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On the unigque solvability of the equation describing

unsteady motion of a stratified fluid.

Hisashi OKAMOTO

Department of Math. University of Tokyo

§1. Introduction.

The Navier-Stokes equation for incompressible (homcgeneous)
viscous fluid motion is derived from the following conditions;
i) conservation of mass,

ii) equation of motion,

i) constancy of mass with respect to the time or the space
variables.

If fluid is inhomogenecus,then the condition ii) is not

equivalent to the incompressibility. When we deal with in-

homogeneous fluid,we must replace the condition iii) with

iii)' the Lagrange derivative of the mass p 1is zero.

This condition means that o 1is constant along the stream of

particles. The conditions 1) ,i) and iil)' lead us to the

following system:

(1.1) -g—p-+rop=o (0<t, xeQ),
(1.2) p{-g—%+ (usV)u} = Au - Vp 0 <t , xeq),
(1.3) divu=20 (0 < t,x e ).
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Here the unknowns p, u and p mean the mass,the velocity
and the pressure,respectively.  is a domain in Elz or H{3
occupied by the fluid. 1In this note we solve the system (1.1),

(1.2) and (1.3) under the initial-boundary condition below;

(1.4) ul o =

(1.5) ul,_o = alx) , ey = pg(x).

The mathematical study for the initial value problem
(1L.1),°+,(1.5) was initiated by Kazhikhov [3]. There he
proved existence of a weak solution of Hopf-type and also a
classical solution. However,he could not show the uniqueness
of the solution. Later Ladyzhenskaya and Solonnikov [4] proved
unigue existeﬁce in the framework of Lp-theory. However, they

‘required that p 1is greater than the dimension of the domain
. On the other hand,Lions [5] proved existence of another
weak solution without uniqueness even in the two-dimensional
problem. Marsden [6] dealt with the case of inviscid inhomo-
geneous fluid,i.e.,he considered the system in which the term
Au in (1.2) is dropped.

In this note we employ the Lz—theory and prove the unique
existence local in time of the solution of (1.1),¢<-,(1.5).
Furthermore we show the following global results:

1) In the case of thé three-dimensional problem,the solution
exists globally in’time if the initial values a and

o
are sufficiently small.
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II) In the case of the two-dimensional problem,the solution
always exists globally.

We only give statements of the results and outlines of the

proofs. The details of the proof will be published elsewhere.

§2. Abstract formulation and main theorems.

Since the system (1.1),°++,(1.5) is an extension of the
Navier-Stokes system,we solve the above system by the method
employed in Fujita and Kato [l]. To this end we introduce

some function spaces below. ( n is the dimension of Q ).

CO,O(Q) ={ v = (vl,vz,'°-,vn) € CO,G(Q) ; divv =0 in Q },

\%

the closure of Cowg(Q) in the usual Sobolev space Hé(ﬂ)n,
14

H = the closure of COTG(Q) in 1.2 (@)™ with L?-norm -
P ; LZ(Q)n >H +++ the orthogonal projection,
A ; the Stokes operator in H,i.e., D(A) = HZ(Q?rwv , Au =
-PAu (u e D(A) ) ( see Fujita and Kato [4] ).
2 3

Hereafter we assume that Q is a bounded domain in IR " or IR
with a smooth boundary. We recall that A is a positive
definite self-adjoint operator in H.

We formulate (1.1),¢-++,(1.5) as a quasilinear evolution

equation in Wl’w(JO,T[><Q)><H as follows.

dp + u-Vp =0 a.e. (t,x) e JOo,TI[x8Q ,
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Po ()32 + Au(t) + Fult) = 0 0 < t),

u(0) = a , p(0,x) = po(xi.

Here we have put p(t) = p(t,*) and we have defined the non-—

linear operator Fp by pr = P{p(t) (w-V)w}. wlr®

(10,T[xR)
is the usual Sobolev space ( whose element are Lipschitz

continuous ). Our results are the following three theorems.

THEOREM 2.1. Assume that a « D(An) ‘and € Wl’w(Q)

o
(n >n/4) and that, for some positive numbers m and &,

0 satisfies m < pO(x) < (xe Q).

i) Then there exists a unique solution
u e c([0,7,1;D(a")nc(10,T,1;D(a)) nCT (10,7 1:H) and

p e W' 7(10,T, [ Q)

¢
Here T0 = TO(Q,mO,RO,kl,kz) > 0 1is a non—-increasing function

so long as my <m, & < L., | a"al| < kq s I VOOHLOo <k

of positive variables mo, 2 and k2.

0 ’kl

i) Furthermore u and  p satisfy the following inequalities.

(2.1) [ a%ue) || 2 4l 2%al] (o =5/8,n;0<t<T),

(2.2) HVp(t)HLO0 < cOIIVpOIEweXPQCO||Anal|) ( 0<<t<<T0),
: .

