goooboooogn
0 436 O 1981 0 198-217

198

A Verification System for

File. Processing Programs

by
Tetsuo Tamai

Koichi Fukunaga

Mitsubishi Research Institute, Inc.

Time & Life Building
3-6, 2-chome, Ohtemachi
Chiyoda-ku, Tokyo, 100

199

Introduction

It is widely recognized even among average programmers that the verifica-
tion technique is, in principle, one 9f the most fundamental approaches
to ensure software qualiﬁy. Yet, most programmers suspect its applica-
bility to the practical situations. " The points . they specify as the

defects of the technique are:

i) most verification methods use the notation which is not familiar
to programmers (such as the predicate calculus), so that they have

“trouble in understanding and applying the methods;

ii) only small programs can beé verified by current verifiers and con-
siderable amount of efforts for detailed logical reasbniﬁg seems
to be required to prove rather simple properties of pfdgfamé; It
seems impossible to manage the verification tasks for programs of

practical size.

To cope with these problems, experiments of verifying non-trivial pro-
grams by practitioners are indispensable. We, members of technical
staff of a software-house, have been exploring the effective way of
verification for these four years. In this paper, we present the over-
view of our verification project. First, we examine the current status
of conventional verification systems and summarize our approach in the
next section. In the following sections, we show the outline of a
simple verifier for file processing programs which we have developed.

Some remarks on our verifier and the future research follow.

206
Approach to the practical verification system

Current verification systems

The most frequently used verification method is that of inductive as-
sertioné [3]. 1In this method, assertions about the relation among the
program variables are placed in the text of a'program such that every
loop is cut by an assertion (called a loop invarianf). If we can show
that whenever the control passes the place of an assertion, the asser-
tion is true with the current values of the program variables, we can

claim that the program is correct with respect to the assertioms.

The notion of assertion itself is intuitively understandable and this
method seems to be the most natural way for programmers to state and

verify their intention about their programs.

Nevertheless they have difficulty in preparing assertions, especially
in finding loop invariants. This is because they don't know how to
translate the description of what a program is to do into a formal

specification. They need some kind of help.

There are several existing verification systems: King {9], Deutsch {[2],
Stanford [11], [12], USC-ISI [4], and Boyer and Moore [1l]. With the
notable exception of the work by Boyer and Moore, these verification
systems are based on the method of inductive assertions. They slightly

differ with each other in the following réspects:

- methods used to generate verification conditions,

- facilities provided for user interaction.

King's pioneering system could verify only small number of programs
and demonstrated the fundamental limit of fully automatic systems.
Deutsch's system, named PIVOT, has some user interaction facilities
and has verified essentially all of the examples in King's thesis plus
several important ones. PIVOT works forward along the program paths
to generate verification conditions and makes on-the-fly deduction in

this generation phase. This scheme which is unique to PIVOT is

201

agreeable in that it simulates the ordinary execution sequence of pro-
grams and the meaning of the generated conditions is easy to understand.
A defect of the forward genmeration is that it tends to generate irrele-
vant conditions for the proof, as it is not guided by the goal asser-
tions. Later, this scheme was generalized by King [10] and named

""Symbolic Execution.”

Both the Stanford system and the ISI system deal with Pascal programs
and use the same verification condition generator [8]. This generator
is based on the axiomatic definition of Pascal [7] and works backward
along the program paths. No deduction is made in this phase. Although
this method is more efficient than that of PIVOT, the generated verifi-
cation conditions are not easy to understand. It is difficult to debug

incorrect programs by using this kind of information.

These systems have powerful facilities for simplification and theorem
proving. These facilities can utilize the user's knowledge about the
problem domain. Thus they succeed in verifying a variety of programs.
But substantial understanding of the verification system is needed to

encode the knowledge into the appropriate form required by the system.

Our approach

Here, we summarize the approach we have taken to realize a prototype
verifier capable of verifying non~trivial production programs in an

intuitively understandable way.

First, we tried to verify typical programs in production environment
using hand simulation and to accumulate the experiences. Our aim in
_this stage was to analyze the primary difficulties encountered by pro-
grammers during verification and to collect the knacks of verification,

if any.

