goooboooogn
0 436 0 19810 174-197

174
ABSTRACT PROGRAM MODEL AND FUNCTIONAL MAPPING
M.Ohba, Y.Tanitsu, N.Takimoto, H.Kadota
Product Assurance Laboratory, IBM Japan, Ltd.
ABSTRACT

Programs consist of algorithms and data structures. Extending
this well-known basic conéept, algorithms can be regarded as
consisting of algoritms for control-flow and algorithms for data-
flow. On the basis of the separation of control and data flow, the
functor model is proposed to describe the interaction among co-
operating concurrent modules within the given programming systen,

and the functor kernel is also proposed to specify the internal -

control flow of each functor model as a pushdown-automaton.

1. INTRODUCTION

Generally, programs are regarded as consisting of algorithms
and data structures. Algorithms can furthermore be regarded as
consisting of control-flow for defining control mechanisms and
data-flow for defining operations on data. It is therefore important
to visualize the interaction among co-operating concurrent modules
and their internal control mechanisms, in order to specify and

verify the given programming system.

175

Recently, some interesting works have been done in the related
areas. H.D.Mills has proposed PDL/Ada as a program design language
on a basis of the Turing machine and the function semantics. The
IBM Communication Sjstems Architecture group has developed another
design language and its processor on a basis of the finite state
automaton in order to describe the network architecture. The La
Gaude IBM group has also developed another finite state automaton
based language and its interpreter.

The advantage of the Turing machine based model such as PDL/Ada
is a precise description, while the advantage of the finite state
model is a concise description. On the other hand, the PDL and
other Turing machine based models are to much complicated to over-
view the asserted algorithmé at the higher level of abstraction.
Hence, it is sometimes hard to understand what is asserted in the
described model. The disadvantage of the finite state models is,
as pointed out by D.S.Scott, most of complicated programs cannot be
modeled.

It is important for solving this semantic gap problem to allow
a proper balance between rigorous formulation and conceptual simpli-
city. R.Kowalski suggests to split the given algorithm into the

control component and the logic component to approach the balancing

problem. In his approach, the confrol component is treated as an
environment for the logic component, like as the operating system
for the problem program. The control component determines how the
logic chponents works to perform the functions efficiently.

There is another approach suggested by R.D.Tennent. In his
approach, the body of the program, the algorithm, is regarded as a

construct of control rules and functions for operations on data.

176

The functor model which is discussed in this paper is influenced

by his approach for balancing preciseneés and compactness of the
description. For allowing a clear, provable, and comprehensive
architectural specification for the target programming system, the
functor model is specified by defining the interaction among co-
operating modules called functors and the internal control flow of
each functor. The interaction among functors is defined as a directed
graph called the functor net which is similar to the Petri-net. The
internal control of each functor is defined as a non-deterministic
pushdown automaton.

The functor model is a practical method to visualize the control
rules among co-operating modules within a programming system and
within each module which is regarded as consisting of task synchro-
nization controls : e.g., WAIT, POST, etc.; internal sequence controls:
€.g8., DO, IF-THEN-ELSE, etc.; and further detail data manipulation

functions: e.g., MOVE, READ, WRITE, arithmetic operations, etc.

2. GENERAL CONCEPT

To construct a model that represents the data-processing algo-
rithm, it is reasonable to split the algorithm into the decision
layer algorithm and the data-manipulation layer algorithm. In this
layer séheme, the decision layer controls the flow of processing
data, and the data-manipulation layer performs the detail function
for processing data. In this paper, the decision layer algorithm
is called the kernel, and the data-manipulation layer algorithm is

called the data-flow.

