goooboooogn
0 4820 1983 0 23-40 23

Relational Algebra Machine

GRACE

Unwersity of Tokyo
Faculty of Engineering

Masaru Kitsuregawa
Hwdehtko Tanaka
Toh'r'u Moto-oka

24

1. Introduction

‘Logic per Track’ concept by Slotnick[1] is considered to be the origin of Data
Base Machine(DBM). Many of the machines proposed so far adopted this idea as
basis with some enhancement. As is shown in RAP.1[2] or CASSM[5], each head
of a disk is equipped with some simple logic and i can efficiently perform selection of
records which satisfy a certain conditon. This filter processing can reduce the
amount of data that must be transferred between the secondary storage device and
the main memory of a host computer. Later the storage media are changed from
disks to electromic deviceé;Sjiwh as“CCD ‘and magnetic bubble memories. And the
machine of this type, namely the one which s constructed by many identical cells,
where a cell is composed of a pair of a processor and a memory bank, comes to be
known as ‘the cellular logic type data base machine’[7] In the support of a
relational data base, this outperforms the conventional one by orders of magnitude in
the ezxecution of relatively light load operations such as selection and update. In
heavy load operations such as join and projection tncluding duplicate elimination,
however we can not expect large scale of performance improvement but only slight
one[3]. The brute force application to join of the filter processing approach pioneered
by Slotnick, which is very powerful to the operation for which one scan of the file 1s
sufficiend, has gradually revealed is limitation. That is, most of the machines are
regarded as basically filter processors and % 1s difficull to judge that they hold a full
efficiency in join and duplicate elimination which are essential operations for a
relational data base managemend. '

Here we examine the join processing method on several machines. There might
be lols of another interesting fealures peculiar to the individual machine but we ignore
them and concenlrate on join.

In the cellular logic type DBM, the processing load of join is proportional to the
product of each relation’s cardinality, and % is processed in parallel on each cell. That
1s, tuples of the source relation is broadcast to the cells comprising the target relation,
and then all target cells simultaneously compare the obiained tuples with Us own
tuples. Therefore the processing time is proportional to N*MMm*k where M and N
are the cardinalities of both relations, n is the number of cells and k 1s the number of
comparators per cell. RAP[2,3,4] and EDC[8] etc. belong to this category. As was
shown n performance evaluation of. RAP[S] DBM of this type is not always suited
Jor join operation and the perféfmdnce gain agdmét a conventional machine s not so
definile. ,

In RELACS[9,10] which is characterized by ils exlenstve use of associative
processors, the processing load iself is same bwt the parameter k is relatively large,
while in cellular approach the processing power of one cell is small because of its
cost. Anyway i also employs exhaustive malching algorithm, so % is difficult to
altain high performance. The separation of the high performance processing unit and .
the memory banks mnecessitates the data transfer path having high bandwidih
between them.

In DIRECT[11,12] which actualizes page the level control, the load of join is
O(n*m) where n and m are the number of pages occupied by two relations

25

respectively, and i is processed by using max(m,n) processors in O(min(m,n)) time.
Join is implemented in the manner that many processors activaled by the controller
are allocated one page of the source relation and scan all the pages of the target
relation. This machine does mol adopt a special processing uni such as a filter
processor but employs a general purpose pu processor and the page iself 1s processed
in the conventional manner; the page processing consists of 3 phases, page loading,
page processing based on sort, and page storing.

Systolic array based DBM[13] relies on technological advances in VLSI circuitry.
The special purpose VLSI chip which actiwates many comparators in ppeline fashion
can join two relations by only feeding them in counter direction. But this dose not
generate a joined relation but only a joinabiity matriz. Highly Concurrent Tree
Machine[14] also assumes the VLSI implementation and can join in about 2*(N +
no. of result tuples) where N is the cardinality of both relations. While these two
machines are very fast when the related data can be accommodated n the machine,
there remains a partifioning problem for cases where the problem size ezxceeds s
capacity. The fact that both require at least O(N) comparators showld be noticed.

Join processor in DBC[15,16] also relies on the development of VLSI technology

“and takes O(NA+ M) time in join. The join algorithm s basically the same as the
cellular logwc type DBM, namely exhaustive matching of both relations.

Data stream data flow data base computer[17] 4is composed of two main
functional modules, sort engine and search engine, which realize O(N) sort and
O(logN) search respectively. On join processing, the source relation is fed into a
sort engine and is sorted data 1s then led to a search engine. When loading of a
search engine completes, the_ target relation 1s put into %, and a join operation is
performed in pipeline fashion. In this manner, two pages of both relations are joined
m O(N) time where N s the page size. The conirol scheme at page level is not
clarified. i

DPNET based DBM[18] which takes similar approach to ours completes join in
O(N *M/z *k) time. The data streams from each head of a disk are partitioned
dynamically and sent to the same number of processors. [t assumes f{o use an
associative memory in the processing unit in order to follow the data transfer rate of
the disk. Therefore its capacity is limited and it needs several Tevolutions like RAP
when the source relation cannol be fitted tnio.

