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pseudo-Particle (Instantons, Solitons, Vortices,...) Solutions
of SU(2) Gauge Field Equations
Shozo TAKENO [ & % © =)
Physics Laboratory, Kyoto University of Industrial Arts and

Textile Fibere

§1. Introduction

Recently, much attention has been focussed to the self-dual
Yang-Mills field equations. It has been shown that the equations
share the characteristics such as the inverse scattering fbrmﬁla—
tionl,) Backlund transformations and conservation lawsz)with many
two-dimensional completely ingegrable systems. Of various
atteﬁpts, Yang's formulation of4SU(2) gauge fields has beep recog-
nized to be particularly useful, since by introduction of suitable
gauge, the so-called R—gauge,ﬂthe condition of self dugiity}can.
be reduced to a system of Lapalce-type nonlinear differential
equations of two variables, one of which is real and the'otﬁef:is

3)

complex. Here a study is made of the Yang equations in. connec- -

tion with nonlinear 9  models along the line somewhat different from
) R

that of Pohlmeyer with particular attention paid to psudo-particle

solutions such as instantons, solitons and vortices.

§2. The Yang equations
Let us define SU(2) gauge potentials Ai((/4=l,2,3,4; a=1,2,3)
in four-dimensional Euclidean space (xl,xz,x3,x4). Yang considered

an analytic continuation of Ai into complex space where Xy Xy X
. 4

X, are complex. The condition of self-duality is valid also in
complex space, in a region containing real space where the x's are

real. Then, by introducing complex coordinates
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=2 Gt idn), T=27P60-o), 2220 oy, T2 riny)

and (2.1)

~1f2 -2 "/1 .
A,:z‘/’(A.—cAl), Ay= /(A,+,-AL), Ap =2 /{,4“;/]4), Az=2 (As-CAy)
(2.2)

with
. 4 9
A/‘ :(3/21) a A,u (g;const.; g—a: Pauli matrix) (2.3)

and by chhosing the R-gauge, any solution of the self-duality

equation can be brought to the folowing form

-{./24 o fa/2t - oz /4
Au’= /45 =
?
T/t /24 0 -4q /24 (2.4)
with
f £ real, ©= Gf, u=y,z, fu = 2 f/ou, etc. (2.5)
— 3)
Here the quantities £, O , and ¢ are governed by the Yang equations
JL(!77+](22) J11l7 -1 15 +°—G-7‘ 0o = (2.6a)
Q@),“*’(f-zﬁ)i:ol (f'16'9)7+ G'IO'}‘);=0, (2.6b)
In the above equations the simbols = and = denote that the equa=

tions are valid for real and all c¢omplex values of the x's, res-

pectively. By putting
= expl-3), (2.7)

Egs.(2.6) are rewritten as

977 t jzz Q*P(lg) @6})‘ E;) (2.8a)

(Q(P(lg) 0'})1-1‘((«})(29)()’?)?_:0, (e«P(za)&"i)j + (exP(la) 6} )?:o. (2.8b)

Equations (2.8) imply that the Yang equations can be reduced to

Liouville-type equations.
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We introduce a transformation (f, o,7)—>(f', o', F"'):

f=ilt, o =F0G/1 6—7’.—.?@/}‘, 03/=t57/7‘f 05 =+ 0;/7

2.9
to reduce Egs. (2.6) to ( )
1l ! 1’ Y oy ~/ '
7L(‘177+4?5)'3l1‘l7'—7l?7lz“¢yf7‘fa¢}=0, (2.10a)
2 ! -2 ! y-2 =/ r-2 —
(}'20"y )y+()" th); =0, (4 ’6‘,— )7+(} 253’}1=0. (2. 10b)

Equations (2.10) are interpreted as the self—duality'equations for

an SU(1,1) éauge theory. The above transformation, though simiiar

to the weli—known Atiyah-Ward anzatz,S) are different in an impor-
tant respect from theil$§ in that Egs. (2.9) preserve the requirement
that f is real and that ¢ and T are complex conjugate with each
other for real values of the x's. By putting f'=exp(g'), Egs.(2.10) .
can be reduced to equations similar to Egs.(2.8). Equations (2.6)

and ((2.10) are invariant  for the following transformations

3 — T ‘
} -:i_tTl a ? T2 o C=—"T—" (2.11)
{'tcq 1*t+ o7 1t "t a
and
/ —_ /
};—_9 4 q_/ N 5:, o
= ) 7 _ ) = —_— 2.12
a7 -4 v/ 1 T -4 ’ ( )

respectively. To study the solutions to Egs. (2.6) it may some-"
times be convenient to treat Egs.(2.10). This is illustrated by

noting that Eq. (2.10) possess a particular solutions
14
/
- = i:f , (2.13)
with f' satisfying the equation
/ / / vy r oy
]‘(](”_Jr]‘?;)~2(}7)(7—+f?{2—)=0, (2.14)
Inserting this into Egs. (2.9) give the well-known Corrigan-Fairlie-

