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ABSTRACT

In connection with a cellular dataflow computer architecture,the problem
of embedding of (undirected) graphs into cellular arrays is discussed dhder
the edge- and node-~ embedding conditions. The embedding conditions designed
in this paper are based on thevdecomposition of graphs into the subgraphs of
degree at most two. By méans of this épproach we show that arbitrary graphs
of degree 6 can be embedded’into the three layers of two-dimensional cellular
array under both the edge- and node- embedding conditions uéiﬁg 0(n2) cells.
The classes of graphs embeddable into the two-dimensional cellular array are
also characterized. Further we show that arbitrary graphs of degree‘6 can be
embedded into the three-dimensional cellular array under both the edge- and

node- embédding conditions using 0(n3/2) cells.

1.INTRODUCTION

The study of the cellular automata has been developed és'a model of
parallel processofs since more than ten years and until now many fiuitful
theoretical results have been obtaineds On the other hand thé'computer
architecture based on the cellular automata thoery was considered to be
unrealistic from the practical viewpoints, because it needs enumerabié cells
and high technology. However recent advances in digital component
manufacturing led people to consider the possibility of the cellular computer
architecture. Recently several new architéctures intending to build
computers which are suitable for cellular or VLSI realization has been

proposed. One of them is the rearrangeable computer architecture which can
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change its structure logically according to the input program into a suitable
structure ([2],[131),and our dataflow cellular computer architecture is baseq
on fundamentally the same idea.

A program of dataflow cellular computer can be represented as a directed
graph with token like usual dataflow machines, where each node corresponds to
an operator and each arc shows the data path. 1In that case computer
architecture the program has to be mapped directly into the cellular array
homeomorphically such that each node is mapped to a cell and each arc to 2
paths Each cell of the cellular computer computes the operation of the node
which is mapped to it. By this architecture we are able to expect a highlly
parallel and epochal machine, but on the other hand there exist many
technical and theoretical problems to be solved.

One of the important problems is to design an efficient algorithm of
embedding the dataflow graphs into cellular arrays. As the first step for
such objectives we investigate in this paper the embeddings of graphs into
the multi-layered and the three dimensional cellular array. Since the
directed graph representation of the dataflow graph is not essential for the
embedding problem we discuss it concerning with undirected graphs, Until now
the graph embedding problem has been discussed from several viewpoints such
that , from VLSI algorithm ([4],[8],[12]), from the universal circuit
([91,[143,[15]) and from the rearrangeable computer ([131,[53,0121,013]),etc..
Concerning with the universality , two dimensional cellular array is
available for any graphs of degree four([14]), and three dimensional cellular
array is available for any graphs of degree six (C41,012]) if the crossing
over of interconnections are permitted. However the concrete embedding
algorithm is not described in the abovementioned articles. But our approach
is independent of them and we give the concrete embedding algorithms of
graphs. The main results obtained in this paper are the universality of 3-
layered cellular array and three dimensional cellular array with and without

the crossing overs.

1l. FORMAL FRAMEWORK and PRELIMINARY RESULTS
We describe in this section the basic definitions of graphs and the

mathematical formulation of the embedding problem., The detailed definitions

on graphs are to be reffered to [7].
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2.1, Basic Definitions on Graphs
An undirected graph G is a pair (V,E), where V is the set of nodes and EC
{{u.v'l ; u#v, u,veV} is the set of edges. An edge e ={ u,v Jis said to join
u and ve We write e = uv and say that u and v are adjacent nodes; node u and
edge e are incident with each othersas are v and e; e is incident with u and
ve 1If two distinct edges e} and e9 are incident with a common node, then
they are adjacent edges.

The degree of a node is the number of edges incident with it. The degree
of G is the maximal degree of its node set. The order of G is the cardinality
of Vo The gize of G is the cardinality of E. A walk of a graph G is an
alternating sequence of nodes and edges V(se]sV]sesesVp-]sepsVn Peginning and
ending with nodes,in which each edge is incident with the two nodes
immediabtely preceding and following it. This may also be denoted vg

VieeeVpe It is a frail if all the edges are distinct,and a path if all the
nodes are distinct. A loop is a cycle joining to itself, If a walk is

closed.then« it is a gycle. A walk is called g_u_l_g,zun if it traverses each
edge once.gokes through all nodes,and ends at the starting node. ,

A graph is conpnected if every pair of nodes are joined by a path. A
maximal connected subgraph of G is called a connected mng_ngn_t or vsimply
component. A graph is fotally disconnected if every pair of its nodes is not
adjacent. A bigraph(or bipartite graph) G is a graph whose node set V can
be partitioned into two subsets Vj and V) such that every edge of G joins Vj

with Vae

3.2.Embedding into Cellular Array
Throughout this paper we allow no selfloops in the graphs., Two kinds of

homeomorphic embeddings will be considered.

