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It has been known for some time that quantum field theories
with global or local U(N) (SU(N), O(N),,,) symmetry greatly
simplify in the limit N+~ . The well-known example is the
so-called O(N) vector model which is a theory of massless
scalar fields ¢, (i=1,,N) taking values on sl I two
dimensions lagrangian is given by

L-J3

6.7 = 1. (1)

N~
N

2 2
(a ¢i) dX,
1 M i
It is known that the interaction caused by the constraint
z¢i2=l creates a finite mass gap in this system (N > 3). 1In fact

the model becomes exactly soluble in the large N limit and
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becomes a free theory of massive scalar particles. When N is
finite, these massive fields begin to interact weakly with the
strength 1/N. Thus the N = « limit yields an exact solution
which gives a qualitatively correct description of the system
also for finite N.

In the case of gauge theories it is also known that a
considerable simplification takes place in the limit of large
gauge group. Prior to the recent developments which I am
going to describe the following characteristic properties have

been known of the N = « gauge fields.

1. The planar dominance of weak coupling perturbation theory;l

2. The factorization property of Wilson loop amplitudes.2

Properties 1 and 2 are derived from a simple power-
counting analysis of Feynman diagrams. Suppose we have an U(N)
gauge field interacting with a quark belonging to the fundamental
representation of the gauge group. Being in an adjoint
representatién gauge fields carry a pair of color indices
(i,3j) while a quark field carries a single index i. Then a gluon
propagator is represented by a pair of lines going into opposite
directions —_—i?—‘ while a quark propergator is represented by

a line ———7——— . Interaction vertices of the theory are

given by

X strength
7[—9—— ; quark-gluon vertes, g
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: 3—gluon>Vertex, g

H 4-gluon vertex, g

P

Here g is the coupling constant. A Feynman diagram aquires a

V+V3+2V4 .
weight g XN” when there exist V quark-gluon vertices,

V, 3-gluon vertices, V, 4-gluon vertices and % closed color

3 4
lbops in the diagram. Then a simple combinatorial analysis
shows that when we let gzN to be independent of N (or let
gz=O(1/N)), the weight of a diagram becomes NX where x is the
Euler characteristic of the diagram (interaction vertices,
propagators and color loops are regarded as vertices, edges
and faces of a polyhedron, respectively). Thus in the limit
of N = « with gzN fixed graphs with the heighest: Euler number
give the dominant contributions and we may ignor all other
types of diagrams.

In the case of Feynman diagrams with a single quark loop C

which contribute to the Wilson loop amplitude

< i @ A dx > 2

exp 1 é u xu (2)
C

the leading contributions come from the planar graphs with the

topology of a disc,

» i r etC .
. J ) 3 )

3
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None-planar graphs like
£

2h

are down by N where h is the number of handles in the
diagram. Thus we need to consider only planar diagrams in the
computation of Wilson loop amplitude.

Moreover when we consider the case of more than one quark

loop, say C1 and C the leading contribution to the correlation

2’

function

< i A d i A dx_ > 3
exp i # ax, exp i #) A% (3)
€1 €2

come from the disconnected piece,

. . 2
<exp 1 A dx > <e i A dx >~ O(N7). 4
P 35 Lax > <exp <f> Lax,> % 0(N%) (4)
Cl C2
This is because when there exist gluon exchanges between Cl and

C2 we obtain a topology of an annulus,

0

C

e

O
1 €,

and hence of order only O(NO).
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In this way in the large N limit with gzN fixed there
exist no correlation between quark loops and the amplitudes

always factor

<2 exp i é Audxu> = 2 <exp i % Audxu> (5)
i i

Since a Wilson loop amplitude may be interpreted as a meson
propagator, Eg.(5) implies that at N = «» gauge interactions
are exhausted to form bound states and mesons do not scatter
from each other. 1In this respect N = » gauge theory is an
ideal place to look at the confining property of gauge fields
and here also lies our hope for their analytic solutions.

Let us now turn to the discussion of recent developments

3,4,5,6 As a result of these

on large N gauge and spin systems.
investigations we now have a further characterization of N = =

gauge fields:
3. Reduction of dynamical degrees of freedom.

Property 3 means that one may replace the N = « gauge field
theory by a much simpler system, a model with only a finite
number (=space-time dimensionality) of U(N) matrices, without
loosing information of the original theory. This is a
remarkable result in the sense that a quantum field theory may
be reduced to a kind of dynamical system with a finite number

of dynamical variables.