177

From the architectural point of view, the kernel describes how
the functions described in the data-flow is controlled. The data-
flow describes how the abstract data is processed within the abstract

processor. Abstract data consist of data structures and data relations

refered by the data-flow symbolically. Data entities are data objects

which are actually processed by the data-flow.(Fig.l) Under the multi-
processing(and/or multi-programming) environment, the kernel is
furthermore regarded as consisting of the process(task) synchroniza-.

tion rules and the process internal sequence control rules. The

Data Entity Layer

Abstract Data Layer

Data-Flow Layer

Intra-Process
Control Layer

Inter-Process
Control Layer

Algorithms

Data-structures

Fig.l Layer structure

178

abstract processor is a kind of the actor which simulates the behavior

of the target data-processing system under the abstract processor

architecture. The abstract processor architecture is a multi-processor

architecture that consists of a finite number of abstract processors.
Under the abstract processor architecture, éach abstract processor

is connected to the inter-processor signal channel and the inter-

processor data channel. The inter-processor signal channel transfers

symbolic signals from one abstract processor to another. The inter-
processor data channel transfers data entities from one abstract

processor to another.(Fig.2)

a INTER-PROCESSOR SIGNAL CHANNEL ‘
A >

ABSTRACT -
PROCESSOR
KERNEL
ABSTRACT
’ PROCESSOR
ABSTRACT
DATA-FLOW
MACHINE
<
P

4 i
{ _ INTER-PROCESSOR DATA CHANNEL %

Fig.2 Abstract processor architecture

An abstract processor consists of an abstarct processor kernel

and an abstract data-flow machine. For processing data, an abstract

processor has two phases in the execution cycle: the control phase

and the process phase. During the control phase, the abstract processor

determines what function should be performed in the succeeding process

phase on the basis of the results of the previous process phase.

179

During the process phase, the abstract processor processes data
entities according to the order from the previous control phase.

After data have been processed, the abstract data-flow machine
informs the abstract processor kernel of the result of data-processing
to determine the next process during the subsequent control phase.

The abstract processor kernel can be modelled as a PLA, which
produces out-bound signals as either the reply to other abstract
processors or orders to specify what function of the abstract data-
flow machine should be activated during the subsequent process phase,
based on the in-bound signal as either the request from another
abstract processor or the response froﬁ the abstract-data-flow machine
as a result of the process. The abstract pfoceséor kernel is therefore
equivalent to the specifications 6f the target data-processing machine

at the higher-level of abstraction.

3. FUNCTOR MODEL

The functor is an abstract program model executed by the austract
processor system. Corresponding to each layer of the abstract processor
architecture, the abstract program model is alsc hierarchically
structured as consisting of the description of control-flow and the

description of data-flow. The kernel scheme describes higher-level

functions of the abstract program by defining control-flow operationally
within the abstract program and its interface denotationally. The

data-flow scheme describes detail functions of the abstract program

by specifying procedures for operations on data.(Fig.3)

The functor is a pd-automaton model of the kernel scheme. For

180

ABSTRACT
PROGRAM

KERNEL DATA-FLOW
SCHEME SCHEME

Fig.3 Abstract program model

specifying the higher-~level model of an abstract program system which

consists of two or more concurrent programs, abstract programs are
regarded as consisting of a set of independedt pd-automata which co-

operate interactively. As the correspondence of the abstract progran

to the inter-processor signal channel in the abstract processor archi-

tecture, the gate is introduced for syncronization and communication
among co-operating functors. Therefore, a given abstract program
system can be modelled as a construct of functors and gates.

There are six different types of functors and three different
types of gates for modelling co-operating abstract programs. Six

different types of functors are the initial functor, the terminal

functor, the transit functor, the selective functor, the merging

functor, and the continual functor. Three different types of gates

are the F-gate, the J-gate, and the E-gate. The initial functor is
a starting point of abstract program control-flow where control
resides at the time of system initialization. The terminal functor

is a vanishing point of abstract program control-flow where control

is absorbed for program termination. The transit functor is a relaying

point of abstract program control-flow through which control passes.

The selective functor is a disjunction point of abstract program

181

ccntrol-flow from which control branches off. The merging functor is

a conjunction point of abstract program control-flow where control-
flow branched at the selective functor is merged togather. The
continual functor is a non-functional functor which indicates the
originator of the POST operation for synchronization between co-
operating abstract programs. Except for the continual functor, other
five types of functors perform their indivisual functions. The

initial functor and the merging functor are introduced to describe
initialization processes, while the terminal functor and the selective
functor are introduced to describe termination processes.