Definition 1[14] A node-embedding (f.g) of Gy=(Vy,Ej) into G2=(V9,Ep) is a
mapping such that '
1) f maps V] one to one and into Vg,
2) g maps E;y into paths in G(i.e.s(u,v) maps to a path from £(u) to
£(v) )yssuch that every pair of such paths is node-disjoint except

possively at the ends,
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Definition 2[14] An edge-embedding (f,g) of G1=(V1sE]) into G9=(V9,Ep) is a
mapping such that |
1) f maps V; one to one into Vo,

2) g maps E; into paths in G, such that every pair of such path is edge
disjoint,

Let I be the set of integers . By Id we denote the d-fold Cartegian product
of I, Let s§j3i=1s254005ds be an element of 14 such that
(0seeeslseees0)swhere 1 is in the i-th position. By regarding 14 as a d-

- - - - ° e oo
dimensional vector spaces we denote the additive operation + .

Definition 3 A d-dimensional cellular array is a graph CNg = (V4,Eq) such
that

1) V4 = 14,

2) Eg ={ vovtsiive Vg 2i=152500esd § &

Mostly we treat the three dimensional case,and therefore a cell position
will be denoted by a vector such that (x,¥s2z)s X»ysz2€I. A m-layer of CN, jg
denoted by m-CN; and is called an m layered cellular array.

We assume two kinds of cells. One is the active cell which is used for the
execution of operation and the other is the switching cell which is used for
the interconnections, Intuitively saying an emﬁedding of G into CNy is
explained such that for each edge e of G the path g(e) of CNg is built by
setting the switches of cells locating in g(e)e We denote the terminals of
each cell integers from 1 to 6 (see Fig.l),and an interconnection between the
cells (i,jsk) and (i%,j'sk") along the axis will be denoted as follows;

Connectx((itj-k)’(i'sj'tk')) |

Commecty((i,jsk)s(i'sj'sk'))

Connectz((isjsk)s(i*sj"sk"))
A general interconnection is represented by a sequence of such ones. We deal
with in this paper only the homeomorphic embedding, For example, as for the
embedding of a node of Fig.2(a),Fig.2(b) is allowed but the decomposition-
embedding (Fig.2(c)) is not allowed.
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11X, EACTORIZATION of GRAPHS

As mentioned before,the embedding algorithm described in this paper is
based on the factorization of the graphs. We will describe the properties on
it.
3.1.BASIC CORCEPTS

A spanning subgraph is a subgraph containing all the nodes of G. A factor
of a graph G is a spanning subgraph of G which is not totally disconnected.
We say that G is the sum of factors G; if it is their edge-disjoint union,
and such a union is called a factorization of Go A factor is p-factor if it
is a path,and is z=factor if its degree is at most two. If a factor is a
regular graph of degree d,then it is a d-factor. If G has a factorization

into z-factor,p-factor and 2-factor, then we denote it (z,p,2) factorization,

3.2. Factorization Theorem

An gdge-coloring of a graph G is an assignment of colors to its edges so
that no two adjacent edges are assigned the same color. A k edge-coloring of
is an edge-coloring of G which uses exactly k colors. The edge-chromatic
pumber x(G) is the minimum k for which G has a k edge-coloring.

Proposition 1 For any graph G of degree k, the edge-chromatic number
satisfies the inequalitie

k < x(G) < k+1,
Proof:cf.[7].

Proposition 2 Any bigraph of degree k has the edge~chromatic number k.

Proposition 3 Let G be an arbitrary graph of edge-chromatic number i. Then
G has a factorization such that

1) for i=6,(2z,2,2),
2) for i=5,(pszs2z)»
3) for i=4,(z,z),
4) for i=3,(psz).

proof: 1) From Proposition 1, G is either degree 5 or 6, We assign to each

edge of G the colors {a,b.c,d,e.f} and partition the set of edges into three

subsets Ej Ej,and E3 according to whether the color is in {a.Q. {c.d}.or {e.f}
factor.
2),3) and 4) are prooved similarly. [+]

6
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Lemma 1 [15] Let G be a digraph whose indegree and outdegree are both less
than k¢ Then G can be factored into k factors whose indegree and outdegree

are both less than 1.

