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1. Introduction

$\prime Log_{7}c$ per Track’ concept by $Slotn\tau ck[1]\tau s$ consldered to be the origin of Data
Base $Machme(DBM)$ Many of the machme$s$ pumoposed so far adopted $th_{l}s\tau dea$ as
basis $wdh$ some enhancement As $?s$ shoum $m$ RAP. 1 $\zeta 2J$ or $CASSM[5J$, each head
of a dtsk $\tau s$ equrpped wrth some srmple $log’\iota c$ and $\prime dc$an $eff|\mathcal{L}’wn1ly$ perform selectwn of
records whtch $sat’\iota sfy$ a certam cond#wn. Thts filter processmg can reduce the
amount of data that must be transferred between the $seco7ulary$ storage $dev[ce$ and
the main memory of a $host$ computer Later the storage media are changed fi $om$

disk$s$ to elec$tron\tau c$ devtces $such$ as $CCD$ and magnettc bubble me$mor\iota\epsilon s$ . And the
$machme$ of thts type, namely the $0$ne $wh’\downarrow ch?s$ constructed by many $\tau de?u\tau calce\mathcal{U}s$,

where a $ceu$ is composed of a palr of a process$or$ and a memory bank, comes to be
known as ’the ceuvlar logtc $t\Re$)$e$ data base machin$e’[7]$. In the $suI\varphi 0\tau t$ of a
relahonat data base, $th\dot{\tau}s$ ovlperfoms the conventio$mlo$ne by orders of magnitvde in
the $execut_{l}on$ of relahvely light $loado$perations such as selection an update. $In$

heavy load operatwns such as join $a7ul$ projection including dupltCate elimination,

however we can not expect large scale of performance improveme$7tl$ but $0\eta ly$ stight
$one[3J$ The brute force applicatio $n$ to $jom$ of the filter processing $apI^{J\Gamma oach\mu 0}$neered
by $Slotn’\iota ck$ , whtch $?s$ very $po$ werfiA to the $0$peratio$n$ for $wh?\mathcal{L}h$ one scan of the ftle $?s$

sufftctent, has gradually revealed its hmtt ation. That is, most of the machines are
regarded as $basicau_{y}$ flter $processo7S$ and it $’\dot{\epsilon}$ dlfficuu to judge that they $hold$ a full
$effic?encymjom$ and dupltCate elimmatio $n$ which are essential operations for a
$relat?onal$ data base manageme$\eta 1$ .

Here we examlne the $jom$ processmg method on several machlnes. There might
be $lots$ of another interesting features pecvliar to the indintual machine but we ignore
them and concentrate on $jom$

In the $ceu\omega arlog?c$ type $DBM_{l}$ the processing load of $jom’\dot{\epsilon}$ proportional to the
produc$t$ of each relahon’s $cardinal?ly$, and it is processed in parauel on each $ce\mathcal{U}$. That
$is$, tuples of the source relatto$n\tau sbro$adcast to the ceus comprising the target relation,

and then au target ceus stmultaneously compare the obtained tuples $wdh$ its $oum$

tuples. Therefore the processmg $hme?s$ proporteonal to $N^{*}M\nearrow\iota^{*}k$ where $M$ and $N$

are the cardmaUttes of $bo$ th relatio$ns$. $n’\iota s$ the number of ceus arvd $k?s$ the number of
comparators per $ceu$ . $RAP[2,3_{l}4]$ and $EDC[8]$ etc. belo$ng$ to $th\dot{\tau}s$ category As was
$shovmm$ performance evaluatio $n$ of $RAPf^{\backslash }3$], $DBM$ of $th?s$ tmpe $’\dot{\epsilon}$ no $t$ always surted
$forJ^{om}o$peratio $n$ and the $perf_{C7}mance$ gain agamst a conventional $mach\prime me?s$ no $t$ so
definite.

In RELA $CS[9,10]$ which is $characten\dot{z}ed$ by $ds$ extensrve use $of$ asso $cxat\dot{w}e$

processors, the pro cessing $load$ ttsetf is same but the parameter $k\prime is$ relatrvely large,
whde $m$ ceuular appro$ach$ the processing $power$ of one $ceu?ssm\alpha u$ because of $?ts$

co st. Anyway tt also employs exhaustive matching $algo\tau dhm$, so $\prime d$ is defficull to
attam htgh performanc$e$ . The separatwn of the htgh performance processtng unil and
the memory bank$s$ necessitates the data transfer path $ha7\dot{n}ngh\dot{\tau}gh$ bandwldth
between them

In $DIRECT[11,12]$ whtch actuadzes page the level control, the load of $jom\tau s$

$O(n^{*}m)$ where $n$ and $m$ are the number of pages $oc$cupied by $two$ relattons
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respecttvely, and it $’\iota s$ pro cessed by uswtg $\max(m_{J}n)$ processors $mO(mm(m,n))$ tlme
$Jom\tau s$ lmplemented $m$ the manner that many pro cesso$\tau sac$ ttvated by the $co$ntroller
are allocated $0$ ne page of $th\vee\circ$ source relahon and $sc$an all the pages of the target
relatwn Thts machme do es no $t$ adopt a spectal pro cessmg $un\tau tsuch$ as a flter
processor but employs a general purpo se $\mu pr$ocessor and the page dself $’\iota s$ pro cessed
$m$ the conventwnal manner; the page $process’ mg$ $cony\iota sts$ of 3 phases, page loading,
page processmg based on sort, and page $st$onng

Syst $ol\propto$ array based $DBM/j13$] reltes on techn$olog7\mathcal{L}al$ advances $m$ VLSI $circu\# 7y$ .