CAFS[19] employs an unique algorithm based on the hashed bit array for join
operation which 1s examined in defall n the next section. It can be regarded as
Jjotability filter; @ can filter out many of tuples which cannot be joined. This leads a
large load reduction bwt actual join must be done at a host machine, The same
approach can be found in LEECH[20] and CASSM[6]. ' _

"~ It is obvious from the above survey that there is no machine that can perform
effictent execulion of the relational algebra operation, especially jomn. In this paper,
we propose a mnovel relational algebra machine based on hash and sort
algorithm[21,22], which can join in O((N+ M)h) time where N and M are the
cardinalities of two relations and n 1s the number of memory banks.

26

2. Relational Algebra Execution based on Hash

Hash 1s well-known as ‘a direct access method in the data base storage
organization, where necessary records can be obtained with almost one access
provided that load factor remaines low, and this 1is one of the fastest access method.
Besides these stalic data management method, hash technigue is applied dynamically
n data base machine. Following two methodologies can be identified in supporting
relational algebra operations of he‘cwy\load. ’

7. -Jotnabiulity Filter Approach

2. Clustering Approach

The first approach is taken in CAFS where a hash bit array is used. Tuples from
one relation are hashed on the join atiribute and s corresponding bit store is sel.
Then the other relation 1s Tead and hashed also on the join attribute, and the proper
bt in the hashed bit array is checked. If the bit 1s set, i is assumed that this tuple
has possibuidy o be jbined. This hashed b drray as a jomabiity filler makes many
tuples that cannot be joined sieved out and thereafter the cardinalities of both
relations fall into small sizes, which results in large load reduction. While this
method 1s very powerful as preprocessing, remaining tasks such as elimination o f
spurious- tuples and tuple concatenation in explicit join must be done on the host
machine. _

In the second approach which we adopted, not the number of tuples m two
relalions but the load of join dself can be reduced by the clustering feature of hash '
operation. The simple join algorithm takes time proportional to the product of two
relations’ cardinalities. However, if two relations are clustered on the join altribute,
that 1s, the tuples are grouped info disjoint buckels based on the hashed value of the
jon attribute, there is no joining between tuples from buckels of different «d. Tuples
of i-th bucket in one relation cannot be joined with those of j-th bucket(j % 1) in the
other relation bul with only 1-th buckel. So the total load of join operation is reduced
wmlo join between buckels of the same id. Let '

s s

N =% n M=X m
. 1 . T
=1 i=1

where N and M are the cardinalities of two relations, n; and m’i are the sizes of the
i-th bucket in each clustered relation , and s is a number of buckels. The total
processing time T can be expressed as follows -

This load reduction effect is depicted in fig 1, where two axes denole two relations
which are dwided into s intervals and the cross section reveals the join load of n*m.
The shaded areas correspond to the processing load. Accordingly, this clustered

-3 -

27

approach can dramatically = diminish the load in comparison with nonclustered
ordinary approach.

Duplicate elimination lask in projection also used fo be a big burden in relational
data base systems. The above approach can be applied to projection quite as well as
jom. Through hashing extracted fields of the tuples, the giwen relation is broken up
into many disjunctive buckels. All the same tuples fall wmio the same bucket.
Therefore duplicate elimination can be done tn each bucket independently. No need
for inter-bucket comparisons. A database machine wulilizing this clustering approach
would altain a very rapid relational algebra execution, which we discuss in the next
section. ‘

Two approaches discussed above are mutually independent, so both joinability
filter processing which decreases the candidate tuples and clustered processing can be
integrated together. ' ‘

28

3. Parallel execution of the hash based method and its some
problems

In the previous section, shown was the fact that great reduction of processing load
of jotn and projection, etc. is actualzed by dividing relations into many buckets
through hash. Here, we will consider how to materialize this method for database
machine.

The buckets generated by hash are independeni each other. Th,erefore, rather
than processing them serwlly usimg only one processor, the relational algebra
operation can be erecuted much faster by processing each bucket in parallel using
many processors. Note that there is no tnler-processor communication during bucket
processing. Following problems can be identified in designing a relational algebra
machine which realizes this bucket parallel processing.

'1) Utilization of Bank Parallelism

If a relation is stored over many memory banks, execution could be faster than in
the case where a relation is stored in one memory bank.

In database processing, data stream is a main constituent, and several kinds of
processing are applied along the stream. However, even if the dala stream could be
processed following the stream, that is, O(N) processing be realized, the stream may
become very long in the case of large dalabases, and # is desirable to divide a long
stream by distributing the relation over several memory banks and to process
segmented streams in parallel. By exploiting bank parallelism, if the relation could be
staged in the working page space which consists of multiple memory banks,
processing time can be independent of the cardinality of the relation and is determined
by the memory bank capacity which is constant.

2) O(n) processing within a bucket

By hash, processing load can be reduced from O(S) to O(s) at bucket level,
where s is the number of buckets. Processing of a bucket itself showld be fast in
order mnot to disturb the data stream. Namely O(n) processing. of a bucket rather
than O(nz) is preferable where n is a size of a bucket. Integration of both O(s)
processing at bucket level and O(n) processing within bucket makes it possible to
organize a relational algebra machine of high performance.