Iheorem 1 Let G* be any graph of degree 2k,k>l. Then G* can be factored
into k z-factors,

Proof: There are even number of nodes of odd degrees, Accordingly we can
transform G* into a Gj Which contains only the nodes of even degrees by
adding edges to odd nodes. Since Gj js eulerian,we assign each edge of G a
direction according to the direction of its eulerian trail. Let the
resulting graph be Gy, Applying Lemma 1 to G2, G2 can be factored into k
factors. In each factor we remove the directions and added edges. The

resulting factors are the z-factors of G*, [+]

Theorem 2 Let G* be any graph of degree 2k+1,k>1, Then G can be factored
into one p-factor and (k-1) z-factors.

Proof Using the same algorithm to Theorem 1, we can factor G* into k z-
factors. Let F be a z-factor of G*. In general F consists of cycles and
paths. If F contains some cycles, then we choose an edge from each cycle.
Let they be {ejsegseeesep)™ E~e Next we remove E~ from F and the resulting
factor will be denoted by F~, It is easy to see that F~ ia a p-factor. The
complement graph G~ = G*-F~ is a graph of degree 2k=-2, Using Theorem 1l we
factor G~ into (k-1) z-factors, Fi~ ,Fo~,ecesFx-1~. Obviously such factors

together with F~ give a factorization of G* [+]

Example 1 Factorizations of graphs.

P S S ket
/

(a) Factorization by (b) Factorization by
coloring. Theorem 1.

7
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(a) The given graph G.
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Fig. 3. Examples of factorization.
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IV.EMBEDDING INTO MULTI-LAYERED CELLULAR ARRAYS
We describe the embedding schemes for the degree four and six graphs. Let
H(n) be a class of graphs of order n and S(H(n)) be the minimal area of the
cellular array required to embed any graphs of H(n). By Kg(H(n)) and
Kn(H(n)) (or shortly Kg(n) and Ky(n)) we denote the number of cells in the
area S(H(n)) under the edge and node embeddings respectively, We assume
hereafter a given graph G has been decomposed into z-factors and denote the

i-th factor F,,

4,1.Embedding of degree four graphs’

As for the edge-embedding the following result has already been given,

Propogition 4[14] Let H(n) be either the class of graphs of degree three,
or the class of graphs of degree four. Then for some cj,cy, it holds
c1n2 < Kg(n) < cgn?e
The proof of Proposition 3 indicates that the coefficient cy is 9 in
general. We show next a more compact edge-embedding and also a node-

embedding by designing a concrete algorithm.

Theorem 3 Let H(n) be the class of graphs of degree four. Then any graph G
of H(n) can be edge-embedded into CN, and node-embedded into 2-CNj such that
Rg(n) < 32 + 2kn,
Ky(n) < 6n2 + 4kn,
where k is the number of cycle components of odd length of the factor Fg of
G,
Proof: We dispose the active cells along the X-axis and at the both the left
and the right side of each active cell we dispose a switching cell which is

called the free cell (see Figd4)e



1) A-mode embedding (f,AE): For this mode,we use the terminals 1 and
2,
a) For any node i, f(i)= 3i-2 if ign, 2n+i-2 if i>n,
b) For any edge e ={i,j{»
i)If j=i+l,. then AE(e) = ConnectX(f(i),f(i+1).
ii) If j#i+l, then AE(e)
= ConnectY(£(j),£(j)+(1,0,0))
ConnectX(£(3)+(1,1,0),£(i)+(~1,1,0))
ConnectY(£(i)+(=1,1,0),£(i)+(~1,0,0))
ConnectX(£(i)+(-1,0,0),£(1i)).

2) B-mode embedding (f,BE): By this mode,we embed the factor FZ using
the terminals 3 and 4. If there exist some cycle components of odd length in
F2, then we transform them to the ones of even length by inserting a node to
each such component. Corresponding to such inserted ﬁodes. we use the k cells
at the right hand side of the active cell n and assign each inserted node a
number of n+l,eeesn+k. It is noted that the transformed factor F2A is two=
edge cclorable, Let the colors be "a™,"b".

a) f is the same to A-mode embedding.

b) For any edge e ={i.j}.i<j,

i) if e is colored by "2,

BE(e)=ConnectY(£(i),£(i)+(0,i+1,0))
ConnectX(£(i)+(0,i+1,0),£(j)+(0,i+1,0))
ConnectY(£(3)+(0,i+1,0),£(j)).

ii) if e is colored by "b",

BE(e)=ConnectY(£(i),£(i)+(0,-1,0))
ConnectX(£(i)+(0,-1,0)+£(j)+(0,-1,0))
ConnectY(£(j)+(0,-i,0),£(j)).