One of the main observations of the above study was that the major dif-
ficulty in verifying practical programs lies within the fact that the

principal programming concepts in the application area are not well

202

studied and their properties are not formally stated. In such cases,
programmers have trouble in stating the precise specification of their

programs. Thus they are far from being able to verify their programs.

In the next stage, we selected a specific domain, the sequential file
processing problem, and tried to formalize the primary concepts in the

domain and to verify programs using these formalized concepts [13].

An example of the formalized concepts is the order of records in a file,
that is, whether they are sorted in the ascending order of the values

of their key fields or not. Using these concepts, typical file proces-
sing problems, such as merging several files into one file or updating
a master file by transaction records, were formally specified and the

programs realizing these specifications were successfully verified. -

Through these experiments of specification and verification, the use-
fulness of the formal approach was confirmed. The importance of the
notion of abstract files, which represents intermediate files and opera-

tions on them in a conceptually integrated way, was also recognized.

Finally, we have constructed a prototype verifier for file processing
problems, to demonstrate that the fairly simple tool could be useful
if the problem domain is well studied and the knowledge of the domain

is incorporated within the tool.

The verifier deals with programs written in a simple language called
VFPL (Verifiable File Processing Language) and has the following

features:

i) it uses the symbolic execution technique to reason about the pro-
perties of programs. So, programmers can follow the verification

process easily;

ii) the progfam states are represented by the formula consisting of
the predicates defined in the previous stage of this work and the
execution sémantics of VFPL statements are givén in terms of
predicate transformation rules. Programmers know the meaning of

these predicates very well.

203

Overview of the VFPL verifier

Qbjectives

As described in the previous section, the main objective of this pro-
ject was to study the feasibility of a practical verification system.
What do we mean by "practical? First of all, a practical verifica-
tion system should be easy for average programmers to use. Secondly,
and obviously, it must be able to show the correctness of a program
that is "real" with respect to its size and its function. Moreover,

a verifier should have not only a high verification capability but
also a facility to support finding the cause of failure when verifica-~

tion does not succeed.

Features of the system

Considering the above objectives, the functions of our verifier are

determined as follows.

(1) The target field of the verifier is that of sequential file pro-

cessing problems.

(2) The verifier accepts programs written in VFPL, which is a special-

purpose programming language to write file processing programs.

(3) The verification method is not.in the line of 'verification-con-
dition~generation + theorem-proving' but is based on a kind of
"symbolic execution' that transforms program states along the

program execution path.

(4) The verifier is run interactively through a set of commands.
Using some commands, we can interrupt symbolic execution process
and inquire about the state of the program or restart symbolic
execution from an arbitrary point with an arbitrary initial

state. With these facilities, we can analyze program behaviors.

(5) A translator that translates a VFPL program into an equivalent

COBOL program is incorporated in our verification system..

204

We specified the target field, because we expected ﬁo overcome the
limitations faced by the current program verification technique through
exploiting the knowledge of the specific problem domain. We chose :the
file proéessing problem, because it might be undesirable to choose a
too narrow and uncommon area but file processing has a wide range of
applications and also because it waé expected that there are certain
patterns in the concepts behind the file problems and the structures of
their processing. The way of treating file processing problems formal-

iy is explained in detail in [13].

Configukation of the system

The overall structure of our VFPL verification system that realizes the
above features is illustrated in Fig. 1. Normal use of this system
goes like this. One prepares a VFPL source program and lets the parser
parse it. The parser produces an internal code consisting of a syntax
f.ree and a symbol table. If some extra knowledge is necessary to per-
form verification of this program, one represents it in the form of
predicate transformation rules and supplies them to the system using
the rulehandler. Then, one starts the symbolic executor'to analyze
the program behavior and perform verification. The symbolic executor
uses the predicate transformer and the simplifier as its subsystems.
When the correctness of the program is‘assured, one gives the VFPL pro-
gram and other detail information such as data structures within records
to the translator to generate a.COBOL prog:am; Thié sequence of com~

mands are put into the system through the command interpreter.

Characteristics

Due -to the design as described above, our VFPL verification system has

such characteristics as follows.

(1) Because the verification is based on a kind of symbolic execution
method, it is easy to understand the verification reasoning, fol-

lowing the program execution path.