The spectat pzcrpo se VLSI $ch_{l}pwh?chac$tlvates many comparators $m$ Inpelme fashwn
$c$an $jom$ two relatwns by only feedlng them $m$ counter dire $c$tion But $th?s$ dose not
generate a $jo$med relaho$n$ but $0\eta ly$ a $jolmb\tau 1\# y$ matrix. Htghly Concurre$7d$ Tree

MachmeIl 4] als$0$ assumes the VLSI mplementatwn and can join $m$ ab $out2^{*}(N+$

no of result tuples) where $N?s$ the $cardlml\# y$ of both relatwns. $Wh\tau le$ these $two$

$mac$hlnes are $ve7y$ fast when the $?^{\sim}el\alpha ted$ data can be accommodated $m$ the machme,

there remalns a partdwnmg pro blem $for$ cases where the pro blem $s?ze$ exceeds its
$capac\# y$ . The fact that $bo$ th $requ?xe$ at least $O(N)$ comparators $should$ be no $t_{l}ced$ .

$Jom$ processor $mDBC[15,16]$ also relies on the $develoI^{ffnent}$ of VLSI technolo$gy$

and takes $O(N_{/}h+M)$ tlme $mjom$ The $jomalgo$rdhm $\tau s$ basvcally the same as the
cellular $log?\mathcal{L}$ type $DBM$, namely exhaustwe $match_{l}ng$ of $bo$ th relabio $ns$.

Data stream data ftow data base $compnter\zeta 17$] $\tau s$ composed of $two$ $m\alpha m$

functwnal $mo$ dules, sort englne and search engme, whtch reahze $O(N)$ sorl and
$O(logN)$ search respectwely On $jomprocess\iota ng$ , the source relatwn $?s$ fed $l\eta 10$ a
so $\tau l$ engme and $\tau ts$ sorted data ss then led to a search engme. When $lo$ admg of a
search engme completes, the target relahon $?sp\iota dlnto\#$, and a $\gamma omo$peraho $n\tau s$

performed $mp\iota pelme$ fashwn. In thts manner, two pages of $bo$ th relatwns are $jo$med
$m$ $O(N)$ tlme where $N’\iota s$ the page stze. The $co\eta trol$ scheme at page level $?s$ no $t$

$cta7^{\vee}Lf\iota ed$

DPNET based $DBM[18J$ whtch takes srmdar appro $ach$ to ours completes $jom$ in
$O(N^{*}M\nearrow\iota^{2_{*}}k)$ tlme. The data streams from each head of a dtsk are part#wned
dynamtcally and sent to the same number of IJrocessors. It assumes to use an
associative memory $m$ the $process’mg$ und in order to fouow the data transfer rate of
the $d?sk$ . Therefore $dsc$apac$\prime 1ty’\iota sl?mded$ and $\#$ needs several revotutwns like RAP
when the source relatwn $c$anno $t$ be fdted into.

$CAFS/j19]$ employs an $un’\iota que$ algonthm based on the hashed $b$il array for $jom$

operatwn $wh?ch?s$ exammed $m$ detad $m$ the next sectwn. It $c$an be regarded as
$gomab\tau 1cty$ ftlter; $\#c$an jflter $out$ many of tuples whtc $h$ cannot be jomed. Thts leads a
targe load reductwn but $ac$tual $\gamma om$ must be done at a host machme. The same
approach can be found in $LEECH \int 20$] and $CASSM[6]$.

It $?s$ obmovs fro$m$ the ab $ove$ suruey that there $\tau s$ no machme that can perform

effcte $7d$ executwn of the relatwnal algebra $0$perahon, $espec?allyjom$ In $th\tau s$ paper,
we propose a no $vel$ relatwnal algebra machme based on hash and sort
algo$mhm[21,22J,$ $wh’\iota chc$an $jommO((N+M),h)$ trne where $N$ and $M$ are the
$cardmal\#\tau es$ of $two$ relatwns and $n?s$ the number of memory bank$s$
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2. Relational Algebra Execution based on Hash

Hash $’\iota sweu$-knoum as a $d\uparrow rect$ access meth$od$ in the data base storage
$organ?zatwn$, where necessary records can be obtained $wdh$ almo$sto$ne access
$pro^{!}\iota mled$ that $load$ factor remames to $w$, and $th^{J}\iota s?so$ne of the fastest access meth$od$ .