(2.3) || 55(t) HLm < ¢l VoOHLmll Alall exp(cyll a"all ) (0<t<T).



Here ¢ is a positive constant depending only on Q,mo and 20.

As for the global existence of the solution we present two
theorems below,which are analogous to the results in the

Navier-Stokes problem.

THEOREM 2.2. If Q 1is a two-dimensional domain,then the

solution always exists in [0,«][.

THEOREM 2.3. Consider the three-dimensional problem. Let

0 <m_ < 20 < o be given. Then there exists a positive

o

constant e, = al(Q,mo,QO) such that u and p exist in [0,
. n

if my<m, &2 &, | a'all < e, and HVpOHLOo < eq-

§3. Outline of the proofs of THEOREMS 2.1, 2.2 and 2.3.

PROOF OF THEOREM 2.1. We construct a solution as a limit of
successive approximations {un,pn}. First we put ul(t) =
-tA _ .

e a and pl(t,x) = po(x). When u, and pn are given,

we define U and Ph+l by the following equation;

ap
n+l _
(3.1) Ta?-—+uann+l—0 (0<t<T,XE\Q),
(3.2) pn+l(0,X) = po(x),
dun+l
(3.3) Ppn(t)aE——— + Aun+l = —Fpnun(t) (0 <t <T),
(3.4) un+l(0) = a.

Since these equations are linear ones,we can apply standard
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theories of linear equations of evolution. The initial value

problem (3.1) and (3.2) are explicitly solved as

(t,x)

Pt = pO(EO,t(x)),

where £ . (x) is a characteristic curve,i.e.,
14

d | L
Tebe, e = u (5,80 (), B (0 = x (<0).

We solve (3.3) and (3.4) by showing that (Ppn(t))_lA (0 <t

< T) generaﬁes an evolution operator U(t,s) (0 < s <t<T)

in H ( see,e.g.,Tanabe [8] ).

PROOFS of THEOREMS 2.2 and 2.3. These theorems are derived

from the follbwing a priori estimates.

PROPOSITION 3.1. 1In the case of the two-dimensional problem,

there exists,for any T > 0,a positive constant L(T) =

L(T,Q,IIAﬁa||,]|Vp0||m,m; %) such that we have
L

(3.5) | a"u(t) || < (D) (0 <t<T),

t
(3.6) J || vu(s) || _ds < L(T) (0 <t<T).
0 L

PROPOSITION 3.2. Consider the three-dimensional problem.

Let T > 0, 0 < my < QO < o be arbitrary ‘numbers. Then there

exist positive constants § = 6(Q) , c* = c*(Q,mO,QO) and
e* = e*(Q,mO;QO) satisfying the following property. If the

inequalities m, < m ,% <

0 0’



sup ||%%(t)||00 L e*,
O<t<T L

sup eat]]AS/gu(t)H
0<t<T

A
m
*

and

|| A"a|| < 1 are satisfied, then we have

sup e F) 2% Buce) || < x| 2°/%a]|
0<t<T

14

sup eStIqu(t)[|wtl+Y_n < c*|| a"al| ,
0<t<T L

sup (|| 22¢e) (| + [[vpco) |l b < ol oyl . o
O<t<T L L L

where Yy isan absolute constant in 11/4,3/81.

REFERENCES

[1] H.Fujita and T.Kato, On the Navier-Stokes Initial Value
problem.I , Arch.Rational Mech.Anal.,16 (1964) 269-315.

[2] T.Kato, Quasilinear Equations of Evolution with
Applications to Partial Differential Egquations, Springer
Lecture Notes in Math.,448 (1975) 25-70.

[3] A.V.Kazhikhov, Solvability of the initial and boundary
value problem for the equations of motion of an inhomo-
geneous incompressible fluid, Doklady Akad.Nauk.,216
(1974) 1008-1010.

[4] o0.A.Ladyzhenskaya and V.A.Solonnikov, Unique Solvability



103
of an Initial- and Boundary-Value Problem for Viscous
Incompressible Nonhomogeneous Fluids; J.Soviet Math., 9
(1978) 697-749.

[5] J.L.Lions, On Some Problems Connected with Navier-
Stokes equations, in Nonlinear Evolution Equations,
Academic Press,New York, 1978.

[6] J.E.Marsden, Well-posedness of the equations of a non-
homogeneous perfect fluid, Comm.Partial Diff.Eg., 1
(1976) 215-230.

[7] A.Matsumura and T.Nishida, The initial value problem
for the equations of motion of viscous and heat-
conductive gases, J.Math.Kyoto Univ. 20 (1980) 67-104.

[8] H.Tanabe, Egquations of Evolution, Pitman,London,l1979.



