. Therefore, A=B is
correct, CLU, Alphard, Mesa, and Ada adopt the former, and
Algol68 and Euclid use the latter[1l].

The data type definition, however, plays an important role
not only in data abstraction but also in stepwise refinement of
data structure, and the problem remains no matter which
definition is adopted. That is, when using a type definition for
data abstraction, the name equivalence is suitable outside the
definitions of the type and its operations, because the detail
structure of the type should be hidden from the user. On the
other hand, the structural equivalence is suitable in the
definitions of the operations because the operations for the
type must be defined by referring to the detail structure of the

type.

The general rule for selection of name equivalence or
structural equivalence is considered as follows:
(1) structural equivalence if users of the type need to know
the detail structure;
(2) name equivalenée if users do not need to know it,
For example, with respect to the user-defined type STACK in
Figure 2, module Pl belongs to (2) and P2 belongs to (1).

On the other hand, in SPL, the scope of a user-defined type
name is global and the detail structure of the type can be
referred to only from the defining module itself and its
descendant modules., As a result, the following rule for
éhecking type equivalence is derived from the general rule and
this scope rule:

‘ (1) structural equivalence in the module defining the type
and its descendant modules; ,
- (2) name equivalence in the other modules,
In CLU and Alphard, limiting to nahe equivalence causes no
problem since the operations for a user-defined type are defined
in their abstraction mechanisms, namely, cluster and form,
respectively. ’
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3.4 Inline substitution

Many modules which are referred to from only one or a few
places in their ascendant modules come into being after
developing a program by stepwise refinement or after decomposing
a program into modules so that each module implements one
function, If these modules are developed as external ones, their
linkage overhead degrades execution speed of the object codes,

In SPL, therefore, a function with the option open is
inline-substituted, This inline substitution, however, is more
difficult than that of a macro assembler or a PL/I compiler.
This is because the environment of the referrd to open
procedure must be unified into the environment of the referring
procedure, and because the expanded intermediate language
"program must be connected to this unified environment. -

In order to simplify this manipulation, a pointer from an
intermediate lanquage program to the environment is composed of
two parts, namely, an entry address of a module management table
and a location address in each environment module., Therefore,
the connection between the unified environment and the expanded
program is performed only by rewriting the module management
table, and it is not necessary to modify the intermediate
language program, Figure 5 shows the mechanism by which the
intermediate lanquage of references to the shared data A points
to the unified environment when procedure F2 is expanded into
vprocedure Fl. o

Another problem of inline substitution is how to identify
the version of environment modules which are included in both
the referring module and the referred to module., In Figure 5, EO
and E1 are included in both process modules P1 and P2, However,
it is not guaranteed that the versions of E0 and El in Pl are
the same as the ones in P2, For this checking, every compiled
module is given a unique number corresponding to its birthday.

4, PERFORMANCE AMALYSIS
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4,1 Compilation time

- The SPL was implemented on the control computer HIDIC 80 as
a preprocessor of the real-time Fortran., The compilation time
was analyzed with a tested program which was in practical use.
Part of the results are shown in Table I. The analysis phase
uses 2/3 of the cpu time and the substitution and interpretation
phase occupies nearly 10%, although this ratio depends on each
program feature,

Another interesting item is access time to auxiliary memory
(a magnetic drum), since the SPL library in this device is
expected to be frequently referred to because of separate
compilation. This access time to the auxiliary memory is equal
to 17% of the cpu time, and most of that time is épen; at the
analysis phase because environment modules are separated from
process modules and a hierarchy is constructed. Therefore, N
paging behavior of the SPL library was analyzed in detail as’
reported in [4].

4,2 Object efficiency

The program developed by stepwise refinement is composed of
many self-contained modules. Therefore, degradation of object
efficiency may be caused by the following:

(1) linkage overhead
(2) redundancy
(3) increase of local variables

In SPL, however, these defects can be avoided. That is, the
linkage overhead is reduced by inline substitution of open
procedures{2]. This effect has been reported ih CLuf18], too.
Redundancy arises because a referring procedure is written
without knowledge of the detail process of a referred to
procedure., This redundancy can be avoided by using compile time
facility. The compiler optimizes the storage allocation of local
variables, which can share storage with each other. The result,
as confirmed by several experiments, is that degradation of
object efficiency in SPL is less than 10% in comparison with
real-time Fortran,
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5. CONCLUSIONS
The new language SPL and its compiler were developéd in

order to support such programming methodologies as data
abstraction and top-down development by stepwise refinement. The
basic structure was introduced by decomposing conventional block
structure. That is, the static scope rule of block structure for
shared data was retained with the modification that the
declarations of shared data are separated from procedures and

arranged in a hierarchy. However, procedure names have global
scope.

Furthermore, new compiling techniques were required for the
SPL compiler with respect to this basic stfﬁcture and other
remarkable features of the language. These techniques/were
confirmed to be effective by performance evaluation of the
compiler, |

The first version of the language SPL was designed in 1975
and later updated. The compiler was developed in 1976 and has
been further improved. Further study is needed to develop
various supporting tools for this language such as an
interactive programming system for restructuring and
optimization of source programs{2,3] and a manipulation system
for the SPL library.
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EO E1 (P1)
E2 (P2)
E3 (P3) En : An environment module
——(P4) (Pn): A process module

Fig. 1. A sample of hierarchical structure of an SPL program.

procass P1(El); process P2(E2);
func EVAL opt(sub); func PUSH(V) TO(S) opt(open);
var S1:STACK(100) ; par V:real,
ceces S:STACK(*);
PUSH{VALUE) TO(S1l); S.TOP=S,TOP+1;
cseee $if LEVEL
end Pl; is 1 then
if S.TOP > S.MAX
environment E2(El); then ERROR(E013);
specification; else S.STK(S.TOP)=V;
func ERROR(CODE:int) opt(sub); end;
end; is 2 then S.STK(S.TOP)=V;
declaration; : end;
type STACK(LENGTH:int) end PUSH;
=(TOP:int init(0), cecee
STK (LENGTH) : real, end P2;
MAX:int init (LENGTH));
end;
end E2;

Fig. 2. Samples of SPL modules,
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environment EOQ;

environment E1(E0);
var A;
process R1(E1);
func F1 opt(sub);
..oA-o-

F2;
environment E2(E1);
process P2(E2);

func F2 opt(open);
‘..A...

(a) A sample progran.

IL1 program
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Fig. 5. A mechanism for inline substitution.,

Table I. Analysis of Compilation Time for a Sample Progranm
Phase CPU time(sec) M/D access time(sec)
Analysis 69.42 (67.5%) 14,92 (85.2%)
Substitution & 8.88 ( 8.6%) 0.97 ( 5.5%)
interpretation
generation
Total 102.92 17.52
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