Besides these $stat\tau c$ data $m\alpha nageme\eta t$ metho $d$, hash techmque $’\iota s$ applled $dynami\mathcal{L}auy$

$m$ data base machme. Follourng $two$ methodologtes $c$an be identifted $m$ supportlng
relatio$ml$ algebra $0$peratwns of heavy load.

1 JoinabUty Frlter Appro $ach$

2. Cluste$nng$ Appro $ach$

The first appro $ach?s$ taken $m$ CAFS where a hash bit array $?S$ used. Tuples from
one relation are hashed on the $jom$ attnbute and $ds$ corresponding $b\#$ store $?s$ set.
Then the $0$ ther relatio $n?s$ read and hashed als$0$ on the $J^{om}$ attnbute, and the $I^{I\Gamma 0}per$

$b^{}dm$ the hashed $b\tau l$ array $?s$ checked. If the $b\prime ll\tau s$ set, $\prime l1’\downarrow s$ assumed that thts tuple
has posstb tlUy to be $j_{ol}ned$ . $Th?s$ hashed bit array as a $jo\prime imbl4lly$ fdter makes many
tuples that canno $t$ be $j_{ol}ned$ swved $outa7ul$ thereafler the $cardiml?1\tau es$ of $bo$ th
$relat?onsfau$ tnto $sma\mathcal{U}$ szes, whtch results $m$ large load reductwn. Whtle $th’\iota s$

method $?s$ very $powerf\omega$ as $preprocess’ mg$ , remamlng tasks such as $el?mimhon$ of
$5pur\iota ous$ tuples and tuple concatemtwn $mexpl_{l}c\tau l$ join must be done on the host
$machme$ .

In the seco $ml$ approach whtch we $ado$pted, no $t$ the number of tuples $m$ two
relatwns $bvl$ the load of join ?tself can be reduced by the clustenng feature of hash
$0$peratwn. The srmple $jom$ algorithm takes $hme$ proporlio$ml$ to the product of two
relatvons’ $c$ardtnal#tes. However, if two relatwns are clustered on the $jom$ attrtbute,

that , the tuples are grouped $mtod_{W^{0l7}}d$ buckets based on the hashed value of the
$jom$ attnbute, there $\tau s$ no jomlng between tuples from buckets of $differe7d\tau d$ . Tuples
of i-th $bucketmo$ne relatwn cannot be joined with $tho$ se of j-th $bucket$($j\neq$ i) $m$ the
other relahon but $wdh$ only i-th bucket. So the total $load$ of $jomo$peratu: $n?s$ reduced
$mtojom$ between buckets of the same $?d$. Let

$s$ $s$

$N= \sum_{x=1}n_{i}$ $M= \sum_{=l1}m_{i}$

where $N$ and $M$ are the $cardlml\tau 1les$ of two relahons,
$n_{i}$ and $m_{?}$ are the $s|zes$ of the

t-th bucket $m$ each clustered relation, and $s\tau s$ a number of buckets. The total
processing tlme $Tc$an be $exIJressed$ as $f_{0}uows$

$s$

$T \propto\sum_{i=1}n_{i^{*}}m_{t}$

$ThlSload$ reductwn effe$ct\tau sdep\kappa tedm$ fig 1, where two axes denote two relahons
$wh\tau ch$ are drnd$edmto$ $s$ interuals and the cross sectwn reveals the $jom$ load of $n^{*}m$

The shaded areas correspond to the processmg $load$. $Accord\tau.ngly$, thrs clustered
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approach can $dramat7cally$ $dlmm\tau sh$ the $loadmcompar\iota son\prime nMh$ nonclustered
ordlmry appro $ach$

DupltCate elrminatwn task $m$ projectwn also used to be a $b?g$ burden in relational
data base systems. The $ab0ve$ approach can be applied to $I^{Jrojec\hslash on}$ qu#e as $weu$ as
$J^{om}$ . Through hashlng extracted fields of the tuples, the $g^{J}iv$en relatio$n?s$ broken up
$mto$ many $d?S \int unctlve$ buckets. Au the same tuples $faumto$ the same bucket.

Therefore dupltcate ellmlmhon $c$an be done $m$ each $bucket\lambda 71depe7ulently$ . No need

for lnter-bucket compar $O\eta S$ A database $machme$ utdwing thts $c$ lustenng approach
would attain a very rapd relatwnal algebra $exe$cutio $n,$ $wh?\mathcal{L}h$ we dtscuss in the next
sectwn
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3. Parallel execution of the hash based method and its some
problems

In the $I^{yrev\iota 0}$us sectwn, shown was the fact that great reductwn of pro cessmg $load$

of $J^{om}$ and $pro\gamma ectwn$, etc. $?sactml\tau zed$ by $d’\iota vtd’mg$ relations into many buckets
thro$ugh$ hash. Here, we $wdl$ constder how to $mater\iota al\tau zeth’\epsilon$ method $for$ database
machm$e$ .

