goooboooogn
0 458 0 19820 211-220

b o]
(S
ot

A Note on Alternating On-Line Turing Machines

Katsushi Inoue, Itsuo Takanami, and Hiroshi Taniguchi

(Faculty of Engineering, Yamaguchi University)

1. Introduction

Recently, alternating (off-line) Turing machines were introduced in [1] as a
generalization of nondeterministic Turing machines and as a mechanism to mo-:
del parallel computation. In papers [2-6], several fundamental investigations
of alternating machines have been continued. It seems to us, however, that
there are many probiems about alternating machines to be solved in the future
. In this short paper, we introduce a simple, natural complexity measure for
altemating on-line Turing machines, called "leaf-size", and we provide a
spectrum of complexity classes based on leaf-size bounded computations. Leaf-
size is a useful abstruction which provides a spectrum of complexity classes

intermediate between nondeterminism and full alternation.

2. Preliminaries

An alternating on-line Turing machine is like a nondeterministic on-line (
or one-way) Turing machine [9] with its state set divided into two disjoint

sets, the set of universal states and the set of existential states.

Definition 2.1. An alternating on-line Turing machine (AONTM) is a seven

Do
s
bael

tuple I\'I=(Q,U,I“,Z,<S,q0,F), where (1) Q is a finite set of states, (2) UE€Q is

the set of universal states, (3) I' is a finite storage tape alphabet (B€T

is the blank symbol), (4) I is a finite input alphabet ($&ZI is the right

endmarker), (5) §S(Q x (Z U{$}HxTI) x (Q x(T - {B}) x {no move, right} x {left,

no move, right}) is the next move relation, (6) qer is the initial state,

and (7) F€Q is the set of accepting states. A state g in Q-U is said to be

existential.

The machine M has a read-only input tape with the right endmarker $ and one

semi-infinite storage tape, initially blank. A step of M consists of reading

one symbol from each tape, writing a symbol on the storage tape, moving the
input and storage heads in specified directions (note that the input head
can only move to the right), and entering a new state, in accordance with
the next move relation §. Note also that as usual the machine cannot write

the blank symbol B.

Definition 2.2. An instantaneous description (ID) of an AONTM M=(Q,U,T,Z,§

,qO,F) is an element of
I*X N XSy
where SM=Q X (T'- {B})*X N, and N denotes the set of all positive integers.
The first and second camponents, x and i, of an ID I=(x,i, (g,%,])) represent
the input (excluding the right endmarker $) and the input head position, res-
pectively. The third component (q,a,j) (€ SM) of I represents the state of

the finite control, the nonblank contents of the storage tape, and the sto-

rage head position. An element of SM is called a "storage state" of M. If g

is the state associated with an ID I, then I is said to be a universal (exi-

stential, accepting) ID if g is a universal (existential, accepting) state.

The initial ID of M on input x is IM(x)=(x,1, (q0,>\,1)) , where X is the null

word.

213

Definition 2.3. Given M=(Q,U,I‘,Z,6,q0,F) ; we write IF-I' and say that I' is

a successor of I if an ID I' follows from an ID I in one step, according to

the transition rules §. A computation path of M on input x is a sequence IOF‘

li— P-In (nz0), where IO=IM(x) . A computation tree of M is a finite, non-

empty labeled tree with the pi:operties

I

(1) each node 7 of the tree is labeled with an ID, 2(mw),

(2) if 1 is an internal node (a non-leaf) of the tree, 2(7) is universal
and {I|&(m) I} = {Il,...,Ik}, then 1 has exactly k children PyreerPy
such that SL(pi) = Ii’

(3) if m is an internal node of the tree and %(m) is existential, then T
has exactly one child p such that 2(m)F2(p).

A computation tree of M on input x is a camputation tree of M whose root is

labeled with IM(X) . An accepting computation tree of M on x is a camputation

tree of M on x whose leaves are all labeled with accepting ID's. We say that
M accepts x if there is an accepting computation tree of M on X. Define T(M)

={x€1*| M accepts x}.

With each AONTM M, we associate a space complexity function SPACE which ta-

kes ID's to natural numbers. That is, for each ID I=(x,1i, (q,a,])), let SPACE(

I) be the length of o. We say that M is L(n) space-bounded if for each n and

for each input x of length n, each camputation tree of M on x is such that
for each node m of the tree, SPACE(2(m)) < TL(n)]¥. By AONTM(L (n)) we denote
an L(n) space-bounded AONTM. Define

LIAONTM(L (n))]={T| T=T (™) for scome AONTM(L(n)) M}.
Nondeterministic on-line (or one-way) Turing maclﬁnes are special cases bf
AONTM's. That is, a nondeterministic on-line Turing machine is an AONTM which
has no universai state. By ONTM(L(n)), we denote an L(n) space-bounded non-

deterministic on~line Turing machine. Define
% [r] means the smallest integer greater than or equal to r.