206

(2) With the commands analogous to those found in some interactive
" debugger, the user can obtain much broader information about pro-

gram behaviors in addition to direct results of verification.

(3) The user can write a file processing program in VFPL, a simple
prograﬁming language with strong structuring facility, and verify
its correctness. After the verification, he can get an executable
COBOL program, supplying the VFPL program and detailed information
to the translator. The verification technique has been criticized
as a looking-backward technique in the sense thét it tries to
prove correctness of a program only after its completion. However,
if used as described above, our system can be of use at the ear-

lier stage of software development.

With these characteristics, our verification system hopefully shows a
way to meet the initial objectives. The VFPL verifier currently runms
under TSO on the IBM 370/168. It is coded in REDUCE, a version of LISP
developed at the University of Utah by A.C.Hearn and others [6].

207

4, Detailed description of the system

Programming language VFPL and the parser

VFPL is a language for writing basic structures of file processing

programs. It is a procedural language with file processing basic

statements and minimum control structures.

Its characteristics are as follows.

¢))

(2)

(3)

(4)

Files and records are defined as data types. The language is

strongly typed with a facility of admitting user-defined types.
VFPL has two control stfucturesi_ if-then-else and while-do.

There is a consturct called file-module that makes it possible to
introduce virtual files. It provides a means to realize inter-
mediate files by means of implementing open, close and read or
write instructions as procedures instead of actually producing

physical files. This is useful for modularizing and structuring
programs,

Specifications of programs can be stated in the form of input/

output assertions.

The parser parses VFPL programs and generates syntax trees and symbol

tables. As the VFPL langudge specification is simple, the implementa-

tion of the parser is straightforward. Some of its characteristics

are strict type checking facility and some simple global analysis such
as checking if an opened file is properly closed.

“Symbolic execution

In this paper, we call a process of transforming the program state

along the execution path, symbolic execution. A program state is re-

presented by a logical formula including predicates that specify rela-

tion between files, records, and other data. For example, a formula,

209

program §, then the assertion R will be true on its completion.”
Hoare used such axioms to specify the semantics of programming language

constructs.. For example, a schema of axioms

'13?:1::?3“ 1P
defines the semantics of the assignment statement, where.P is an arbi-
trary predicate and P? is P whose all free occurrences.of the variable
x is replaced:by the expression f. In our system, we use this kind of
formulas for the purpose of axiomatically defining the meaning of : .
predicates and functions that are introduced.for specification writing

and verification. ¥For example, two -axioms, .

true {open(F)} osorted(state(F)),
osorted(state(F)) A lastkey(state(F)) < R.key

{write(F,R)} |
osorted(state(F)),'

define a predicate osorted, which means "The output file is sorted.”
Here, lastkey is a function that returns a key of the last record -
written on the designated file and is assumed to have been specified

beforehand in the same way. state(F) denotes the state of the file F.

Axioms and inference rules of a Hoare style aré used for vefifiéatioﬁ
condition generation in many mechanical verification-systemsv(g,g. the
Stanford Pascal Verifier [11]). 1In verification condition generating
process, the output assertion of a program is transformed following
the execution path backward until it reaches the top of the path.

The assertion thus obtained by the transformation must be deduced from .
the input assertion to show the correctness of the program and that
condition is called VC (Verification Condition). In those systems,
_predicates and functions for the.pfdgram specification and the verifi-
cation, like osorted in the above example, are specified differently
using axioms that do not incldde'programming language constructs.

They are supplied to a theorem prover that tries’to'prove VC's.

In our system, Hoare-like axioms are used somewhat differently. Axioms,

such as those for osorted, play a role of program state transformation

210

rules. Suppose, at a point of a program just before a write statement

of the form:
write(QUTF,R),

osorted(state(OUTF)) and lastkey(state(OUTF)) < R.key hold. Then,
right after the execution of this write statement, the assertion
osorted(state(OUTF)) becomes a part of the program state. Our symbolic
execution starts from the top of the program. taking the given input
assertion as its initial state and proceeds along the execution path,
transforming the program state up to the end of the program. If the
output assertion written in the program can be deduced from the final

program state, then the verification of the program is successful.