2
] .
t'Hooft-Wilczek ansatz, for which Egs.(2.6) reduce to the one and

the same Laplace-type equation

Lo
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fﬁ +1,7 = 0. (2.15)

A particular solution to this equation gives the t'Hooft multi-
instanton solutions:
2
k-
)L=7LQ+ZJ( G- J( G ’ (2.16)
— (4-4,)(5-7. ) +(z2-2-)@2 - 2.
7G5 2@ -2

where fo, yj, yj,zj,zj are constant, the latter four beiné identi-
fined as the position of the jth instanton.

Let us denote the transformations (2.11) and (2.12) by the super-
scripts + and -, respectively, namely (f,c“,E')—~9(f+,(r+,Eﬁ.) and
(f', 06", é”)-—a(f"-, g'",&'"). Then, we can introduce the following
two types of the Backlund transformations for each of Egs. (2.6)

and (2.10)

GonF) = e &) =S T ) ) = o 5

7 ’ (2.17a)
, m @)= (et ey =, ot &) =FT " 5")
(47,6 ) =0 o F) — e, (2.17b)

f - w0 \ wi . vt — R
(F, o\ )= 7 ) 2U @) = S F ) = )

(2.18a)
('}//U',:U:’)“?U'—,d‘,: E,.. __’(7(/_/’ 0___/-/’ 0__,,,) __}(_}l-/t 0_/-/-/; 6'"”'}

__)H"“f 0_/-/*/ ;"’*)'EH’I, q"l,v o—“'[} ----- , (2.18b)

i
Here the cost of the preservation of the reality of f and of ¢ and

T being complex conjugate with each other for real values of the

xj's by the transformation (2.9) is paid by the fact that at least
three successive transformations are required to return to (f,0 ,q )

& .
=8¢, T) or (£', ', &') = (£'F, ¢'%, ='Z) for the first time.
g \ns o



§3, Nonlinear ¢ model

In this section we limit our discussion to the real space where

all the x's are real. By introduction of the coordinate transfor-

mation

DCI’-——'-QHJ(I'*'QH 7(7-7 7(:./= Qu X+ Qa2 Az, Qy Q22— 9 0,,=O’

= Gt Qag Ay, A= QpAs + Qyy Ay, D33 Qgg — D390y =0,

Egs. (2.6) can then be rewritten as
fat-(vi)+ve vyT=o,

V'(]l—z VU—) = () and c.c.

By using the same procedure, Egs.(2.10) reduce to
/ 2 _
3’4y -(vt') =vo y&'=0,

v-#" 7 ve’) =o.

It is shown in the following that Egs. (3.2) and (3.3) can be

(3.1)

(3.2a)

(3.2b)

(333a)
(3.3b)

reduced

to equations for the 0(3,1) and 0(1,3) nonlinear O~ models. We

consider these two cases separately.
(i) 0(3,1) nonlinear 0 model

It is a straightforward matter to show that by taking
t=1/G+8%), o =G+i5)/(j°+}*)

with ‘ | |

b=+ ) +(5°) = (3°) = =/,

we can rewrite Egs. (3.2) as

ajh v vi> 3 =0, M=0,1, 1,3,'
where ’
v, 7>= () Hri) +(vi*) - (v§°):
We can also introduce three angles of rotation 8, ¢, X:

B'=cosho, B'tif=4chOA-@aplin)  §3= 4ok 0 cosp
9

(3.4)

(3.5)

(3.6)

. )
(3.5)

(3-1)
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to rewrite Egs. (3.6) as

Vb 2@ v )=o0, (3.8a)
V-(ah’Q 7@ ) —ash’ 9 Cw‘f(Vo()l:.o, (3.8Db)
A0Q = 4h0 cmh0@P) - 4ihd woho 42 ¢ (pa)’= 0. (3. 8b)

As an integrable two-dimensional system associated with the 0(3.1)

nonlinear G- model, we can consider the following equations

Ux C({ C»

