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1. Symmetries of Gravitational Fields

1.1 Introduction

—

The stationary axially symmetric vacﬁum gravitational
fields are interpreted as chiral fields over 2-dimensional space
[1]. Thus, it is important to consider the internal symmetries
of field equations. Note especially the works of Kinnersley and
chitre [2]. They have exponentiated the infinitesimal transfor-
mations which are due to. the internal symmetries.

On the other hand, the stationary axially symmetric vacuum
Einstein equations are equivalent to the static axially symmet-
ric SU(2) self-dual gauge field equétions which admit monopole
solutions [3]. This sﬁggests that we may appiy the methods

developed in general relativity to the problem of finding classi-
cal solutions of gauge fields [L4]. A similar relationship is
known between the finite Toda iéttice equations and the spheri-
cally symmetric self-dual equations [5]. However, it is hot
obvious whether the formalism generating multi—instanton‘
solutions such as the Atiyah-Ward construction [6] is applicable
to lower dimensional cases.

Let us attend to the result of Corrigan, Fairlie, Yates and
Goddard [7]. They have found a Bicklund transformation for Su(2)
self-dual gauge fields and have succeeded in integrating the.
ansatz of Atiyah and Ward.

In this chapter, we discuss the internal symmetries of the
stationary axially symmetric gravitational fields and present a

Bicklund transformation. This nontrivial transformation is
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similar to that of Corrigan et al. and is a special case of the
Kinnersley—Chitre transformation of the Geroch group. For the
initial ansatz of field equations, we show that the B&cklund

transformation can bé integrated and generates the hierarchy of

ansatz. .,

1.2 Stationary Axially Symmetric Einstein Equations

It is known that the stationary axially symmetric vacuum

Einstein equations reduce to
3 (p3 Q-Q71) + 3 _(p3 Q-Q71) =0 (1)
P P z Z 4

where Q = Q(p, z) is a real symmetric 2x2 matrix with the supple-

mentary condition det Q = - p2 [1]. Papapetrou's parametri-

3 = - _ _ _ a2 2_ 2.—-1
zation Q = (quv): qll = T, q12 = q21 = fw, q22 = fw p 7,

implies that there exists a potential v = v(p, z) defined by

=122 B -1.2 '
apw = p f73 W, 3,0 = - p °f apw. ‘(2)

' Then, we obtain the field equations

2, -1 2 2 2 2 2 _ Ao
f(8p+p ap+az)f-(apf) -(azf) +(ap¢) +(3Zw) =0,
, (3)
3 (%3 ¥) +3_(pf 23 _p) =0 |
p p Z Z :
It must be noted that a discrete mapping
I: (£, w) —> (p£™F, iy) )

transforms (1) to (3) directly. Let P be 2x2 matrix as P = (puv)
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~1 -1,.2 2
=f 7, Py =Py =T "V, pyy =T (f°+9°). We can prove that

the field equations (3) are equivalent to

-1 -1, _ ‘
ap(papP-P ) 4+ BZ(QBZP-P ) = 0. (5)

1.3 Internal Symmetries and Bicklund Transformation

—

Let H be an SL(2,R) constant matrix. The eguation (5) is

invarient under a rotation
H: P — HPHUT. - (6)

The invarience group defined by (6) is a subgroup of the Geroch
group. Particularly, we set H==(€ﬁv) which is an appropriate
linear combination of generators for gauge and Ehlers transfor-

mations. Providing that 2 +¥2#0, we have

Lemma vy If (f, ¥) satisfies (3), so does (f', ¥')

defined by
fr=r(el+ )t yr= o y(rf )L, (7)

Next, we consider another internal symmetry of (3). Com-

bining the definition (2) and the mapping (4), we can prove
Lemma B Let (f, ¥) be a solution of (3), then (f',y')
defined by

£r=prh, 3w = —pr %y, 3y = 1pt7% ¥ (8)

is also a solution.

4 —
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Though the transformations B and y are discrete, a product
transformation a: o = B ° y has a nontrivial effect. The opera-
tion of a, a Bdcklund transformation, is given by the following

proposition.