The F-gate is a fork node of concurrent abstract program control-
flow where two or more processes(sub-tasks) start concurrently, and
introduced to describe the ATTACH and the POST operation. The J-gate
is a join node of concurrent abstract program contrbl-flow wﬁere two
or more concurrent processes(sub-tasks) are synchronized and merged,
and introducéd to describe the WAIT and the multiple WAIT operation.
The E-gate is another type of the join node which,describeffhe count-

able WAIT operation.(Fig.l4)

Py &Y

Initial Terminal Transit Merging Selective Continual
functor functor functor functor functor functor

A

F-gate J-gate E-gate

Fig.4 Functors and gates

182

Main-task Sub-task X Sub-task Y
ATTACH X . .
ATTACH Y . .
. . POST ECBM POST ECBM
WAITM ECBM : :
PO RETURN ’ RETURN
DETACH X
DETACH Y
(a) Initiation and termination of sub-tasks
' Sub-task X Sub-task Y
(ﬂ? POST ECBY WAIT ECBY
(%) WATIT ECBX POST ECBX
J L
(b) Synchronization between sub-tasks
Sub-task X Sub-task ¥
POSTC ECBY WAITC ECBY

(c) Message passing between sub-tasks

Fig.5 Example of the functor representation

183

Example (a) of Fig.5 represents a typical example of multi-task
programming: the main-task initializes two sub-tasks, X and ¥, by means
of issuing ATTACH macro, and waits until these sub-tasks complete their
processes. Example (b)’represénts a typical example of the inter-process
synchronization: the sub-task X posts the sub-task Y and waits until
the sub-task Y posts it, Examﬁlé (c),répfesents a typical example of
the message-passing between sub-tasks: the sub-task X prepares data
for the sub-task Y and passes it to the sub-task Y by means of issuing
POSTC macro, and thé éub-taék Y feceiveé data by means of issuing WAITC

macro. Definitions of POSTC and WAITC macro are as below:

definition of POSTC ' definition of WAITC
POSTC ech; WAITC ecb;
begin begin
COUNT = COUNT + 1 ’ o if COUNT = O then WAIT ecb
‘if COUNT = 1 then POST ecb COUNT = COUNT - 1
end; end;

As a result of the above extension of the Petri-net, initialization
and termination of the abstract program can be clearly specified(Fig.6),
and the inter-process control such as WAIT-POST confrol betweenﬁsub-
tasksbis also explicitly specified. Alfhough‘the graph representation
of the Petri-net is powerful - for modelling cbncurrent pfpgrams; inter-
task control-flow is not visible enough when the graph model becomes
a large scale one., Because the Petri-net dqes not distinguish inter-
process confrol-floﬁ from intra-process control-flow.(Fig.?(a)) The
Petri-net therefore requires semantic interpretation of tye graph to
distinguish inter-procéss coﬁfrol-flow ffom inﬁra-process control-flow.

On the other hand, the functor net classifies these two control-flow

10

184

Fig.6 The functor model with initialization/termination

(a) Petri-net model " (b) Functor model
'Fig.7 The functor model and the Petri-net

as different classes using different notations.

1]

185

L. EXAMPLE OF FUNCTOR MODEL

Fig.8 shows a typical example of multi-programming structure models
in the online application. The example program consists of the main-task
A, the receive sub-task X, the process sub-task Y, and the send sub-task

Z. The rough structure of the program is shown in Fig.9.

SYSTEM

53/ /// \SYSTEM

— -
)

Fig.8 Example model of online application program

In the example program, the receive sub-task X receives data from
a terminal, checks recgived data whether or not shut-down is requested,
decrements the local variable COUNT and passes thebshut-down request to
the process sub-task Y if shut-down is requested; or passes the received
data to the sub-task Y if shut-down is not requested;-posts'the sub-task
Y by means of issuing POSTC'macro, and repeats the above pfééedure until
the local variable-COUNT becomes zero. The process sub-task ¥ waits for

data from the receive sub-task X, is posted when the message comes from

12

186

MAIN-TASK A
BEGIN

.