3

Do
!-——A
[$o8

LIONTM(L (n))]={T| T=T(M) for some ONTM(L(n)) M}.

We next present a simple, natural camplexity measure for AONTM's, called
"leaf-size" [6,7]. (In [6], the term "branching" is adopted instead of the
term "leaf-size".) Basically, the "leaf-size" used by an AONTM on a given
input is the number of leaves of an accepting computation tree with fewest
leaves. Leaf-size, in a sense, reflects the minimal number of processors
which rim in parallel in accepting a given input. One motivation for intro-
ducing leaf-size bounded camputations is to provide a réstriction of an
AONTM which is intermediate in power between nondeterministic and (full) al-
ternating computations. Let Z(n):N—->R be a function with one variable n,
where R denotes the set of all non-negative real numbers. For each tree t,
let LFAF(t) denote the leaf-size of t (i.e., the nurber of leaves of t). We

say that an AONTM M is Z(n) leaf-size bounded if for each n and for each in-

put x of length n, if x is accepted by M then there is an accepting computa-
tion tree t of M on x such that IFAF(t) < [Z(n)]. By AONTM(L(n),Z(n)), we de-
note a Z(n) leaf-size bounded AONTM(L(n)). That is, an AONTM(L(n),Z(n)) is a
simultaneously L(n) space- and Z(n) leaf-size bounded AONTM. Define
L[ANTM(L (n) ,Z (n))]={T| T=T(M) for some AONTM(L(n),Z(n)) M}.

As easily seen, it follows that L[ONTM(L(n))]= R[AONTM(L(n),1)].

3. Results

The main purpose of this section is to provide Theorem 3.1 below, which
shows that there is a spectrum of (low-level) complexity classes based on

leaf-size bounded computations.
To give Theorem 3.1, we need a few definitions.

Definition 3.1. A function Z(n):N-R is log-space countable if there is a

deterministic off-line (or two-way) Turing machine M which, when given a

4

215
string of length n, halts after its read~write head has written down the k-~
adic (k>2) notation of the number [Z(n)1 by using at most [logn+1] cells ¥
of the storage tape, where M has a read-only input tape and one semi-infinite

storage tape [9,10].

Definition 3.2. ILet x=a PR be a word of length n (n>1) . For each i,]j

1

(1<i<j<n), x(i,j) denotes the subword YT ..aj.

Theorem 3.1, Iet L(n) :N->R, Zl(n) : N>R, and Z2(n) : N-R be a functions
such that- |
(i) L(n) 21logn (n>1),
(ii) L(n) is fully space constructible [11],
(iii) 22 (n) is log-space countable,
(iv) TL(n)1 TZZ(HH <n/2 (nz1),
(v) Zl(n) 5Z2 (n) (n=1), and
(vi) i;il;l[zl(n)/zz(n)] =0. Then
L[AONTM (L (n) ,Zl(n))1 ¢ LIAONTM(L (n) 1Zg (m)) 1.
Proof. Let T[L,Zz] be the following set depending on the fmctions L(n) and
Z2 (n) in the theorem.
TIL,2,) = {x2w | (%, we{0,11) & "n21l|x|=|w|=2n &
w(1, 1L(20) 112, (20) 1) =w (01, 1ok L. (200 112,y (2m) D 13,
(Note that, from the condition (iv) in the theorem, this set can be well-
defined.) The set T[L,Z2] is aéoepted by an AONTM(L(n) ,Z.,(n)) M which acts
as follows. Suppose that an input x2w with |x|=|w|=2n (n>1) and with X, W €
{O,l}+ is presented to M. While reading the initial subword x, M first stores

the length, 2n, of x J_n binary notation on the storage tape. By using this

length 2n, M marks off exactly [L(2n)1 cells of the storage tape, and then

¥ Below, let the base of logarithms be 2.
¥ For any word x, let |x| denote the length of x.