Proposition a The transformation a acts on an initial

sulution (f, ¢) of (3) according to

£ro= pr (£ 4 Wz),
3,01 = 175007 + 9520 Lu(e? + w7, (9)
0,00 ==1p72(e% + )% (u(e? 4y,

where (f', ¥') is an another sulution of (3).

We remark that if one operates o even times, one can

derive real potentials from real ones.

1.4 Hierarchy of Ansatz and Concrete Solutions

We introduce new ansatz P2 defined by A as follows.

Proposition A A solution of (3) is given by f‘=BDA,

b=23_A, where A =A(p, z) is a solution of

<ap2 - p‘lap + ai)A = 0. (10)

This heuristic consideration leads us to seek hierarchy of

P, by means of the Backlund transformation o and the internal

2

symmetries B and vy.



Let us summarize the results.

A k] onj 13 3
r
BOAP =—pazAr_l’
azAr’ = poAr_l + 2(1—1’»)Ar

which lead to

can derive hierarchy of the ansatz P

2 -1 2 _
{ap + (1-2r)p ap + aZ}AP = 0.

2+ 1
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We prepare the variables

(11)

_]_’

Using {Ar}’ we

and Py, =1, 2, --

The relationship between P2A=1 and Pi is shown in the following
~ diagram;
P, > P, >
1Y Y _
B B B
Pi o Pé < o Pé < a.

Each ansatz is integrated to be

characterized by determi-

nants of {Ar}' The first five ansatz are written as follows.
1 -1
Pl: (f, ¢¥) = (= , =),
1 AO AO
Pyt (£, ¥) = (pdy, Ay),
' P20 A
P.: (f \’J) = s
2 2 pAO Al pAO Al
-Al pAO —Al pAO ,
Phy By Ay By
R 1 1=Bg  Pby
P3 (f: IP) = A ) A
0 0 s
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pAO Al Al A2

PL: (f, ¥) - 5 1 % , —5 o !
e} AO Al —A2 o AO Al —A2
-0, Ao By -8, B, Ay
\‘\ b, =bg p2AO A, -h p2AO

We notice that Pl and Pi (2: odd) give real metric coeffi-
cients via the discrete mapping I.

Finally, we give concrete solutions. For the ansatz Pi,

-1 2}1/2

a special solution Ay = R, R = {p2-+(z-a) , a€R, derives

a metric

2 -1/2 2
o / 1

ds” =- (dp +-d22) + PR~ dt2 - 2pdtd¢.

The variable A, leads to A, and A, through (11),

0 1 2

>
1]

{bR - (z—a)}R—l,

2

{R® - 2b(z=-c)R + (z—a)z}R_l,

>
1]

a, b, c&€R. Then these variables give the metric coefficients

= D{(b2+1)R - 2b(z—a)}‘1,

£ =
o= {(b°+1)p° + (b°-1)(z-2a)° + 2b(2z-a-c)RIR T,
of the ansatz P3. The ansatz Pé is also described by the above

variables.
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o, Hidden Symmetries of Chiral Fields

2.1 Infinitesimal Trans formations

——

Recently, several works have been done for the hiddeh
symmetries of chiral fields. Dolan and Roos [8]>have proposed an
infinitesimal transformation which shifts the Lagrangian density
by a total divergence without the equations of motion. Refs.[9]
héve proved the same results systematically by using a generating
function.

Let us first review Refs. [8,9]. The equations of motion

for chiral fields are

3 A =0, A =g "3 g, (12)

where g=g(x) is an element of Lie group G. The infinitesimal

transformations are defined by

g —=> g + 65,.“)%, 6\(,n)g= - g%(n), (13)
n=1,2, ---. Here v 1s an element of Lie algebra g’andj§n> are
given by Blk(n'+]J = 86A<n) + EAO,A(H)], A(O) =v, recursively.:
Introducing a generating function S(g): S(g) = 7§ x(n>¢n, c&l

n=0
and a matrix function Y(z): S(t) =Y(§)VY(C)_1, one has
(3 - £3,)¥(T) = TAY(T). (14)

In this section we translate‘the infinitesimal transfor-
mations (13) into the language of the linear problem (14). We

assume that there exists a fundamental solution matrix Y(g),

-8 -
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holomorphic near the origin z =0, Y(0) =1 and det Y(z) =1. Since