Uge = ——— — ulu 1) = )

“ = Twar U u'+1) =o, (3.9)
or

(lﬂ tah'6), + (P tah?0 ), =0, (3.10a)

th——ﬂ&bﬁaa/uﬁ*—ﬁé—o-%%zo (3.10b)

aoh>¢ !

with {=sinhOexp(ilf). Equations (3.9) and (3.10) are, respec-

‘tively, a hyperbolic-version of the Getmanov equation and the
Pohlmeyer-Lund-Regge equations.
Several specific cases are considered below associated with the
0(3.1) nonlinear G model.
(i.1) 0(2,1) nonlinear J model
It is well known that if (X is taken to be constant, Egs. (3.8)
are reduced to the form identical to the Ernst equatiognfor the
axisymmetric gravitational field problem
}at -(v4) +(Ve) =0, ve(4=* ve)=o0, (3.11a)
(337—1) 43 =23%(v3)", ++T=03-1)/3+), (3.1
This can also be regarded as equations for 0(2.1) nonlinear U model

field equations

A¢p+<775, vy pl=0, =123 S (3.12)
with .
B 87 =B PR (87 ) =1, Thop>=79') +r$ ) ~(047),
or (3.13)
v(anh @ V) =0, A)-Mhfwoh0v ) =0,  (3.10)
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The relationship which exists among the ¢'s, % ’ @, %’ is

¢'=(%+3')/(§ 3" 1) = 42hf o @, (3.15a)
?2‘('/5)(5‘3*)/(33'—1)='<Jﬁ;k6mtp, (3.15b)
F=03+1)/(33-1 ) = whd. C Guso

Another case exists in which Egs. (3.8) reduce to Egs.(3.14). This
is the case q7='ﬁ/2, which implies that f2+ T =1. This amounts

to parametrizing £, T, E:és
b= sech@ o =Tanh 0 explioe), T =Tanho erpl-ix),  (3.16)
for which Egs. (3.2) take the form

— — 2 — .
([-eT) AT+ T(VT) +Ty0-vT =o, (3.17)
Equation (3.17) is somewhat similar to the Ernst equation (3.1lb).

(i.2) O(3) nonlinear 0 model

For the specific case

qo = const >~ 1 vor @'=const, (3.18)

for which Eqs.(3.5) and (3.7) become
5,97 =G )+ 5)+(5°) =1, | (3.19)
2 3 :
vjogr=(v§') + (vf°) ""(V;), | (3.20)
Egs. (3.6) are equations for the 0(3) nonlinear- 0 model. ‘Equations
(3.8) then.reduce to
V- (4P v ) =0, - (3.21a)
AP — AnPuwey (v ) =0, (3.21b)
In terms of

M= a#f(@/z)e’(p(t;d) (3.22)

or



3'.—_— A;.‘PwO(:(/ft-!-/“')/(/A/«"-{-j), (3.23a)

V= A A =(fe)(p-p) P4 ), (3.23b)

;’=mcp=(/.f*_l)//»/a*+/)’ (3.23¢)
Egs. (3.21) are rewritten as

(PP +1)A4p ='2/“’(V//1)1, (3.24)

This is similar in form to the Ernst equation.
(ii) O0(1.3) nonlinear § model
For Egs.(3.3) a parametrization identical in form to Egs. (3.4)

can be made with
(§,2>E(5’)1-(3')1—(51)L‘(33)2=—/, (3.25)
v}y = (75’)1"(75')1‘(‘75‘)1“(75’)1. (3.26)

Equations (3.6) then hold as they stand. In terms of @, ¢,

the gq's here are also parametrized as

e=ah 0, D' =whfdn Pood, ) =whidop A, 33—_:0,,[,9(;@%

(3.27)

E%uations (3.6) then rewritten as
V- (whg 4 voe) =0, (3.28a)
Ve (coh®07@) — ol 4o cos(P(Vo/jlr.o) ~ (3.28b)

AQ + cosh 4h g (@) + cosh 0 4-b@ 429 (v )'=0, (3.280)

As in the case (i), we consider in the following several specific
cases.
(ii,) 0(1,2) nonlinear T model

For [ =const and ¥=7 /2, Egs.(3.28) reduce to
V-(cosh*0 p@ ) =0, (3.29a)

AO+a0404~;L@(A(P)l=O, (3.29b)