T

216

writes down the k-adic notation (for some k>2) of the number [Z2(2n)1 on one
track of the storage tape with its input head staying on the symbol "2" im-
mediatly following x. (These actions are all possible because of conditions
(1), (ii), and (iii) in the theorem.) After that, M universally triesv to check
that, for each 1l<i< [Z2(2n) 1, w((i-1) [L(2n) 1+1,ilL(2n) 1) =w(n+(i~1) [L(2n)]+1,
n+ifL(2n)1). That is, on the symbol w((i-1) IL(2n) 1+1) ¥ (1<is< IZZ(Zn)l) , M
enters a universal state to choose one of two further actions. One action is
to pick up and store the subword w((i-1) [L(2n)1+1,ilL(2n)1) on some track of
the storage tape (of course, M uses the cells marked off above of the storage
tape), to move its input head to the symbol w(n+(i-1) [L(2n)1+1), to compare
the subword stores above with the subword w(n+(i-1) [L(2n) 1+1,n+ifL(2n)1), and
to enter an accepting state if both subwords are identical. The other action
is to continue moving to the symbol w(ilL(2n) 1+1) (in order to pick up the
next subword w(ilL(2n)1+1, (i+l) L(2n)1) and compare it with the corresponding
suboword w{n+ifL(2n) 1+1,n+(i+l) [L(2n) 1)) . Note that the nurber of pairs of
subwords which should be compared each other in the future can be seen by
updating the k-adic notation of [Z2(2n) 1. It will be obvious that the input
xX2w is in T[L,Zz] if and only if there is an accepting computation tree of M
on x2w with fZZ(Zn)l leaves. (Any input which is not of the form x2w (|x| =

lw| =2n, n21, x,w €{0,13") can easily be rejected by M.) Thus, T[L,2,] is in
L[AONTM(L (n) 125 (m))].

We next show that T[L,2,] is not in L [AONTM(L(n) ,Z, (n))]. Suppose that there
is an AONTM(L(n) ,Zl(n)) M accepting T[L,ZZ] . We assume without loss of gener-
ality that M enters an accepting state only on the right endmarker $. Let r
and s be the numbers of states (of the finite control) and storage tape sym—

t
bols of M, respectively. For each accepting computation treeYof M, let SS(t)

v For any word x and any i (lsislxl), x(i) denotes the i-th symbol (from the
left) on x.

aNe]
Pk
~3

be a "multi-set" of storage states of M defined as follows:
Ss(t) = {(q,a,3) e le I=(x2w,1i,(q,0,j)) is a node label of t, and
I is an ID of M just after the point where the input head
left the former half of w},
where x2w (éT[L,Zz]) is the input associated with t.

For each input 022 with lw| =2n (nz1), let ACT(w) be the set of all accept-
ing oompﬁtation trees of M on 02n2w whose leaf-sizes are at most Zl(4n+l) .
For each nz1, let

v ={0"2w | |wl=2n & welo,1" & w(l,IL(2)11z,(20)1) =
w(n+l,n+fL(2n)HZ2(2n)1) & w(lL(2n)1]2,(2n)1+1,n) =
w (L (20) 112, (2n) 141, 2n) € {0}*} |
and for each 02n2w in V(n), let C(w) = {SS(t) | teACT(w)}. (Clearly, each
tape in V(n) is in T[L,Zz], and so it is accepted by M. Thus, it follows,
since we assumed that M enters an accepting state only on the right endmarker
$, that for each 02n2w in V(n) C(w) is not eﬁpty.)

Then the following proposition must hold.

Proposition 3.1. For any two different words 02n2u, 02n2v in V(n),

ClunNn C(v) = ¢ (empty set).

[For otherwise, suppose that C(u)NC(v) =¢g. Then there exist accepting com-
putation trees t and t' in ACT(u) and ACT(v), respectively, such »that SS(t)
=SS(t'). We consider the word 0°°2w (with |w| =2n) satisfying the following
two conditions:

(i) w(l,n) = u(l,n);
(ii) w(n+l,2n) = v(nt+l,2n).
Recélling that for any accepting conputation tree tl of M SS(tl) is a "multi-

set", it is easily seen that one can construct, from the trees t and t', an

218

2n2w whose leaf-size is at most Zl(4n+l).

accepting computation tree of M on 0
Thus, it follows that 02n2w is in T(M). This contradicts the fact that 02n2w
is not in T[L,Zz].]

Let p(n) be the number of possible storage states of M just after the input
head left the former halves of w's in words 02n2w's (in V(n)). Then we have

p(n) < rL(4n+l)sL(4n+l) .