(13) induces an infinitesimal transformation on the potential Ay;

(n) (n) _ (n)
Ay —> Ay =8. Ay, 8, "By = g +[AO,

0
Y(z) changes to Y(c)-—Z(n)(g)Y(g), where

(n) _ (n) (n) , ,(n)
(al—cao)z (c)—c{aox + LAy, A +7Z (z)1}y .  (16)

2.2 Riemann-Hilbert Transformations

The authors [10] have constructed the Riemann-Hilbert
transformations for chiral fields and the anti-self-dual gauge
fields. We will show thét the infinitesimal transformations
(15) are essentially deduced from the Riemann-Hilbert transfor-
mations. For the simplicity, we restrict ourselves to the case
of G=3S8L(n,T).

Consider the Riemann-Hilbert problem as follows.

X (¢') =X, (¢g")H(g') for z'eC,
(17)

H(z) =Y(u()¥()™F,  x,(0) =1.

Here C is a small circle with the center at =0 such that Y(g) is
holomorphic in CUC_, C, (C_) denotes the inside (outside) of
C. The matrix u(g) is analytic in C and belongs to SL(n,CT).
Then it can be proved that %(E) and'AO introduced by L

¥(2) =x,(D¥(z) 1n C,, X_(DY(Du()™}, inC_,
(18)

Ag=hg+0,9,X (0),
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satisfy (3, - 20 )¥(2) = ¢k ¥(2), ¥(0) = 1 and aet¥Y(z) = 1.
We call (18) the Riemann-Hilbert transformation. Following the
general theory, one may convert (17) to an integral equation [10].

For the infinitesimal Riemann-Hilbert transformation induced from

u(z) = expv(g) , we obtain

Y(z) —> Y(z) - E(2)¥(z) for ¢ C_,

(19)
- 1 dz! -1
(g) = 53 C—C-‘:rY(cﬁ)v(t;')Y(c') :
Then we have the following propositions.
Proposition A E(z) satisfies
(3 -23g)E(z) =¢ldy +[Ay, x+E(2)],
(20)

1 dg" -1
X= =t - 7§r Y(z")v(g")Y(z") ~.

Proposition B The infiniftesimal Riemann-Hilbert transfor-

mation (19) induces a transformation on the potentia1~AO;

Let us define X(n) by (20) with v(z') =vz' ™. Combining
(16) and (20), we conclude that the infinitesimal Riemann-Hilbert
transformations (19) induced from vc'_l are identified with the
infinitesimal transformations (13) up to the integration |

constants.

It is noted that the Riemann-Hilbert transformation (18)

exponentiates the transformations proposed by Dolan et al.

- 10 -
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2.3 Kac-Moody Lie Algebras

Refs. [8,9] also have computed the commutation relations
[M(n)(v), M(m)(v')] = M(n+m)([v,v']) of the hidden symmetry
algebras, where M(n)(v) are infinitesimal generators. Dolan
[11] has pointed out that these algebras are isomorphic to the
1].

On the other hand, the authors [10] have proved that the

subalgebras ;%DE[C] of Kac-Moody algebras JQTlz,z

algebras of the infinitesimal Riemann-Hilbert transformations
are isomorphic to Kac-Moody algebras. For thé case of G =

SL(n, T),

—m] -(n+m) (22)

[ve™™, vz = [v,v']g

have been derived in [10]. Thus the Proposition A leads us to

the hidden symmetry algebra A[(n,mhgm[c,g_lj. The negativebpart

AL (n, )@z e

] does not appear in the framework of Refs..
[8,9,11].

Finally we give some comments on SU(n) and SO(n) chiral
fields. For SU(n) chiral fields, one has to impose the additional
constraints on Y(g) and u(g) such that Y(Q)TY(C) =1,
u(c)fu(g) = 1. Here + stands for the hermitean conjugate of
Y(z*). The resultant Kac-Moody algebra is 4%dn)()m[g,c_1];
For SO(n) case, constraints are Y(c)tY(;) =1, u(g)tu(g) = 1.

1

Thenwéﬁ(n)égm[g,c_ ] 4is the hidden symmetry algebra of SO(n)

chiral fields.
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