It is easily obserbed by examining the area S(H(n)) that
RE(n) < 2 (14243+ ... +n=1)#3 + kn +3n
= 3n(n-1)+3n+2kn
= 3n2+2kn,

/0
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Node-embedding
1) A-mOde embedding (f,AN):
a) f is the same to the edge~embedding,
b) For any edge e={ i,jJ,i<j,
i)if j=i+l,then AN(e)= ComnectX(£(i),£(il)).
ii)if j#i+l,then
AN(e)=ConnectX(£(i),f(i)+(~1,0,0))
ConnectY(£(i)+(~1,0,0),£(i)+(~1,1,0))
ConnectZ(£(i)+(-1,1,0),£(i)+(=1,1,-1)
ConnectX(£(i)+(=1,1,~1),£(j)+(1,1,-1))
ConnectZ(£(j)+(1,1,-1),£(j)+(1,1,0)
ConnectY(£(3j)+(1,1,0),£(j)+(1,0,0))
ConnectX(£(3)+(1,0,0),£(j)).
2)B-mode embedding (f,BN): '
a) f is the same to the edge-embedding.
b)For any edge e ={ i,jJ}»i<j,
i)if e is colored by “a",then
BN(e)=ConnectY(£(i),£(i)+(0,i+1,0))
ConnectZ(£(i)+(0,i+1,0),£(i)+(0,i*+1,-1))
ConnectX(£(i)+(0,i+1,-1),£(j)+(0,i+1,~1))
ConnectZ(£(j)+(0,i+1,-1),£(j)+(0,i+1,0))
ConnectY(£(j)+(0,i+1,0),£(j)).

ii)if e is colored by the color™b”,then
BN(e)=Connect Y(£(i),£(i)+(0,-i,0))
ConnectZ(£(i)+(0,=1,0),£(i)+(0,=i,=1))
ConnectX(£(i)+(0,=iy=1),£(j)+(0s-is=1))
ConnectZ(£(j)+(0s=i,=1),£(j)+(0,-1i,0))

ConnectY(£(3)+(0,-1,0),£(j)).
The embedding scheme is illustrated in Fig.5. [+]

Corollazy 1 Let H(n) be the class of graphs of degree three. Then any graph
G of H(n) can be edge-embedded into CN2 and node-embedded into 2-CN2 such
that _

KE(n) < n2+ 2kn,

KN(n) < 2n2+ 4kn,
where k is the number of cycle components of odd lengths of the factor F2,
Proof: We take the p-factor of G as Fl, It is easy to see that Fl can be

embedded without free cells among the active cells, {+]

/2
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Fig.5. The node-embedding scheme of Theorem 3.

4,3 Embedding of degree 6 graphs

We describe in this section a general algorithm to embed any graphs of
degree 6 into 3-CN2, The factors F1,F2 will be embedded using the similar
algorithm to Theorem 3. In order to embed F3,we use the terminals 5 and

' 6,and interconnections will be build on the upper and down side layers.

Theorem 4 Let H(n) be the class of graphs of degree 6. Then any graph of
H(n) can be edge- and node-embedded into 3-CN2 such that
~ KE(n) < 9n2 + 6kn,
KN(n) < 18n2 + 12kn.
Proof: We only show here the rough sketch of this embedding in Fig.6. [+]

Corollary 2 Let H(n) be the class of graphs of degree three. Then any graph
of H(n) can be edge~ and node-embedded into 3-CN2 such that
RE(n) < 302 + 6kn,

/3
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\/. EMBEDDING INTO IHREE DIMENSIONAL CELLULAR ARRAY

We can easily obserbe that CN3 is universal with respect to both the edge-
embedding and node-embedding. Accordingly the benefit of the embedding into
CN3 will be the compactness or the simplicity of embedding algorithm. We
will show in this section an algorithm to embed any graphs of degree six into
0(n3/2) area.
5.1 Basic Embedding Scheme

We edge-color each factor of the given graph G using the same procedure of
Chapter iV.The subgraphs of the factor Fi,i=1,2,3,with the edges colored by
“a” ,"b” are denoted as Fi(a).Fi(b). In the next Theorem we will show an
embedding of such a graph using the terminal5, and the general embedding

algorithm is a combination of this scheme.