The buckets generated by hash are independe$nteach$ other Therefore, rather
than $process^{r}mg$ them $ser au_{y}$ us $ng$ $ody$ one processor, the relatwml algebra
operation can be $exe$cuted much faster by $process’mgeachbucketm$ parauel usm9
many pro cess$073$. Note that there $\tau s$ no inler-processor $commun’\kappa atxon$ dunng bucket
processmg. $Fouow\iota ng$ pro blems can be $\tau de\eta 1lfied$ $mdes\iota gmng$ a $relat\tau onal$ algebra
machme whtch $real?zesth\tau s$ bucket parauel processm9.

1) $Utd?zatwn$ of Bank $Parauel?sm$

If a relatwn $’\iota sst$ored $over$ many memory bank$s$, execuhon could be faster than $m$

the case where a relatio $n\tau sst$ored $mo$ne memory bank.
In database proce $s$srng, data stream $’\iota s$ a $mamconst\tau 1uent_{J}$ ancl several $kl71ds$ of

pro $cess’\iota ng$ are applted along the stream $Ho$wever, even if the data stream could be
processed $fo$ uowmg the stream, that $w,$ $O(N)$ processmg be realtzed, the stream may
become very $longm$ the cas$e$ of large databases, and $?t\tau s$ desrrable to $di^{\prime\iota fl}de$ a long
stream by $d?stnbuting$ the relalwn over several memory banks and to proce$ss$

segmented streams in parauel By exploUtng bank $p\alpha rauel?sm$ if the relatio $n$ could be
staged in the working page space whtch $con\infty ts$ of mvltmple memory banks,

processmg time can be mdependent of the $cardinal_{l}ty$ of the relahon and $\tau s$ determmed
by the memory bank capa$c\# y$ whtch $\tau s$ constant.

2) $O(n)$ processing wtthm a bucket
By hash, processmg $load$ can be reduc $ed$ fro$mO(s^{2})$ to $o(s)$ at bucket level,

where $s\tau s$ the number of buckets Processmg of a bucket ?lself $sho\tau Ad$ be fast $m$

order not to dtsturb the data stream Namely $O(n)$ processmg of a bucket rather
than $o(n^{2})\tau s$ preferable where $n?s$ a sue of a $bucket$ . Integration of both $o(s)$

proce$ss\iota ng$ at bucket level artd $O(n)$ processmg $vMhmbucket$ makes $\# poss\iota ble$ to
$organ’\iota ze$ a relattonal algebra machme of $h\tau gh$ performance.

3) Bucket Altocatwn to Processors
Buckets $c$an be processed $m$ parallel by $auocah71g$ them to many processors In

$th?s$ bucket $auoca\ell wn$, it $\tau s$ necessary that each processor can gather the data of the
auocated bucket effiictently.

$Generau_{y}$ relations $m?ght$ be very $b’\iota g$ and the number of $buc$kets generated by
hash $?s$ larger than that of $ava’\iota$table processing un#s. So $buc$kets beyorul the number
of avadable processors must be process$ed$ senally, where bucket senal data stream
needs to be generated efficienuy by memory banks.

4) $Nonumform?4y$ of Generated Buckets
Th$ec$apac#te $s$ of buckets are no $t$ necessarity umform but may differ each $0$ ther so

much. There $m?ght$ be a $bucket$ overflow, $wh?\mathcal{L}h$ here stands for the $case$ that the
$bucket$ $s\iota ze$ $\tau s$ larger than the capa$c\# y$ of a processor This phenomenon of
nonumform#y caused by hash functwn $’\iota s$ mevdable. On the other hand, for the

-5-



29

-6-



30

4. Design Consideration

We vflll explam our treatment of pro blems descnbed at the premous $sectwn$.
1) On Bank Parallehsm

As $?skno$um fro $m$ the bnef suruey of $jom$ $process’ mg$ $msectwn1,$ $Syst$oltc Array,
Tree Machme and SOE-SEE method can execule $jommO(N)hme$, $bul$ ?I $\tau s$

$dlffi\mathcal{L}ult$ to do $mO(N,h)hme$ wrth $n$ modules, $wh\tau ch$ we mean here by ’bank
parallelism’ For example, $DBC$ $Jom$ processor cannot $exec\tau Ae$ $jom$ in
$O((M+N)_{/}h)$ tlme but $mO(M\nearrow\iota+N)hme$ . In DIRECT, if $n^{*}m$ processon were to
be acttvated $a7ul$ each processor could process a page $m$ lmer $hme,$ $O((M+N)_{/}h)$

$jom$ would be $poss’\iota ble$ However $d\tau s$ too expensrve. Our $alm’\iota s$ to seek a $mac$hine
whtch $c$an reflect bank $paraueltS7n$ at reasonable $\cos t$ .