ATTACH X
ATTACH
ATTACH 7Z

DETACH X
DETACH Y
DETACH 27

END

SUB-TASK Y
BEGIN
COUNT=N

DO UNTIL COUNT=O0
WAITC ECBY
get message from X
IF message=shut-down-req
THEN COUNT=COUNT-1
pass message
ELSE process data
pasé'datav
"ENDIF
POSTC ECBZ
ENDDO

POST ECBA
END

SUB=-TASK X
BEGIN
COUNT=N

DO UNTIL COUNT=0
RECEIVE
WAIT ECBX
- IF REQUEST=SHUT-DOWN -
THEN COUNT=COUNT-1
pass shut-down-req
ELSE pass data
ENDIF
POSTC ECBY
ENDDO

POST ECBA
END

SUB-TASK 7
BEGIN
COUNT=N

DO UNTIL COUNT=0
 WAITC ECBZ
get message from Y
IF message=shut-down-~req
THEN COUNT=COUNT-1
SEND SHUT-DOWN
ELSE SEND data
'ENDIF o
WAIT ECBZZ.
ENDDO

POST ECBA
END

Fig.9 Example program structure

13

187

the sub-task X, checks the message whether or not shut-down is requested

decrements the local variable COUNT and passes the shut-down request to

the send sub-task Z if shut-down is requested; or processes data for
sending back to the terminal and passes processed data to the send sub-
task 2 if shut-down is ndt requested, posts the sub-task Z by means of
issuing POSTC macro; énd repeats the above until the local variable
COUNT becomes zero. The send sub—task 7 waits for the message from the
éub-task Y, is posted when the message comes from the sub-task Y, checks
the messaée and'pefforms either decrements the local variable COUNT and
sends the shut-down command fo the terminal if the message is a shut-
down reqﬁest; or sends processed data to the terminal if'the'messéée is
a send~-data request, waits for completion by the access method routine
of the operating system, and repeats the above until the local variable
COUNT becomes zero. WYhen the local variable COUNT becomes zero which
means no active sessions exist, all sub-tasks post the main-task for
termination.

What is described in the functor graph model shown in Fig.8, can
be interpreted as follows:

the main-process always forks sub-processes X, Y, and 2;

sub-processes concurrently operate and sometimes repeat:

the sub-process X always passes the request to the sub—procesé Y;
the sub-process Y always passes the request to the sub-process Z;
sub-processes sometimes join into the main-process;

the main-process always ends.

14

188

5. FUNCTIONAL MAPPING

As described previously, the functor isran abstract program of
which control structure can be described as a pd-automaton, and consists
of a control-flow component called the functor kerﬁel and data-flow
components called procedures. Strucfure of the functor kernel can be

defined as consisting of its external input (request) from other functors,

its internal input (response) from procedures, its internal state, its

internal control variables, its internal output (order) to procedures,

and its external output (reply) to other functors. From the external
(denotational) point of view, the functor produces the reply for the
request from another functor. From the operational point of view, the
functor kernel controls the sequence of operations within the functor
for producing the output by means of issuing orders to data-flow
procedures depending upon its internal state, its internal control
variables, the response from the procedure, and the request received
from another functor. The internal state of the functor always changes
depending upon progress of operations within the functor, while interﬁal
control variables occasionally change depending upon the requirement
of memorizing new values for these variables. Typical examples of the
internal control variables are program switches, do-loop counters, and
do-loop termination control variéble such that the parameter N of the
flow-chart in Fig.10 is a representative.

The functor kernel is characerized as equations below:

s = T (is); €I S)

0CS) = %, (£S5 €5 S)

CCS) = Fe(&eH; &S5 S,

15

189

I <« F

\
I «— 1 +1
2 N)es
- N
no Process

y B

Process
I RETURN

Fig.10 ‘Exar‘aple of DO-loop Termination Control Variable

where S is the internal state of the functor; Sl is the next internal
state of the functor when state-transition from the current state S
completed; €(S) is the internal control variable vector at the state

S ; ZG) and @) are defined as follows,

. PAON
LS = .)

| 25¢S) |

0csh 1 0% T
) = ’ .
o ;VLOCCS/)_J : :

where .id(s)is the external iﬁput vector at the state S , 1%s) is the
internal input vector (response ‘f‘rqm ‘procedures_) rat’ the state s ,
Od(s') is the extermal output vector (reply to other functors) at the
state‘S', and /@%S,) is the internal output vector (order to procgdures)
at the state S",