LA
[N}

and the same equations with @ replaced by ¥ , respectively.
Equations (3.29) can be regarded as equations for 0(1,2) nonlinear
0" model satisfying Egs.(3.12) with the inner product <¢ , ¢> and

v v ¢ >, however, defined by
&, 9= (9= ()= ($) =-1, o (3.30)
Ghvp>=(wd')y-(we) -(v $3)" (3.31)

Here the %'s are parametrized as follows

b= anhe, B = wshgary, $=cochbcosy, (3.32)

The :case &= /2 amounts to parametrizing f' and ¢ ' as

/ . :
}lz.- COSOCLG, o = C.OTLG-Q#PQO()_ ' (3.33)
In this specific case Egs. ((3.3) reduce to
/-t /7 -7 2.2 / / -/
(07 '-|)ag - T (vr’) =T vT-VT =0, (3.34).

Equations (3.29) have the same form as the equations obtained by
Matzner and Misner in the formulation of the axisymmetric gravita-
tional field problenug)

(ii,2) 0(3) nonlinear ¢ model

As in the case (i) Eq.(3.28) for the specific case (3.18) reduce
to Eg. (3.21) corresponding to the equations for the 0(3) nonlinear
model.

We have thus shown that the Yang equations (2.6) are very
generic, which include honlinearvfield equations for the axisymme-
tric gravitational field problem, spin problems in solid state
physics, differential geometry, etc. as specific cases. Thus, it
is convenient to use a cdrrespondence between these problems and
the Yang-Mills theory. Some of such correspondences has been
exploited to solve, say, the Yang equations for the purpose of

obtaining pseudo-particle solutions.
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§4. Dimensional reduction and pseudo-particle resonances

—

Let us assume in this section that the quantities £, (0,
appearing in Egs. (3.6) depend on the coordinates y, ¥, z, E—only

through a pair of variables (X and ‘8, namely

t=dwp), o=olwp), T=5(p) (4.1)

with
=43, 7 2 ), P=FGag22). (4.2)
Equations (3.2@)then reduce to
i Bot +4p Zp+ fualGur's fip(9p 1t g (ecTpr D7)
-1y %m%zajf; ép.alu GO Vo P +ch6-‘, pp-7f

~Juf Vo7 + TPV F GGy WGP T T =0, (45

where

Ao =ty + 0o, (For) = 05 + 0 oy (4.4)
%o/-}(ﬁs oy Fi +.a’,18;, §F';ds{ﬂydf+f§?/5?", (4.5)
Equations (4.3a) reduce to a two-dimensional form of Eq.(3.2a):
ﬂ]‘;;“’fﬂ)“ f}l‘ fyl +T;U—‘3+CT'7577=O (4.éa)'
with

% = ,g-‘ 0( an/ 7=/£P. (4-7)’7'

provided the quantities & and P satisfy the equations.
~ ~ 2
AX =, (Yor ) = oLy  (4.8a)
af =p  Gpr=p (4.8b)

under the restriction

§V-§p=9p-s;o(=o. | (4.9)

By the use of the same procedure, Eq.(3.2b) reduces to

10
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(475, (7w ), =0, (177 t( ), =6, (i6v)

' particular solutions to Egs.(4.8) and (4.9) are given by’

(4.10)

P( F\“ + 5\‘2\' =l, F' -’i t gi EJ =/7 ~(4.11la)
Pl 4l =1 ﬂ-f,-'+$<'if=/' (4.11b)

P45 = PP+ 11 = (4.11c)
Flf:] +§(zd O) r\f; 5\3 v' ‘

Thus, we have reduced the Yang equation (2.6) defined in 4d Euc-
lidean space to the corresponding effective 2d equation given by
Egs.(4.6). Here the first of Egs.(4.1la) and (4.11lb) represent
dispersion relations of pseudo-particles;, while the second of the
same equations can be considered as representing resonance inter-
actions, in ahalogy with the pfoblem of resonénce‘in‘conventional:
soliton problems.lo) »
If the field variables f, ¢, g are taken to depend only on the
éingle &ariable « or 3 , Egs.(2.6) can be integrated.' Egs. (4.6)
then reduce to / | :
Hn—)l;+c5f"=0, =cf, 6;;"-‘zfl - . (4.12)
where ¢ and c are constants. A particular solution to Eqé.(4.12)

is obtained as follows

= /locL‘(A3+5), T = C tah (A3+p), .'?=E'fx~(:(f]3+,5) (4.13)

where A, B and C(C) are constants, the first and the third being
dependent on the constants c and c. This is a kind of instanton
solution, the examination of which is, however, worth separate

discussion.