We proposed $m$ sechon 2 the hash based $jom$ metho $d$, where the relatwns are
hashed lnto several $d?S\dot{\int}unc\hslash ve$ buckets and thereafler each of them is processed
$ser\iota au_{y}$ Inc $07p$orating bank $parauel\tau smm$ thts meth$od$, we $c$an $\tau de7dxfy$ two
approache$s$.

a) Bucket converging meth$od$

b) $Buck$ et spreading me$thod$

Suppose the relation stored over $m\tau\Lambda lbple$ source memory banks are to be hashed and
transferred to the same numb er of deshmtwn banks. If the correspondence between
the source $a71d$ the destmahon $?s$ fixed, the tuples composing a certam $bucket$ would
be spread $over$ banks. On bucket processmg, a processor has to gather the tuples of

$\tau 1s$ allo cated $bucket$ from au the banks. In order to $av$orxl thts sttuatto $n$, the bucket
convergmg meth$od$ can be denved $naturau_{y}$, where tuples of a bucket $over$ source
banks are converged $lnto$ a srngte deshmhon bank. There are two majo $r$ pro blems $m$

$thlS$ appro $ach$. One $’\iota s$ a bank $0$verflow pro blem whtch is a conventioml one caused
by nonumformity of the $hash$ functio $n$. Since the data distribvlio $n$ can not be

umform and a bank $c$apac#y is $l\tau mded$ , a situatw$nwould$ occur where some bucke $ts$

have to accept the tuples beyond $ds$ capacity. At least we have to prepare a larger
space than the actual capacdy of the relatio$n$. The determimtion of load factor $’\iota s$

$ve7y$ hard, which is also related to the efftciency of the storage $ul\dot{\tau}l\dot{\tau}zahon$ . This
diffculty $m$ memory management $?s$ cruczal $m$ the bvcket convergmg meth$od$.

DPNET whtch $adoptsth\tau s$ meth$od$ promles no solution to this pro blem, where the
$d?stnbutiontermlm$tes when one of banks overflows in source $load\tau ng$ . Another facet
of this nonumformtty ’is dtscussed $m$ the next paragraph. The $0$ ther problem $?s$ data
$conflt\mathcal{L}hon$ dunng transfer The conflict $oc$curs when a number of tuples are se$7d$ to
the same bank at the same $hme$ . We have to manage this pro blem by an appropmate
method $s\iota xch$ as $i7d’roducing$ some buffer. This pro btem is due to the fact that muttiple
data streams are hashed srmuttaneously.

In th$e$ bucket spreadmg method, tuptes of a bucket have to be gathered from
banks $smce$ they spread $over$ them But the gathering process $\tau k$elf can be $p\iota pelined_{J}$

that $’\iota s$, a processor $?J\downarrow\dot{s}1s$ memory banks $seriau_{y}a71d$ a bank outputs the tuples of
the $bucket$ auocated to that processor, so a processor runs through the $I^{npe}$ compo$sed$

of banks. Thus we can activate the same number of processors as the banks and
can expe$ct$ falr performnce $m\iota proveme\eta 1explo\tau 1mg$ bank $parauel?sm$. Moreover
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there $?s$ no memory manageme$7\iota t$ difficutty of the overftow as is found in the bucket
convergmg metho $d$ . Thts appro $ach$ also $accompan’\iota es$ some pro blems. $P?pel\dot{m}e$

processmg works well when each segment $bme$ of $\tau 1?s$ equal. In the $case$ where the
correspo$\eta dence$ between the source and the destmatwn $?s$ frxed as described before,
the number of tuples which belong to a $c$ erlam $bucket$ differs much among banks.
Thts means that the segment $hme$ of the p.peline varie$sdynam^{J}\kappa au_{y}$ . It $?S$

$a7d^{\eta \mathcal{L}l}pated$ to cause performanc$e$ degradahon, whtch $?s$ no $t$ so large provuled that the
hash functwn $’\iota s$ random In order to resolve $th’\iota s$ segment $tm\iota e$ fluctuaho$nmp\iota peline$ ,

we have to moke the tuples of a bucket almo$steqmu_{y}$ spread $over$ the banks and to
make au the buckets themselves almost equal in $s\iota ze$ . We do ’bucket flat distribvlio $n$

’

to $sat?sfy$ the ftrst conditw$n$ where a tuple $em\tau tted$ by a source bank $?s$ controued to
$faumto$ the destmatwn bank $wh\tau ch$ has the bucket of that tuple least in number.
We do { $buckets\iota ze$ tuning’ to guarantee the second $C07zdd\dot{w}n$, whtch is $disC’\llcorner Jssedm$

the later paragraph. With the adophon of this bucket spreading approach $’\iota\dot{w}lh$ so$me$

enhancemenl, we can attain htgh performance by achvahng banks in parauel.
2) On $O(n)$ processing of a $bucket$