(Note that for each 0°™2w in V(n)]02n2w] = 4n+l.) Since for each 02w in
V(n) and for each t in ACT(w) LEAF(t) is at most Zl(4n-i-l) , it follows that
for each 02n2w in V(n) and for each t in ACT(w)

|ss(t)| < zl(4n+1).¢
Therefore, letting S(n) = {SS(t) | t € ACT(w) for some 02n2w in v(n)}, it
follows that for some constant c,

IS(l’l) I Zl(4n+l)

IA

cp(n)

210 o 71 (4nk) _L(4n+l) 7y (4n+1)

IA

(1)
It also follows, from conditions {(iv) and (v) in the theorem, that for some
constants ¢' and c", Zl(4n+l) SC'Zl(Zn) and L(4n+l) < ¢c"L(2n). From this and

from (1) above, we have for some constant c

1
log |sm)| <c;L(2n)2, (2n). (2)

As is easily seen, |V(n)] = oL [Z2(2n)], and so
log [V(n)|=TL(20)112,(2n)1. (3)

From (2) and (3) above, and from condition (vi) in the theorem, we have
|s(n)| < |V(n)| for large n. Therefore, it follows that for large n there
must be different words 02n2u, 02n2v in V(n) such that C(u)NC(v) # #. This
contradicts Proposition 3.1, and thus it follows that T[L,Zz] & £ [AONTM(L (n) ,
Zl (n))]. From condition (v) in the theorem, it directly follows that

£ [AONTM(L (n) ,Zl(n))] < L[AONTM(L (n) 12 (n))]. This completes the proof of the

¥ For any set A, let |A| denote the number of elements in A.

219
theorem. ‘ | Q.E.D.

Remarks 3.1. It is well-known [8,9] that if lim[L(n)/logn] = 0, then
n-eo
ONTM(L(n))'s accept only regular sets. Recently, it is shown [12] that

(1) £ [AONTM(log logn)] properly contains the class of regular sets, and

(2) if lim[L(n)/loglogn] =0, then AONTM(L(n)'s accept only regulér sets.
Let L= {3;; | wé{b,l}*}. As is easily seen, L is accepted by an AONTM(logn).
On the other hand, it can be shown that Lc is not in L£[AONTM(L(n))] for any

L(n) such that 1lim [L(n)/logn] =0. Therefore, it follows that £ [AONTM(L(n))]

n->o

¢ L[AONTM(logn)] for any L(n) such that lim [L(n)/logn]=0.

N>
It will be interesting to investigate whether a similar fact to Theorem 3.1

holds for L(n)'s such that loglogn<L(n) <logn.

REFERENCES

[1] A.K.Chandra, D.C.Kozen, and L.J.Stockmeyer, Alternation, J.ACM., Vol.28,
No.l, 114-133 (1981).

[2] R.E.Ladner, R.J.Lipton, and L.J.Stockmeyer, Alternating pushdown automata,
Proc. 19th IEEE Symp. on Foundations of Computer Sciénce, Ann Arbor, Mich.,
(1978).

[3] W.L.Ruzzo, Tree-size bounded alternation, J.Comput.Syst.Sci., Vol.21,
218-235 (1980). |

[4] W.Paul and R.Reischuk, On alternation, Acta Informat., Vol.l4, 243-255
(1980).)

[5] W.Paul and R.Reischuk, On alternatidn I, Acta Informat., Vol.1l4, 391-403
(1980).

[6] K.N.King, Measures of parallelism in alternating computation trees, Proc.
13th Ann. ACM Symp. on Theory of Computing, 189-201 (1981). ,

[7] K.Inoue, I.Takanami, and H.Taniguchi, Two-dimensional alternating Turing
machines, To appear in the 14th ACM Symp. on Theory of Computing,

(May 1982).

220

[8] J.Hartmanis, R.Sterns, and P.M.Lewis, Hierarchies of memory limited
computations, IEEE Conf.Record on Switching Circuit Theory and Logical
Design, 179-190 (1965).

(9] J.E.Hopcroft and J.D.Ullman, Some results on tape-bounded Turing Machinesg
J.ACM., Vo0l.16, No.l, 168-177 (1967).

[10] J.E.Hopcroft and J.D.Ullman, Formal languages and their relation to
automata, Addison-Wesley, Reading, Mass., (1969).

[11] J.E.Hopcroft and J.D.Ullman, Introduction to automata theory, languages,
and computation, Addison-Wesley, Reading, Mass., (1979).

[12] I.H.Sudborough, Efficient algorithms for Path System Problems and
applications to alternating and time-space complexity classes, Proceed-

ings of the 21st Annual Symp. on Foundations of Computer Science, (1980).

10