31

In the following we present the original argument for
reduction3 using the lattice formulation of gauge fields. 1In
the lattice gauge theory7 the basic dynamical variables are
1ink variables defined on each link of the d-dimensional space-
time lattice. A link variable Ux,u is an U(N) matrix lying
on the link connecting x and x + §¥ (¢ is the unit vector in

the u-direction). The correspondence to the continuum theory

is given by

Ux,u Vv exp iga Au(x) (6)

where a is the lattice constant. The action of the standard

Wilson theory is defined by

s=-17 % tr U_ U vt ot (7)
y pFo=1 Y0 y+0,0 y+0,p y,0
y+0o y+p+0
) where the product is over the link
N N variables around an elementary square
(plaquette) and the sum runs over all
vy ” y+p plaquettes on the lattice.

The Wilson loop amplitude is given by

cen -gS
1 f de’p tr(UXruUX+UI\)UX+U+\),)\ UX"’O,O') e

il
W(C) =y P

T J av, e PS
- v,

<tr (U - U )> (8)

x,qu+u,va+u+v,x. X-0,0
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for a contour C which connects lattice sites x,x+U,x+U+v,
x+u+v+i,,,x-0,x successively. B = 1/g2 is the inverse temprature.
Now we reduce the model by identifying all link variables

in the same direction

U U .
Y.o = o

The reduced model then has only d matrices Ul U Ud and
14

2,00,

its action is given by

d |
s, =- ] tr@uulul). (9)
pFo=1 P

The analogue of the Wilson loop amplitude is defined by
-BS

o & o r
g J dUp tr(UquUK Uo) e
Wr(c) - -BS
II dUp e t
P
= <tr(U U U, cee U)o (10)

where we have identified the contour C with the sequence of

directions (u,v,A,,,0)

C ; (%,x+U,x+u+v, X+u+v+d, o+« ,x-0,x) N (U, V, A, °,0).

The above correspondence is one to one when we ignore over-all

translations.
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We remark that the reduced model Eq.(9) is ivariant under

the phase transformation
u -~ e U (11)
and this symmetry implies

Wr(C) = <tr UUUka ter U = 0 (12)
for every open contour C. This is because in the case of an
open contour there exists at least one direction p for which
Up and UZ appear different number of times and W(C) has to
vanish. It was pointed out3 that if the symmetry Eqg. (ll) is
left intact, i.e. not spontaneously broken, the equation of
motion for the Wilson loop amplitudes in the original and

reduced models become identical in the limit N = « with g2N

fixes. Consequently the Wilson loop amplitudes agree
W(C) = W_(C). (13)

Thus the infinite-volume Wilson theory Eq.(7) and the one-~site
reduced model Ed. (9) become equivalent to each other in the
large N limit.

Assumption of the preservation of the U(l) symmetry was
checked by Monte Carlo computor simulation.4‘ It was found that

above a certain critical temprature k(=g2N) = xc U(l) invariance
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is unbroken, however, it is spontaneously broken below AC.

In the low temprature region the eigenvalues of the reduced
link variables U_are not uniformly distributed but concentrated
around an arbitrary point on the unit circle and this
spontaneously breaks U(l) symmetry. In this situation it is
possible to restore the broken symmetry by integrating over

the location of the concentration of the eigenvalues.

In the quenching procedure of refs. 4, 5 and 6 1link variables

are diagonalized as

(14)

The angular variables 62‘5 are held fixed when we first average
0

over marices Vp's

T dav_ tr(v p vivpvi.-..vp v’ ¢ BS(V,0)
p VIS VR VINAVIRA VIR 0o 06 O
w(c;e) = —L . (15)
J mav, oBS(V,8)
p
We then take an averaging over 90's
Wq(C) = J du(6) W(C;0) (16)

with a suitable measure p. It is now believed that the quenched

reduced model agrees with the original Wilson theory for all
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temperature
Wq(C) = W(C). (17)

Moreover when the quenched model is expanded into weak coupling
series using the correspondence Eq.(6), it reproduces the planar

perturbation theory of the continuum gauge fields.6

We thus have managed to reduce the problem of planar
diagrams to the evaluation of a model with a limited number
of unitary matrices. Hopefully we will be able to make
further progress via the analysis of the model either by

numerical or analytic techniques.
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