11
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§s. Examples of pseudo-particle solutions

By the use of the Backlund transformation (2.17) or (2.18) and
the method described in § 4, we can obtain various types of parti-
cular solutions to the SU(2)-gauge field equations. For the sake
of simplicity, however, we give here only few of such solutions
obtainable from Egs. (4.6a) and (4.6b).

(i) vortex-like solutions

By the use of the parametrization (3.4) and (3.7), Egs. (4.6a)
and (4.6b) corresponding to the 0(2.1) and 0(3) nonlinear g  model

given by Egs. (3.14) and (3.21) take the form

(4h'0 6,), +(4k0 4, ), =0 (5u1¢

0, t Oy — 4h0 bt (s £ ) <o (51,
(450 93); + (420 4), =0 (520
Gzﬁ@w“"»‘@wO(‘P{’f Y ) =0 Y

There exist multi-vortex solutions to these two equations which are
characterized by the Laplace equation
alp=o (5.3)

with the solution given by

=7 b:tas [T ‘ (50

3 1‘}‘

t
with

under the assumption that the quantity ) depend on 3% and 7 only
through a quantity %’identified as a stream function in hydrody-

namics, namely
0=00) witn  0@hy = athy apfy=-¥fsy (S8

V==L B;&[(3-;\-)‘+<7-1,~)‘]'/‘ (5.4
]2



_rhe solutions for @ is then given by

g= Zfam_l (VQ{P (//) énd O= 2+amt‘ (Q{p 4,) (5.7)

for Egs.(5.1) and (5.2), respectively. The solutions so obtained
are entirely identical in form to the multi-instanton solutions
for the 0(3) nonlinear ¢ model obtained by Belavin and Polyakov;ll)
several arguments have been put forward to the similarity of the
4d-gauge theory and the 2d 0(3) nonlineér 0 model. The‘above
>result may show a direct connection between these two cases.

By means of dimensional reduction, we can even consider‘a.’ \
partially integrable SU(2) gauge field by studying an integrable

2d 0(3.1) nonlinear G model. Here, instead of Egs.(3.10), we are

concerned with the equations
(4, 4ak0 ), +( tehg)y =0, - (5.8a)

9‘37“"1%&9%‘\0‘%% ¢Y =0  (5.8Db)

A solution to Egs. (5.8) is being studied.
(ii) string-like solutions

The method described in §4 can be generalized to the case of
three variables. Namely, we assume the field variables f, ¢, o
depend on y,y,2,2z only through the quantities ¢, péuui J< Then,
under the condition similar to Egs. (4.10) and (4.11l), we can con-

.

sider, instead of Egs.(5.1), the following equatibns

('0;"“10 (PS )5+ (/QM-L‘O (Pl')-, *'(AM-L‘O (‘0: )} =0 (5.9a)
633“‘6\77"‘9;3"’4%‘«0@9‘10(((;4- "P.’z-}» ‘ﬁl) =0 (5.9b)

with

§$ = {. 7. . (5.10)

13
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By string-like solutions we mean here the solution of the form

0= 0(37), C=10,3 v, : const. (5.11)

Equation (5.9a) is then automatically satisfied, while Eqg. (5.9b)

reduces to the 2d static sinh~Gordon equation:

(2 0)33 +(}@)”= U, )26 (5.12)

For Eq.(5.12) at least two kinds of solution exist, one is the

2)

multi-soliton solution due to Hirotal and another is the one
somewhat similar to vortex solutions in 2d hydrodynamics. The
former and the latter are given, respectively, by

xl, Xz, Y.'+X,'r X;
y + Mt 4Gl € + -
6 — 9 +Q*L e 122343

’ 14 ’ 4
[+ G e 4 Gy e 0y -

ho,
@=2f0m_‘ ] K : AML" (-k% 1 (5.14)
l-K* b k3

(5.13)

where

!/

Xc’= K‘}'"FL:]/ with 3 =Vo 3, 7/= Vy ) (5.15)

G‘J =[(ki‘K4') +(Li =Ly ]/[(k,~+kj~)‘+ (L.-+LJ~) ] (5.15")

Besides these particular cases, we can consider many nonlinear
partial differential equations of physico-mathematical interest,
a detailed discussion on which is éntirely omitted. Among these,
most interesting in particle physics is of course finite-action
solutions. 8uch a solution is out of the scope of the present

investigation.
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