The Complements of Projective Plane Curves

Shuichiro TSUNODA (Osaka University)

In this note, we shall study rational plane curves. Our subject is the logarithmic Kodaira dimension of a rational plane curve, introduced by Iitaka[1].

First of all, we recall the logarithmic Kodaira dimension. Let X be a nonsingular surface defined over the complex number field C. We find a smooth completion \overline{X} of X such that D:= \overline{X} - X is a divisor with simple normal crossings. Let K be a canonical divisor of \overline{X} . Then $\overline{P}_m(X) := \dim H^0(\overline{X}, m(K+D))$ is called the logarithmic m-genus of X. Then the logarithmic Kodaira dimension $\overline{K}(X)$ of X is defined by $K(K+D,\overline{X})$. It is easy to check that $\overline{P}_m(X)$ and $\overline{K}(X)$ do not depend on the choice of \overline{X} and D.

Let C be an irreducible curve in P^2 . We use the following notations:

g(C): the genus of the normalization of C

s(C): the number of singular points of C

r(C): the number of cuspidal singular points of CAssume g(C) = 0. Then there exists a canonical inclusion $Reg(C) \longrightarrow P^1$, where Reg(C) is the regular locus of C. t(C): the number of P^1 - Reg(C).

We summarize known results by Wakabayashi[4].

- (1) If g(C) > 0 and C is not a nonsingular elliptic curve, then $\overline{\kappa}(P^2 C) = 2$.
- (2) If C is a nonsingular elliptic curve, then $\bar{\kappa}(P^2 C) = 0$.
- (3) If g(C) = 0 and $s(C) \ge 3$, then $\overline{\kappa}(P^2 C) = 2$.
- (4) If g(C) = 0 and s(C) = r(C) = 2, then $\overline{\kappa}(P^2 C) \ge 0$.
- (5) If g(C) = 0, s(C) = 1 and $t(C) \ge 3$, then $\overline{\kappa}(P^2 C) > 0$.
- (6) If g(C) = 0, s(C) = 1 and t(C) = 2, then $\kappa(P^2 C) \ge 0$.
- (7) If g(C) = s(C) = 0, then $\overline{\kappa}(\mathbf{P}^2 C) = -\infty$.

Our results on the remaining cases are stated as follows.

Proposition 1. If g(C) = 0 and r(C) = s(C) = 2, then $\overline{\kappa}(P^2 - C) > 0$.

Proposition 2. If g(C) = 0 and s(C) = r(C) = 1, then $\overline{\kappa}(\mathbb{P}^2 - C) \neq 0$.

Let a be an integer greater than 2, let $\delta, \gamma_1, \ldots, \gamma_a$ be complex numbers and let ϵ, γ_0 be nonzero complex numbers. Then the P_{ki} 's $(0 \le i \le a-1, 0 \le k \le a)$ are defined by the equations as follows:

$$\binom{a}{i}(\delta u + \varepsilon)^{a-i}(\gamma_0 + \gamma_1 u + \dots + \gamma_a u^a)$$

= $P_{ia} + P_{ia-1}u + \dots + P_{i0}u^a + (higher terms)$,

where u is an indeterminate. Let (x,y,z) be a system of homogeneous coordinates in \mathbb{P}^2 . Let $C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon}$ be the curve defined by the equation

$$(y^{a-1}z - (\gamma_0 x^a + \gamma_1 x^{a-1}y + \dots + \gamma_a y^a))^a z$$

$$+ \sum_{i=0}^{a-1} \sum_{k=0}^{a} P_{ik} x^k y^{a^2 - ai + 1 - k} (y^{a-1}z - (\gamma_0 x^a + \gamma_1 x^{a-1}y + \dots + \gamma_a y^a))^i$$

$$= 0.$$

Proposition 3. The curve $C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon}$ has the following properties:

- (1) $C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon} \{p\} \cong A^1$, for some point p of C,
- (2) $\overline{\kappa}(P^2 C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon}) = 1.$

Theorem 4. Let C be a projective plane curve satisfying the conditions:

- (1) $C \{p\} \sim A^1$, for some point p of C,
- (2) $\bar{\kappa} (P^2 C) = 1$.

Then C is isomorphic to $C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon}$, up to projective equivalence for some $(a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon)$.

Let C be a projective plane curve such that $C \to \{p\} \subseteq A^1$, for some point p of C. This curve was studied by Yoshihara[5]. His results are as follows:

- (1) If deg $C \ge 3$ mult_p(C), then $\overline{\kappa}(P^2 C) = 2$,
- (2) there exist no curves such that deg C = 6 and $mult_p(C) = 2$.

Now, we have the following:

Proposition 5. Let C be as above. Then,

 $deg C \leq 3 mult_p(C) + 2.$

Furthermore, if deg C > 192, then

$$deg C < 3 mult_p(C)$$
.

By the above result, we naturally have the following

Conjecture: Under the above notations,

$$deg C < 3 mult_p(C)$$
.

Finally, we explain the outline of the proofs of Theorem 4 and the first part of Proposition 5.