The processor ’is requlred to process a bucket $mO(n)$ time no $t$ to disturb the data
stream And $\#\tau se\prime mdent$ that the relatw$ml$ algebra operatio$n$ can be completed in
$O(n)hme$ when the relahons are sorled on the attnbute $pa\tau tmpatingm$ that
operatwn. So we decided to attach the processor Utth the $O(n)$ hardware sorter. Of
course an $assocw\hslash ve$ processor or some functioml unil wilh the $capabdi\phi$ of parauel
$compa\mathfrak{n}\dot{s}on$ also may be possible, which in fact many of the proposed machines $such$

as RAP, RELACS, and DPNET, etc. employ. It can $F^{rocess}$ the data stream very
rapidly and fouow the stream completely. Its capac#y, however, is $generau_{y}$ limited
$m$ current technology and this imposes the $C071d\#\dot{w}n$ that at least the cardinality of
$0$ne relation should be very smau. On the $0$ ther hand, in our approach of using a
sorter there is no $t$ so severe capac#y limdation and $0$perand relations can be treated
$equlvalen\ell ly$ . The sorter can not complete sortmg untd the last data item anives, so $\#$

takes longer to process a bucket than the associatw processor. But thts hardly
affects the performnce because buckets are processed in a $pipel\dot{w}oed$ fashion.
3) On $B$ cket $Auo$ cation

Bucket $se7\dot{w}l$ processing ts necessary under the $em/\dot{r}onme7d$ of finite resources of
processo$\tau s$. $A7ut$ as a whole to comple $te$ an operation in $O(n)$ time, efficient
generation of bucket senal data stream must be realized. It $’\dot{\epsilon}$ required to output
tuples of a bucket $C07tlmuo$usly, $wh?ch$ are no$t$ necessarily $placed$ adjacently each
other inside the memory devices. Of $cou7se\tau 1$ is posStble to do some $prepa’ratory$

processing when a memo$ry$ bank $\dot{v}\iota\mu\iota ls$ the data, but it $ako$ needs to be performed
not disturbmg the mput stream It is almost in$\iota pos\dot{r}ble$ to do wilh magnetiC disk.
On the conlrary, Ct $?s$ clearly $po$ ssib le to achieve it by RAM. Recently the
$deve\iota_{opme7}a$ of semtConcluctor technology is extraordmary and even at prese$7dtmed$
is found in a disk cash, so $d’\iota \mathcal{M}l$ be feasible to use RAM as the $sta\dot{\wp}7\iota g$ buffer.
However the $c$apacity of the retation is very large even after the flter processing by
an associatiue disk, so il is meamngful to seek a $memo\eta$ dezrice lying between RAM
and dtsk on memory hterarchy. We can $fi\eta d$ a magnettc bubble memory satisfying
our $condit\dot{w}ns$. The chip $c$apacily of bubble is at present four or more times greater
than that of semiconductor RAM and much more developme$\tau d$ is expected by
$cont\tau guous$ dtsk $te$chno logy. Transfer rate is relatively to$w$ but $’|l$ can be impro$ved$ by
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$acb\iota va$ting mulhple chlps in parallel. And dual conduc$tortechno$ logy also seems to
make a $b’\iota gco$ tnbution on $\#$ . Recent $rap_{7}d$ progress $prom\tau ses$ well for the future
Moreo$ver$ bubble has an$0$ ther advanlages such as nonvo latthly and flextble $start/stop$

mechantsm. $Cons7/lenn9above$ features, we thlnk $m\alpha gnet^{r}\iota c$ bubble memory $’\iota s$ also
a good $cand?datefor$ a stagmg buffer medlum We $p\iota\iota t$ some modlfixation to a
conventwnal $major\nearrow nmor$ bubble chip $a\tau\iota d$ make tt surtable for $efficw\eta t$ bucket senal
generatwn
4) On Nonulform\’uy of Buckets

In a Direct Access Method the $bucket$ overflow o#en degrades $\prime ds$ performcrnc $e$

largely because the storage medium $\tau s$ dtsk. In our case we are gomg to use
magnettc bubble memory or large capac#y and low speed RAM $for$ storage $med_{l}aof$

stagmg buffers where a $bucket?s$ construc$ted$ vsmg linked $l\tau stm$ the $fomera\eta d$ mark
$bdsm$ the latter, so there $?s$ no $conve7dionalo$verflow pro blem such as degradahon in
access time $a\tau ul$ memory efficwncy. But the bucket $s\tau ze$ fluctuatwn dself $ar\downarrow ses$

another type of pro blems dtscussed before. In $p\iota peline$ processmg of bucket gathenng,
?1 $\iota sdes’\iota\tau able$ that the $s\mathfrak{l}ze$ of each bucket $’\iota s$ uniform And the $\dot{r}ze$ itself had better
$be$ clo se to the processor capacrty from the point of the processor $?Ad?zahon$ effic$\tau ency$

If $d$ takes $o(n^{2})$ time to process a bucket, the $sm\alpha uer$ the bucket $u$, the faster a
$bucketc$an be processed. On the other hand, $m$ the envrronment of our $case$ where
a $bucketc$an be Ixrocessed $mO(n)$ tlme, we do not have to have the $s\tau ze$ of a
$bucket$ so $sm\alpha u$ . Excesslve bucket generatw$nw th$ the $\mu\iota rpose$ of bucket $s\iota ze$

reductton lncurs extra overhead rather than the load reductio$nbec$ause the bucket
auocatwn $\cos t$ must be $pa\tau d$ Therefore $d?s$ desrrable that the $s\iota ze\tau s$ close to the
processo$r’ s$ capacty. However, $\prime rt’\iota s$ dlfflcult to frnd a hash functwn dynamwauy
whtch generates buckets $wdh$ the $s\iota ze$ of processo$r’ s$ capac#y So we do ’bucket stze