Let the domain gggbe a set of states of the given functoraf-,hsuch

16

180

that 58’@; satisfies: for any state s of d})’i : g QﬁU {sYy ¢)&g‘. Let the

(m.,

domain @ag‘be a Cartesian product of domains C (f,‘,;), eeey and (E
Ca
where f/"siis a set of all possible values of the internal control

variable ¢’ of the given functor %k , such that (f%f) satisfies: for

(€9}

any value c\‘;) of ¢, {Cqx U {c(”’;} c @731 Let the domain \Qaﬁ be a

d(y) 2 d(R
Cartesian product of domains 95 7, ﬂd o o Ja. & \9)6(') 957, +-., and

jfg’, where \9%—9 is a set of all possible values of the external input

variable i" and \g,%,‘ is a set of all possible values of the internal

C)

input (response from procedures) variable i“* of the given functor 03‘,

such that \Q%:ignd \9%‘3 satisfy: for any value iiu) of 1’ and 15" or
i g 9%‘,"1}{ 1491} ¢ \@%‘j and {\,@“’U 11573y < D' - Let the
domain @051 be a Cartesian product of domains "“"’ @d‘z) cees @d“” (ﬁf“”
@m) «.ey, and @%f), where @0%: is a set of all possible values of the

dai i)

external output variavle o*™ and @% is a set of all possible values

of the internal output (order to procedures) variable o°®’ of the given

dd) ;) G
functor %f, such that @3‘ and @’%::) satisfy: for any value odf' of o'

and OJC(«‘/ of oSO , 3 @,::;/U { dc.')3} < @,%,., , and {@;;:) U {o”"ﬂﬂ < @%’(j)‘

The functor kernel is modelled and structured as consisting of mappings

¥, ¥ » and &« , as shown in Fig.ll. The functional mapping model shown

y@%

G X Jox x Coq —2—~ €
% F "&'n\);‘
%%,

Fig.ll The functional mapping
in Fig.ll implies that the proper domain ﬂﬂg‘of finite integers can

be determined iff domains \.9031 and (ﬁg1 are finite. Introducing the

domain N”;‘fu the model illustrated in Fig.ll is transformed as Fig.l2.

17

191

B @kﬁ
C o
K)2305'-

Fig.l2 The functional mapping with domain

By x Cog —> Ny

Semaintics of the functional mapping model illustrated in Fig.l2,
is as follows. The mapplng G 5&%1 X d‘;@; X kg)ﬂi —);\((3,,(, analyzes the
environment of operations and 1dent1f1es a condition of the current
operation., The mapping Ju))‘(@ — @’%, determlnes the output of the
current operatlon on the ba81s of the 1dent1f1ed condition by the mapplng
Mo ’I‘he mapping)_)I\(odi — % determines new values of 1nternal
control variables as a result of the current operatlon; The mapplng
K :)J‘Ca,c — %, determines the next state of the functor % as a result
of the current operation. The new environment of operation, that is
induced by new values of control variables and the new state, determines
the range of possible actions for the further operations of the functor.
Therefore, the functional mapping specifies the high-level semantic

interpretation of the given functor Oﬁ_

6. ALGEBRAIC MODEL OF FUNCTIONAL .MAPPING

In case where input variables, internal state variable, internal
control variables, and output variables_‘ are given as Boolean variable
vectors, the algebraic representatioﬁ ‘of functor kermel functions 0‘-5,
’33)‘, %l , and %Fg is discussed.

For manipulation between Boolean vector and matrix, following two

algebraic operations A\ and ¥V are introduced.

13

192

DEFINITION: the operation A is defined over the Boolean matrix A and

the Boolean vector }p , such that;

A [.\‘b = 'a“ Ay ees Qyn /.\ bl
83 822 eee 221m be

. . . .

. L] . .
L3m Qmz se- 8mn bm

= ((a\\' bl)/\(am'ba)/\ .-.A(a,.,,vb,,.)
(Y0,) A (2, Y02)N oo o A(aymY b))

. .]
3 . L3
. .)

L (a,,¥ b,)/\(a,zvb,)/\...l\(am‘m‘bm)) .

