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gbstract.

The notion of a one-step recurrent term is introduced as a

weakened notion of the recurrent term [3,4;6j. A recurrent term
is a term in A-B-calculus which is reducible to itself after any
reduction. A term is one-step recurrent if and only if every its
one-step reductum is reducible toitself. It is obvious that every
recurrent term is one-step recurrent. In this paper we prove

that the converse is equivalent to one of the conjecturesvby
J.W.Klop [5]. And we also prove that the converse is true for

the terms having at most two redexes,i.e., every one-step
recurrent term having at most two redexes is recurrent. The

proof uses the characterization of the recurrent terms by

B&hm and Micali [3].

81. Klop's conjecture.

We assume the reader acquainted with the basic theory given

H

for example, in[17], especially chapter 11, or[47) chapter 4.
We write M—3N for terms M and N when M is reducible to N by
a one-step reduction, i.e., by a contraction of some redex in

M. The symbol "—»" denotes the transitive reflexive closure
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of —>. We write M&»N ( cyclic equivalence ) when M—1I and M —s) ,
We call a cyclic equivalence class a plane. The plane containing g
term M is represented by [M]. Let Ne[M] be a term such that there
is a irreversible step N—L for some L ( i.e. I,¢m]). Then we will
say that we can leave the plane directly ( in one step ).
Now the original conjecture by J.W.Klop [5]is stated as follows,
(A) If a plane can be left somewhere,then it can be left

at any point( Fig.1 ).

(G557

Fiz. 1

A term M is recurrent if and only if VN(M—»N=pN—HM),i.e., N may
be reduced to M whenever M reduces to N.Mis a one-step recurrent
termif and only if VN(M—N==N—»M), i.e., every one-step reductum
of M is reducible to M. The conjecture (a) can be restated by using
the notion of one-step recurrent terms as follows:
(B) If M and N are cyclically equivalent and M is not
one-step recurrent,thenlN is not one-step recurrent.
The contraposotion of (B) is given by
(C) If M and N are cyclically equivalent and M is gane-step
recurrent, then N is also one-step recurrent.
In Theorem 1 below we prove still another equivalence (A)&(D):
(D)M is a recurrent term if and only if M is one-step recurrent.
Theorems 2 and 3 will later show that (D) is true under the condition
that M has at most two redexes.
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Theorem 1 : (A) is equivalent to (D).
proof : We prove (C)&3(D).

Let M be a one-step recurrent term and N be a term which is
cyclically equivalent to M. Then by (D) M and N are recurrent terms.
Therefore N is one-step recurrent, proving (D)=3(C).

For showing the converse (C)=3>(D), let M be a one-step reéﬁrren1
term and N be any reductum of M. We now prove the existence of a
reduction N—HM by induction on the length of the reduction M—%»ﬁ.
Let the reduction M--»N be of length n, say,

MEMp—3 My —3My—> - = = —3Mpy—Mp =N,
Since M, 1s one-step recurrent, M4 is reducible to Mg. Thus M and
N are cyclically equivalent,Thérefore, My is ome-step reéurféﬁt |
by (C). This argument can be continued until M,., and all Mi's are

one-step recurrent. So there exists the reduction

MEM oM Mo - -+ €M, M, =N, | Q.E.D.

§2., One-step recurrent term and recurrent term.

To show that (D) is true under the éondipion that M hasfa£ m6§t
two redexes, we need to state a result from BShm and Miéali £3].
Given a set F of redexes in a term M, a development of (M,j) is a
reduction path o in which all redexes contracted in o0 are residuéls
of F,s0 that the prolongation of fhe reductioﬁ ésI(M,ﬁ)—development
is not possible. Let G(M) denote the term obtained by a complete
development of (M,%H), where % is the set of all redexes in M.

Lemma ( BOhm and Micali [3] ) :Mis a recurrent term if and only
if G(M) reduces to M.

Now weé have the following results

Theorem 2 : Any one-step recurrent term having only one redex

is recurrent.
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Proof : Let M be one -step recurrent term which has only one redex.
Since M has only one redex in it , its one-step reductum and G(M)
agree precisely. M is one-step recurrent,therefore G(M) reduces
to M. Thus M is a recurrent term by the lemma.

Q.E.D.
Theorem 3 : Any one-step recurrent term having exactly two redexes
is recurrent.
Proof : Let M be an arbitrary one-step recurrent term which has
exactly two redexes in it. Applying the lemma , it suffices to
show that G(M) reduces to M. We prove it by induction on the
structure of M.
Case 1 : M is in head normal form , i.e. , M=Ax-x.xMiMy-Mm.
Then every M; is one-step recurrent and has at most two redexes.
So it is recurrent from Theorem 2 and induction hypothesis.
Thus M is recurrent.
Case 2 : M is not in head normal form , i.e. ,
M2 Axg.--Xp (AKX Mo ) Mg My oMy (m»1) .
Case 2a : My has one redex. Then all Mi's are in normal form,so
that G(M)E)\x,-uxh.G(Mo)[x:=M1]Mg"'Mh\, where G(Mofk:=MJ represents
the term obtained from G(Mp)by substituting every free occurrence
of x by Mz, Since M is one-step recurrent, -one-step reductums,
N1ZAx - XpMolx:=Ma]Mg-ss Mm and Npakx X (Ax.G(Mo) )MaMa--Mm, of M
have a reduction path which ends at M. Let ¢and T be such

reductions

~

G(M)Ehxt"' Xh:G(Mo)[X::Mi] Mo " Mm.
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If the residual of the left most redex (Ax.G(Mg))Mqin N, is contracte
in 0 ,then we can construct from o another reduction path from N,
to M which goes through G(M). Thus G(M) reduces to M. On the other
nand, if o does not contract the residual of (Ax.G(My))My, then
there exists a "subreduction" in o which reduces G(M,) to My. Hence
we have the reduction :
_ T
G (M)EAK, e Ko oG (Mg )[x27My] Myeee Mp—9 Ax o0 X 0o Mplicz =My] My eee M, —H M.

Case 2b : Mj has one redex. Then we have the diagram :

MEAR s X o (AX oMo )My Mprs M m
T ,'/’7 / ,\‘%\,\ )
AXgor KoM [x:=My] Mpeee M AXqor Xpo (AX Mg)G (Mg )Mgeoe M

G(M)ZEA%, s XpoeMo[x:=G (Mg )] M, M,
where the dotted arrows have an existential meaning. If o0 contracts
the residual of (Ax.Mg)G(M4), then there is a reduction‘which is
strongly equivalent to ¢ and goes through G(M). Thefefore.G(M>
reducés to M. On the other hand, if o does not contract thé
residual of (Ax.My)G(My), then o contains a Subreduction which
reduces G(Ml) to Mi.bThus we have the feduction :

G(M)Ekxtn-XRMo[x:=G(M1)]Mzn-Mm—%»AXV--xn.Mcfxz=MﬂM24-Mmj;§Mf

Case 2¢ : M; has one redex for some i1 ( R2¢ism ). Then‘we have

the diagram

M2 A%yt X o (AX Mg ) Mg MyoosMyeee Mo

T 'o'ﬂ / \&\\O

AXpree X Mo[x1=My] Myre My-oe Mp, AXpot Ko (A% Mo )My My4ee G (Mg )eee My,

N S

. GM)E)\X|"' Xh°MoCX::M1] MZ... G(Mi ),.. MYY\ .

We can prove the existence of a reduction G(M) —»M in the same
manner as in Case 2b. Q.E.D.
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