tunmg’ Namely we at first parlWion the relatio $n$ into more buckets and then $lnteg\tau ate$

some of them $lnto$ a larger bucket $wdh$ the $capac\tau 1y$ less than that of a processor
Through $th?spreprocess’mg$, we $c$an have buckets of near umformdy. $Th?s$ ’bucket
stze tumng’ process $’\iota sweu$ knoum as $Bm$ Packrng Problem which $’\epsilon$ NP-complete,
$a\tau ul$ the $pse’\iota 4do$ optmal solutio $n\tau s$ already obtamed. The overhead brought about by
$bucket$ lnlegratwn $\tau s$ no $t$ so large. Thts can be $0$verlapped with the data stream

, generatwn of the bucket. Once the first $lnte$grated bucket $’\iota s$ obtained, then the data
stream generatio$n$ of the $bucket$ can be overlapped $vMh$ the bucket irdegration Even
by $th\tau s$ bucket sue tumng, $d’\iota s$ imposstble to make the $\dot{\Re}ze$ of each $bucket$ completely
umform
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5. Abstract Architecture of GRACE and Execution Overview

5. 1 Abstract Arch#ecture
Abstract arch#ecture of $GRA$ CE $?ssho$um in fig 2-1 $GRA$ CE $?s$ compo$sed$ of

three major componenls; DSP(Data Stream Processor), DSG(Data Stream
Generator), and SDM(Secondary Data Manager).

$SDM$ employs dtsks as secondary storage $dev ces$ and stores the relatw$ns$ on them.
The disk $c$an transfer data from au heads of a cylinder $m$ parauel, $a7td$ ti $is$

equlpped wrth pter processing functwn which includes selectio $n$, restriCtwn, bit marp
$mani\mathfrak{X}alwn$, and simple projectwn(attribute selection). On-the-fly processing limtts
the auowable complexdy of the predicate in selection. The remainder of the predicate
whtch canno $t$ be evalmted in the filter processor of $SDM$ is rendered to $DSP$. The
hashing und $ha$shes the tuples on specefied attribute and generates bucket $ids$.

$DSG$ emptoys RAM or magnettc bubble memory and $F^{ro\dot{v}des}$ the working space.
To $DSG$, the relatwn fltered $a7\alpha$ hashed on $SDM\prime lS$ staged and the resnu relation
generated $mDSP$ is retumed. From $DSG$, the bucket $se\dot{n}\alpha l$ data stream is $ge$nerated
and senl to DSPs.

Each $DSPco$nststs of hardware sorler, flter processor, data mampulatw$n$ und,

and hash und etc. It processes a bucket sent from $DSG$ using $s\iota tchun\tau ls$ and
produces a $resu t$ relation.

5.2 Query Execulwn on $GRA$ CE
Here we $con\dot{s}der$ how the query $\dot{\tau}s$ executed on $GRA$ CE. The query is assumed

to be a complex one and have many joins and projechons, etc. The $que7y$ processing
conststs of $lwo$ major phases: staglng phase and processmg phase.

At the stagmg phase, relatio$ns$ necessary $for$ the first join $0$peratio $n$ are staged

from SDMs into DSGs. The data stream from disk $’\iota s$ led $lo$ the fitter processor in
$SDM$, where selectto$n$ and simple projection are performed on the fly. And then the

fttered stream $1S$ hashed on the attribvle which $pa7ticlpates$ in that $0$peratto$n$ and
hashed $id?s$ attached $wdh$ each tuple. These hashed data $strea7Y\mathcal{B}$ are transferred
from $SDM$ to $DSG$ over netw$ork$ between them Once the SDMs begin to $0$utpat
their data streams, DSGs $rec$eive the tuples and mamtam bzeckets corresponding to
the hashed value. The relatwns are clustered $0$verlapped $wlh$ data transfer during
the staglng phase. When $DSG$ comptetes data stream input, the clustered relatw$n$

depicted $m$ fig 1 is $conceptmu_{y}$ produced $mDSG$ .

At the processmg phase, actual $process’i7\iota g$ is performed between DSGs $a7u1$

DSPs. After the staging phase DSGs literally generate data stream bucket-serta$u_{y}$ to
DSPs As a bucket is $eqmu_{y}$ spread $over$ DSGs, the $DSP$ has to attach the
appropmte data stream and gather the tuples which belong to that bucket. This
proceeds in pipeline $fash\dot{w}na\eta d$ the data streams generated by $DSG$ are not disturbed
so much. The data gathenng process itself $?s$ overlapped with the sorting process. $A$

hardware $so\tau Y$er $mDSP$ sorls the inpui tuples keeping up with the stream When au
the tuples of a bucket are took $m$ a $DSP,$ $\tau l$ begins to opemte on the sort$ed$ data
stream from the sorler Most of the operations necessary for relahonal data base
supporl can be performed $effi_{C7}ently$ on the sorled stream $Afle\tau DSP$ processes a
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bucket, ti then proceeds to next bucket. Buckets are processed $m$ parauel uslng
$mult_{l}ple$ DSPs. $O$ ne relatwnat algebra $0$peratwn termmates when au the buckets are
consnmed.