In the VFPL verifier, a subsystem called the predicate. transformer
performs .the function of transforming program states, applying trans- .
formation rules. During this process; another subsystem called the
simplifier is frequently invoked and simplifies logical formulas'that
represent program states. This simplifier has specific. knowledge of
equality and partial ordering, which is of great use in reasoning
about comparisons of keys that usually decide the control structure of

a file processing procedure.

The simplifier not only simplifies logical formulas but also helps the
symbolic executor select transformation rules applicable in the cur-
rent program state or decide if an output assertion or assertions
placed within the program could be deduced from the program state at
that point. Details about the simplifier and also about the detection

of loop invariants are given in [14].

We can summarize the features of the verification method based on this
kind of symbolic execution technique as follows. Note that the pro-
gram state transformation proceeds in the same direction as‘ the pro-
gram execution and knowledge on some properties of the problem, such

 as osorted, is utilized in that process. (Such knowledge is given to-
a theorem prover; which is independent from programs or programming

languages, in conventional verifiers.) Also, the simplifier is active

21]

during the process. Due to these characteristics, symbolic execution
process gets easier to comprehend. Moreover, it can be expected that
the capability of theorem proving facility need not be so sophisticated.
This kind of verification process seems somewhat similar to man's way
of understanding the behavior of a program and convincing oneself about

its correctness.

Commands and the command. interpreter

The VFPL verifier is used interactiﬁely. The user inputs commands and
activates appropriate functions. These commands are interpreted by the
command interpreter. Fundamental commands are those that invoke the
subsystems, viz., the parser, the symbolic executor, the rulehandler,

and the translator. For example, with the command
parse <file name>,

the program in the designated file will be parsed.

There is another type of commands that control the symbolic execution
and display Appropriate information on the process or change the execu-
tion flow. Many of these commnads have their counterparts in an
interactive debugger, a software for interactively debugging a program

by means of actually running it. Some typical commands are as follows:

(1) TRACE command

is a command to display the symbolic execution process with an
executed source statement and the program states before and after

its execution.

--(2) BREAK command

is a command to set breakpoints, which are locations of a program
where the symbolic execution should be interrupted and the control
be transferred to the user. Besides setting breakpoints explicit-
ly, there are implicit ways of setfing them by specifying the
condition to break or making the execution break at every branch

or at every statement.

212

(3) SAVE command

is a command to save the current program state.

(4) RESTORE command

is a command to restore a saved program state and set it as the

current state.

(5) EXEC command

is a command to start symbolic execution. One mode is to start
the execution from the top of the program, taking the input asser-
tion as its initial state and the other is to start from a given

point with a given program state.

Translator

The translator, given a VFPL program and a detailed description in
COBOL notation that might be hard to write in VFPL (e.g. file descrip-
tion in COBOL corresponding to a VFPL file variable), generates a
COBOL program equivalent to the original VFPL program. The translator
was developed for the purpose of making sure that our verification
system as a whole could function as a useful tool for program develop-
ment. Indeed, if a programmer first writes a basic structure of a
filg processing problem in VFPL, verifies it, adds some details to the
verified program and feeds it to the translator to obtain an executable
COBOL program, then the program thus developed has much more reliabil-
ity.

The significance of using the programming language VFPL is that there
.-is a way of applying symbolic execution and verification to a program
written in VFPL and also that it is easy to structure a program at a
high level, making use of VFPL's modularization capability. However,
COBOL programmers might find the style of VFPL rather difficult to get
familiar with, not to say that they feel reluctant to learn a new lan-
guage. The translator can be of some help to such programmers as well,

for it shows how VFPL programs are converted into COBOL programs.

2[3

Rulehandler

We explained what the program state transformation rules are and how
they are applied.' Some of such rules are built into the system and to
enrich and systematize those rules are a necessary step toward enhanc-
ing the VFPL's capability and usefulness. However, it would still be
necessary in some case for a user to prepare specific rules himself for
the verification of his program. Therefore, the system is required to
offer a way of registering; keeping, changing and deleting the trans-
formation rules. It will be useful as well if it is possible to parti-
tion rules into groups and select ruleg by indicating group names for

each verification. The rulehandier is prepared for these pufposes.