The result of the operation is an Boolean vector which consists of

m Boolean variables.
DEFINITION: the operation ¥ is defined over two Boolean variables p
and q, such that the operation satisfies the truth table below;

by a

= 3 3T
B oo

\d
T
F
F
F F T

Table 1 Truth table of operation

DEFINITION: the operation V is defined over the Boolean matrix M and

the Boolean vector b , such that;

AVb = ra, ag ... am;volb.
Q21 Q27 ee. A2m b,

. . L3 ’ .

. . . .
Lag, 839 e.. 22m) Llbom

= [(ayAB,)V (@aAby)V eeuV (A Aba)]
(a21A bt) V (a22A b?) V LRI V (agm\[\bfm)

t (a}l’\ bl)'V (ajzAb2 YV oo V(aijbM)‘

19

193

The result of the operation is an Boolean vector which consists of 1
Boolean variables.,
Applying operations A and V , the function 03"!? can be expressed

as the equation below:

0(s8) =% 2(s); c(s8); &)
= (% (2($); c(3); 8))
= MV(Z N [(Z(s)) .
c(s)
3

Similarly, the function 0596. and %2 can be expressed as:

$’ = % Z(8); c(8); 3)
= B F(£(8); €(8); 8))
= KV(E N [2(3)]) ,
(s)
3
C(F) = "R £(8); T(3); 8)
= R T (£ (S); € ()5 8))
= AV(ZS N [E8)]) .
c(s)
3

Therefore, the functor kernel model is given by the equation:

o= [MV(E N (£(8))) ,
T (3D A c(s)
&’ K $

where, [, /1 , and M are Boolean matrices which are defined by the
specifications of the functor 0&..

Let the vector X be an Boolean variable vector, such that:

x = [£(8)

c(8)
3

Let the matrix j; be an Boolean constant matrix, such that:

A = M
A
K) .

And, let the vector Y be an Boolean variable vector, such that:

20

184

d = [(@($)
C(8")
$l

Consequently, the functor kernel model is given by the_equation:
W o= AV(IE ANx) .

Semantics of the above equation is operationally defined as Fig.l1l3.
The language used for the description of semantics is PL/I. The
rrocedure named KEFNEL describéé éemantiés‘of the above géuatiaﬁ.‘It
is assumed in the procedure that the vector XX corresponding to the
vector AL, the vector YY corresponding to the Vector’w , the array SS
corresponding to the matrix 2 , and the array AA corresponding to the
matrix (A are defined externally and passed from the calling procedure,
and dimensions of arrays and vectors are also paséed from the calling
procedure, The procedure SNOC notifies that the should not occure
condition, for example undefined input detected, occures.,

The algebraic model described above is very equivalent to PLA's
(Programmable Logic Arrays) of the hardware logic component. Same as
PLA's sometimes free the hardware logics from the architecture, the
basic structure of the functional mapping is independent from the detail
functions of the model to be described. The matrix 2 corresponds to
AND-array of the PLA, and matrices [K , /1 , and M correspond to OR-
array.

Furthermore, the model can be regarded as an extension of the
decision table. The decision table logic is inhereﬁtly static: it does
not depend upon states and internal control variables. The functional
mapping model can describe dynamic logics by means of utilizing state

and internal control variables.