The proof of Theorem 4: Let $\mu: \overline{X} \longrightarrow P^2$ be a composite of blowing-ups such that $D:=\mu^{-1}(C)$ has only simple normal crossings. Assume that μ is the shortest among such birational morphisms, We set $X:=P^2-C=\overline{X}-D$. We denote by $\Pi\colon X\longrightarrow \Delta$ a rational map associated with $|n(K(\overline{X})+D)|$ for sufficiently large n. Since $\overline{K}(P^2-C)=1$, we can apply Kawamata's results[2]. Then, Π is a morphism and a general fiber of $\Pi_{|X}$ is G_m or an elliptic curve. Since X is affine, a general fiber of $\Pi_{|X}$ is G_m , whence a general fiber of Π is P^1 . Hence, there exist a Hirzebruch surface \overline{Y} and a birational morphism $\rho\colon \overline{X}\longrightarrow \overline{Y}$ such that $\Pi\cdot \rho^{-1}$ is a morphism. We put $\psi=\Pi\cdot \rho^{-1}$ and denote by ℓ a general fiber of ψ .

By taking a suitable \overline{Y} , we may assume that $\Gamma = \rho_*(D)$ is either

- (i) a sum of a 2 section and at most three fibers, or
- (ii) a sum of two sections for the fibration $\,\psi\,$ and at most three fibers.

Note that

- (1) each irreducible component of D has a negative self-intersection number and
- (2) the exceptional curve in D is unique. It follows from (1) and (2) that Γ is a sum of two sections and three fibers. Using these facts, we conclude that (X,X,D) is a resolution of $C_{a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon}$ for some $(a,\gamma_0,\ldots,\gamma_a,\delta,\epsilon)$. O.E.D.

The proof of Proposition 5: We shall only prove the first part of Proposition 5. By a rather easy argument, we can obtain that $\deg C \leq 3 \text{ mult}_p(C) + 2$. Put $n := \deg C$ and $e := \text{mult}_p(C)$. First, consider the shortest succession of blowing-ups

$$\overline{x}_0 \xleftarrow{f_1} \overline{x}_1 \leftarrow \cdot \cdot \xleftarrow{f_s} \overline{x}_s := \overline{x}$$

such that (1) $X_0 = P^2$, (2) the center p_i of the blowing-up f_i lie over p = Sing (C) and (3) $D = f^{-1}$ (C) has simple normal crossings, where $f = f_1 \dots f_s$. We denote by e_i the multiplicity of C at the center of f_i . Note that $e_1 = e$. By the Plücker formula, we have

$$(n-1)(n-2) = \sum_{i=1}^{r} e_i(e_i-1).$$
 (1)

By Yoshihara's result, we have $\overline{\kappa}(P^2 - C) = 2$. Hence, we can use the following fact: Under the above situations,

$$4 e(\mathbf{P}^2 - C) \ge (K(\overline{X})^4D)^2$$

where $e(\mathbf{P}^2 - C)$ is the Euler number of $\mathbf{P}^2 - C$ (cf. Sakai[3]).

In the present case, since C is a rational plane curve which has only one cuspidal singular point, we have $e(\mathbf{P}^2 - C) = 1$. Furthermore,

$$(K(\overline{X}) + D)^{2} = (K(\overline{X}), K(\overline{X}) + D) + (D, K(\overline{X}) + D)$$
$$= (K(\overline{X}), K(\overline{X}) + D) - 2,$$

where (D,K(X) + D) = -2, because D is connected and the dual

graph of D is a tree. Hence, we have

$$6 \ge (K(\overline{X}) + D,K(\overline{X})). \tag{2}$$

We shall next compute $(K(\overline{X}),K(\overline{X})+C')$, where C' is the proper transform of C. Since $({C'}^2)=n^2-\Sigma e_{\underline{i}}^2$, we have $(K(\overline{X}),C')=-2-n^2+\Sigma e_{\underline{i}}^2$. By (1), we have

$$(K(\overline{X}),K(\overline{X}) + C') = 9 - s + \Sigma e_{i} - 3n.$$
 (3)

Note that

$$(K(\overline{X}),D-C') \geq 0.$$
 (4)

In fact, since f is a resolution of a cuspidal singular point, we see that one of the two irreducible components (except C') meeting the exceptional curve of the first kind in D has self-intersection number \leq -3. From (1),(2),(3) and (4), we conclude that $n \leq 3e + 2$. Q.E.D.

References

- [1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, J. Fac. Sci. Univ. Tokyo, 23 (1976), 525 544.
- [2] Y. Kawamata, Classification of non-complete algebraic surfaces, Lecture Notes in Math. 732, Springer-Verlag, Berlin Heidelberg
 New York, 1978, 215-232.
- [3] F. Sakai, Semi-stable curves on algebraic curfaces and logarithmic pluricanonical maps, Math. Ann., 254 (1980), 89-120.

- [4] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in P^2 , Proc. Japan Acad., 54 (1978), 157 162.
- [5] H. Yoshihara, On plane rational curves, Proc. Japan Acad.,
 55 (1979), 152 155.