Iheorem 3 Let G be an arbitrary graph of degree 6 and let F(*) be a subgraph

of a factor F of G with the color *, Then F(*) can be edge-embedded into
¢N3 such that

RKE(n) < n¥/2,
Proof: Let m = n ,and let (£,WE) be an edge-embedding., We dispose the
active cells on the m*m area of the first layer ,that is , for any node s
£(s)=(p,sqs0) for some p,q I.
Corresponding to F(*),we draw a graph B = (V,E) such that V=
{ulseeepumtyvl, ovmiy{1,2,eeesm} ,and {(ui, )p1,k)}€E iff (s,t) is an edge of
G such that £(s)=(i,j,0) and £(t)=(k,1,0) ,i<k,respectively .
As we can see easily, B is a bigraph of degree less than m. From Proposition
2, B is m edge-colorable, and we denote the colors { 1.2.....m} .
Let (s,t) be an edge of F(*) corresponding to an edge of B;{(ui.j).(V1-k)};
which is colored by c. Then we build the interconnection corresponding to

(sst) as follows;
ConnectZ(£(s),£f(s)+(0,0,c))
ConnectX(£(s)+(0,0,¢c),£(s)+(k-i,0,c))
ConnectY(£(8)+(k=i,0,¢c),£(s)+(k-i,1-j,c))
ConnectZ(£(t)+(0,0,c),£(t)).

It is easy to observe that no overlappings of interconmections arise by this

algorithm,because a different layer is prepared for each color. The number
of cells required is less than m3 =n3/2, [+]

/5
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Fig.7. For Theorem 5.

Fig;B. The edge-embedding scheme of Theorem 5
for an edge.

/6



139
5.2. Embedding of graphs of degree 6

This embedding scheme is designed by combining the basic embeddings

described in the previous section. We embed £1(a),F1(b)seees F3(b) using the

terminals 1525e0es6 « We dispose some free cells among the active cells ,and

this arrangement is illustrated in Fig.9.

3 6
F, (b) F,(a)
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F3(a) F3(b)
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(a) The assignment
of the terminals.
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(b) A cube correspondind to a node and its terminals.

Fig.ﬁ. A unit of the cellular array
for the embedding of nodes. °
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Theorem 6 Let H(n) be the class of graphs of degree 6. Then any graph of
H(n) can be edge~embedded into CN3 such that

KE(n) < 27n3/2,
Proof: We use the odd numbered layers for the interconnections of edges with
the color™a”, and the even numbered layers for the interconnections of edges
with the color’b” respectively in the Z-axis. Since there is exactly ome "a™
and “b” in the X-axis and in the Y-axis of a cell cube corresponding to a

node(Fig.4), no overlappings of intercomnections occur. [+]

Theorem 7 Let H(n) be the class of graphs of degree 6. Then any graph of
H(n) can be node-embedded into CN3 such that
KN(n) < 864n3/2,

Proof: For a node we use a 12%12%6 cell cube as illustrated in FigJl. The
rough embedding scheme is also illustrated in Fig.{. {+]
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Example 2. Let G be the graph of Example 1 of degree 6. For the

factorization (c) of Fig.3, We have the following embedding. We

take m*=FF€1=3. Since F3 consists of cycles of odd length, the
additional nodes"7" and"8" are added. It is easy to see,all the
bigraphs are three edge-colorable. We denote the colors"r","w" and

n L1}

g" in the graph.

Fl(a);(l.2)(3,4)(5,6)-

12 12 I3
4 5 6
(7) |(8)
(1) (2)

20
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(7).An embedding of G.
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CORCLUSTON

We have presented several embedding schemes of graphs into multi-layered
cellulay array and three dimensional cellular array as the first step toward
the cellular dataflow computer architecture, The obtained results indicates
that the class of graphs of degree 6 can always be embedded into 3-CN2 and
CN3 under both the edge-embedding and the node embedding. The node-embedding
requires more cells than the edge-embedding, but the function of its cell may
be simply realized. The embedding into CN3 requires 0(n3/2) cells sthough

the one into the multi-layered cellular array requires 0(n2). Consequently

the embedding into CN3 may be effective if the three dimensional VLSI
fabrication becomes possible in the future.

From the theoretical viewpoints, the embedding algorithms presented in this
paper is conjectured to have the time complexity O(nlogn) in the serial time
and 0(log2n) in the parallel time using the parallél machine model RAC[10] by
inspections.

The methodology presented here may be also applied to the problem of
interconnections for VLSI circuit design. From these viewpoints the

investigation on the effective algorithms should be further promoted.
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