21

195

BEGIN;
DECLARE L,M,N BINARY FIXED; /* DIMENSION OF ARRAYS */
DECLARE II(128) BIT; /* INPUT VECTOR */
DECLARE $S(768,128) BIT; /* SIGMA MATRIX x/
DECLARE MM(768,384) BIT; /* MU MATRIX x/
DECLARE 00(38L4) BIT; /* OUTPUT VECTOR x/
L=128;
- M=768;
N=38L;
CALL KERNEL(II,SS,MM,00);
/%%*****************k**/
/* PROCEDURE : KERNEL */
/**********************/i
KERNEL: PROCEDURE (XX,SS,AA,YY);
/* DECLARATION PART */
DECLARE XX (*),8S(*,*),AA(*,*),¥Y(*) BIT; -
DECLARE SW1,SW2 BIT; /* CONTROL VARIABLES */
DECLARE I,J BINARY FIXED; /* DO LOOP COUNTER RV
/* PROCEDURE BODY */
SW1='0'B; /* SET SW1 OFF . xf
DO I=1 TO M WHILE(SW1='0'B); /* APPLY SIGMA MATRIX */
SW2='0'B; /* SET SW2 OFF . */
DO J=1 TO L WHILE(SW2='0'B); /* CEECK ALL ELEMENT */
IF SS(I,J) -= XX(J) /% SS(I,*)=XX(*) x/
THEN SW2='1'B; /* IF TRUE THEN */
END; /* SW2 STAYS OFF */
IF SW2='0'B /¥ IF SS(I,*)=XX(*) x/
THEN SW1='1'B; /% . THEN SW1 = QOFF . x/
END;
IF SW1l='1'B /* IF SS(I,*)=XX(*) x/
THEN /* THEN */
DO J=1 TO N; /* APPLY MU MATRIX */
IF AA(I,J)="1'B /% YV (*):=AA(T,*) x/
THEN YY (J)='1'B; /¥ FOR ALL ELEMENT */
ELSE YY(J)='0'B; /* OF MATRIX MU */
END; o : : S : _
ELSE /* ELSE */
CALL SNOC; /* SHOULD NOT OCCURE */
/* CONDITION OCCURES */
END; /* RETURN TO THE CALLER*/
END; /* END OF BLOCK */

Fig.i} Operational definition of the functional mapping model

22

196

7., CONELUSION

The functoriﬁqdel'deSCribed in this paper is cénétructed on the
basisvof the Petri-net, the Actor theory, and the’decision table.

The general concept of the abstract program structurization and the
abstract processor architecture is influenced by the Actor theory.

The graphic representation method of concurrent abstract programs is
influenced by the Petri-net. The algebraic model of the abstract

program internals is influenced by the decision table and the PLA.

The algebraic representation of the functional mapping is another
interpretation of the state vector semantics for specifying the abstract
progrém functions.

These mefhod of modelling programs in the actual use environment
at different levels of abstraction, are hierarchically structured from
the top level to down levels: at the top level, the Actor theory is a
powerful tool for defining how system components interactively work
within the target system; at the second level, the Petri-net is a
powerful tool for defining how modules within the system co—operéte
and the concurrency of the system is mechanizéd;'at the third level,
the state vector approach is pOWerful for defining how each module
works under the concurrency control mechanism defined at the second
level; at the fourth level, thé data-flow language may be a. powerful
tooi for defining,bow data are processed within a module under. the
sequeﬁce contrdl défined at the third level. At this point of time,
the functor model and the algebraic model of thevfunqtipnal.mgpping
are therefore effective and practical tools for engineering the soft-
ware.

The further research effort is currently planned for the following

areas: the algebraic representation of concurrency control mechanisms,.

23

197

the formal language for the concurrent program specification, and the

validation method of the concurrency algorithm described in the formal

language.

Finally, the authors deeply thank Mr. A, Othara, who works for

System Communications Assurance of the IBM Kingston laboratory, for

his technical comments and enthusiastic discussions with the authors.

REFERENCES:

1)

2)

3)

L)

5)

6)

7)

8)

Yonezawa Aj; "Specifying'Software Systems with High Internal Concurren-
cy Based on Actor Formalism", Journal of Info. Processing, Vol.2

No.4, 1980.

Lautenbach K; "Use of Petri Nets for Proving Correctness of Concurrent
Process Systems", Proc. of Info. Processing 74, 197.4.

Priese L; "A Note on Asynchronous Cellar Automata', Journal of Computer
& Systems Sciences 17, 1978.

Jotwani N et al.; "Top-down Design in the Context of Parallel Programs",
Journal of Information & Control 4O, 1979.

Conry S et al.; "On Functional Equivalences in a Model for Parallel
Computation", Journal of Information & Control 41, 1979.

Mekly L et al.; "Software Design Representation Using Abstract Process
Networks", IEEE Trans. on Software Engineering, Vol.SE-6, No.5, 1980.
Leung K et al.; "Logical System Design-using PLAs and Petri Nets'",

Proc. of Info. Processing 77, 1977.

Ohba M et al.;'”Architecture Kernel: Higher Level Program Specification",

Proc. of COMPSAC80, 1980.

24