For example, to enter the definition of osorted with a group name
OSORTED, we first key-ih the command RULE to invoke the rulehandler

and then enter a subcommand of the following form:

CREATE OSORTED
0S1: TRUE
(. I0 OOPEN(@F).)
OSORTED (STATE(@F)) ,
0S2: OSORTED(STATE(@F)) AND LASTKEY(STATE(@F)) <= R.KEY
(. IO WRITE(@F,@R).)
OSORTED (STATE(@F)) ;

214

Conclusion

The VFPL Verification System currently runs on the IBM 370/168 under
TSO. We already tested more than ten VFPL programs.

This system, although its target field is limited as that of file pro-

cessing problems, has the following characteristics.

(1) Verification capability, powerful enough for verifying ordinary
file processing programs, is realized using relatively simple

mechanism.

(2) Besides verification, a means of interactively analyzing programs'

behaviors is available.

(3) It is possible to generate an executable COBOL program that has
been verified of its correctness with respect to its basic struc-

ture.

Some points that should be considered toward obtaining real practical-

ity are as follows:

¢ to enrich our experiences of using the system and to accumulate the
knowledge of the problem domain in the form of transformation rules:

* to enlarge the domain and search for the way of generalization;

* to enhance the usability of the system by way of developing an origi-
nal editor within the system, optimizing the code generated by the

translator, and so on;

¢ to study the way of introducing this system to unexperienced pro-

grammers .

Acknowledgements

This paper is based on the research entrusted to Mitsubishi Research"
Institute, Inc., which plays ome part in "the Software Engineering

Project" conducted by Joint System Development, Corp. The project is

215

sponsored by Japan Professional Bicycle Racing Association and super-
vised by Japan Software Industry Association. We wish to thank Ken
Hirose, Norihisa Doi and Akinori Yonezawa for their helpful discussions
and suggestions. We also thank Hajime Ishiwara, Satoshi Nishiyama and

Nobuyuki Saji for their substantial work in developing the VFPL system.

216

References

{1] Boyer, R., and J.S.Moore, "Proving Theorems about LISP Functions,"
Journal of ACM, 22, 129-144 (1975).

{2] Deutsch,L.P., "An Interactive Program Verifier," Ph.D. thesis,

University of California Berkley (1973).

[3] Floyd,R.W., "Assigning Meanings to Programs,'" Proceedings of the
American Mathematical Society Symposia in Applied Mathematics, 19,
19-32, American Mathematical Society (1967).

[4] Good,D.I., R.L.London, and W.W.Bledsoe, "An Interactive Program
Verification System,'" IEEE Transaction on Software Engineering, SE-1,
59-67 (1975).

[5] Hantler,S.L. and J.C.King, "An Introduction to Proving Correctness
of Programs," Computing Surveys, 8, 331-353 (1976).

[6] Hearn,A.C., REDUCE 2 User's Manual, University of Utah, 1973. .

{7] Hoare,C.A.R., and N.Wirth, "Axiomatic Definition of the Programming

Language Pascal,'" Acta Informatica, 2, 335-355 (1973).

{8] 1Igarashi,S., R.L.London, and D.C.Luckham, "Automatic Program Verifi-
cation I: a Logical Basis and its Implementation," Acta Informatica,
4, 145-182 (1975).

[9] King,J.C., "A Program Verifier," Ph.D. thesis, Carnegie-Mellon
University (1969).

[10] King,J.C., "Symbolic Execution and Program Testing," Comm. ACM.,
19, 385-394 (1976).

[11] Stanford Verification Group, Stanford PASCAL Verifier User Manual,
" Report No. STAN-CS-79-731, Computer Science Department, Stanford
University, 1979.

[12] Suzuki,N., "Verifying Programs by Algeblaic and Logical Deduction,"
Proceedings of International Conference on Reliable Software,
473-481 (1975).

217

{13] Tamai,T. and K.Fukunaga, "Formal Treatment of File Processing Pro-

grams,'" Journal of Mitsubishi Research Instiﬁute, No. 8, 34-69 (1979).

{14} Tamai,T. and K.Fukunaga, "A Simplifier for Program Verification with
Built-in Knowledge on Equality and Partial Ordering," Unpublished
Memo (1980).