5.3 Operator Level Plpelme
Each $0$peratio$nm$ a query tree $?sexe$ cuted as descnbed ab $ove$ . As $?s$ shoun in

fig 2-2, $0$ ne operahon corresponds to one data flow cycle; a data stream $?s$ generated
at first $mDSG$ and then passes through $DSP$ and at last $\dot{\tau}s$ retumed back to $DSG$ .

In a $cyc$ le, au the tuples $m$ the source DSGs $?s$ transferred to the target DSGs. $A$

complex query comprisrng mulbiple $0$perations is lmpleme$n4ed$ by repeating $such$ cycles.
As we can see $mfi\theta 2- 2$ , once a data flow cycle termmates, new $cyc$le of the next
operatw$n$ begins. Here we should $not?\mathcal{L}e$ that we don’t have to $i\eta lerleave$ the
hashmg $cyc$le of a result relatio $n$ for the next operatio $n$. When a $DSP$ processes $a$

bucket, it hashes the result tuple on the subsequent $0$peratto$n$ and $0?A\mu ds$ a resutt
data stream to $DSG$ . Namely ctustering operaho $n$ of a result relahon for the next
operation is $0$verlapped with the $ac$tual processing of the presenl operahon. $We$

named thzs ’Operator Level Pipelme’ By this processing schema, $van’|shes$ the
$0$verhead which we are afraid to be caused by clustering as preprocessing. The first
clustermg processing $?So$verlapped with the stagrng phase. We don’t have to $exe$cute
$0$perators $0$ ne at a $\hslash mefor$ the cases where sufficiently large space in $DSG$ is
$ava?4able$ . More than $0$ne operatw$n$ could be perfomed simultaneously. As many
$cyc$tes as the $he?ght$ of a query tree whtch co$uld$ be optimtze$d$ as low as posstble would
be requlred to get the result.

As mentione$d$ above, our machine $GRA$ CE can $exe$cute a complex query very
effictently $wdhrepet\tau 4we$ data flow cycles. Accordingly, we can expect that $GRA$ CE
$c$an $exec\tau de$ join sequence much faster than the any DBMs $F^{roposed}$ so far
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6. Summary

$Most$ of the data base machmes propo $sed$ so far $ado$pted a $\beta ter$ processor as their
$baS\mathfrak{l}\mathcal{L}$ component, and selects necessary records by evaluating qualificatwn predtCates
based on exhaustive matching $wdh$ futt scan of the $fde$, by which the $0$verhead $c$aused
by the auxdzary data management such as $md\tau \mathcal{L}es\tau s$ mtended to be reduced. For a
srmple query whtc$h$ includes only selectio $n$, thts approach would $suff\ddagger ce$ . There are
$j0$m-dommant $enmronment[23]$, however, and $\#$ is difficult to attam a high
perfomance utth the ordimry approach of the filter proce$ss$or. GRACE adopted a
no$vel$ relatwnal algebra processing algorthm based on hash $a\tau ut$ sort, an can
execute no $to7dy$ srmple que$7y$ but also complex one compnsmg many joins or set
operations rapldly. Whde the data streams are fixed in a secondary $st$orage in the
premus machine$s$, the $cl^{J}t4stered$ data streams appropmte for the given operation are
generated $dynam\dot{\tau}cau_{y}$ in $GRA$ CE and can be process$ed$ keepmg up $wdh$ the stream.
Thts auows a complex operatw$n$ also to complete with one data flow cycle, and
moreover due to the operator levet pipeline, time overhead caused by hashing $?s$

effechvely canceted.
According to the taxonomy by O. H. $Bray \int 24J,$ $GRA$ CE is classified int$0$ MPCS

(Muttlple Processor $Co$mbmed Search) machine smce drre $ct$ search by the futer
processors in $SDM$ and intirect search by $DSP$ an $DSG$ are combv $ed$ and both $a\tau e$

processed by using no $t$ a single but muuiple pro cessors. $GRA$ CE ffiters out the
unnecessary records on the fly \’in $SDM$ an processes the suwived records on $DSG$

an $DSP$ $u!ith$ repetdiv$e$ data flow cycles, namely it employs the combmed
architecture which inlegrates the merts of direct search and indirect search.

In this paper, we have descnbed the IJrocessing $algo$rithm and it has been shoun
that $GRA$ CE can execute a relatio $nal$ algebra complex very efficee$\tau dly$ . The abstract
$arch^{l}l1ecturea7zd$ execvlion $0$ vermew on $\prime d$ are only briefly explained $a\eta d$ the deta#
about the actuat impleme$7dations$ such as the stntcture of hardware sorler,

bucket-serial data stream generator in magnettc bubble memory $un\#$, and data
stream $C07\iota lrol$ mechanism are prepared $m$ the fulure paper.
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fig.2.1
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