3) Bucket Allocation to Processors

Buckets can be processed in parallel by allocating them to many processors. In
this bucket allocation, it is necessary that each processor can gather the data of the
allocated bucket efficiently.

Generally relations might be very big and the number of buckels generated by
hash s larger than that of available processing units. So buckels beyond the number
of available processors must be processed serally, where bucket serial data stream
needs to be generated efficiently by memory banks.

4) Nonuniformity of Generated Buckets

The capacities of buckets are not necessarily uniform but may differ each other so
much. There might be a bucket overflow, which here stands for the case that the
bucket size is larger than the capacity of a processor. This phenomenon of
nonuniformity caused by hash funclion 1s wnevidable. On the other hand, for the

- 5 -

29

machine architecture the fluctuation of the amount of each object to be processed
generally leads to degradation of resource utiization and system performance. We

have to manage these inherent problems and fo provide means to handle such an
exceptional event as bucket overflow.

30

4. Design Consideration

We will explain our treatment of problems described at the previous section.
1) On Bank Parallelism

As is known from the brief survey of join processing in section 1, Systolic Array,
Tree Machine and SOE-SEE method can execute join in O(N) time, but i 1s
difficult to do in O(Nm) time with n modules, which we mean here by ‘bank
parallelism’. For example, DBC Join processor cannot execute join 1n
O((M+ N)A) time but in O(M/M+ N) time. In DIRECT, if n*m processors were to
be activated and each processor could process a page n liner time, O((M+ N)A)
Jotn would be possible. However i 1s too expensive. OQur aim is to seek a machine
which can reflect bank parallelism at reasonable cost.

We proposed in section 2 the hash based join method, where the relations are
hashed inlo several disjunctive buckets and thereafler each of them 1is processed
serially. Incorporating bank parallelism in this method, we can identify two
approaches. :

a) Bucket converging method

b) Bucket spreading method
Suppose the relation stored over muliiple source memory banks are to be hashed and
transferred to the same number of destination banks. If the correspondence between
the source and the destination is fized, the tuples composing a certain bucket would
be spread over banks. On buckel processing, a processor has to gather the tuples of
is allocated bucket from all the banks. In order to avoid this sifuation, the bucket
converging method can be derived naturally, where tuples of a bucket over source
banks are converged into a single destination bank. There are two major problems in
this approach. One is a bank overflow problem which is a conveniional one caused
by nonuniformity of the hash function. Since the dala distribulion can not be
uniform and a bank capacity is limited, a situation would occur where some buckets
have to accept the tuples beyond is capacity. At least we have to prepare a larger
space than the actual capacity of the relation. The determinatlion of load factor is
very hard, which is also related to the efficiency of the storage wtilization. This
difficulty in memory management 1s crucial in the buckel converging method.
DPNET which adopts this method provides no solution to this problem, where the
distribution terminates when one of banks overflows in source loading. Another facet
of this nonuniformity is discussed in the next paragraph. The other problem is data
confliction during transfer. The conflict occurs when a number of tuples are send to
the same bank at the same time. We have to manage this problem by an appropriate
method such as infroducing some buffer. This problem is due to the fact that multiple
data streams are hashed simultaneously. _

In the bucket spreading method, tuples of a bucket have to be gathered from
banks since they spread over them. But the gathering process itself can be pipelined,
that is, a processor visits memory banks serially and a bank outpuls the tuples of
the bucket allocated to that processor, so a processor runs through the pipe composed
of banks. Thus we can activale the same number of processors as the banks and
can expect fair performance tmprovement exploiling bank parallelism. Moreover

-7 -

31

there 1is no memory management difficulty of the overflow as is found in the bucket
converging method. This approach also accompanies some problems. Pipeline
processing works well when each segment time of it is equal. In the case where the
correspondence between the source and the destination is fired as described before,
the number of tuples which belong to a certain bucket differs much among banks.
This means thal the segment lime of the pipeline varies dynamically. It 1is
anticipated to cause performance degradation, which s not so large provided that the
hash function is random. In order to resolve this segment time fluctuation in pipeline,
we have to make the tuples of a bucket almost equally spread over the banks and to
make all the buckets themselves almost equal in size. We do ‘bucket flat distribution’
to satisfy the first condition where a tuple emitted by a source bank is controlled to
fall into the destination bank which has the bucket of that tuple least in number.
We do ‘bucket size tuning’ to guarantee the second condition, which is discussed in
the later paragraph. With the adoptwn of this bucket spreading approach with some
enhancement, we can attain high performance by activating banks in parallel.
2) On O(n) processing of a bucket

The processor is Tequired to process a bucket in O(n) time not to disturb the data
stream. And i is evident that the relational algebra operation can be completed"m
O(n) time when the relations are sorted on the attribute participating in that
operation. So we decided to attach the processor with the O(n) hardware sorter. Of
course an associative processor or some functional unit with the capabiity of parallel
comparison also may be possible, which, in fact many of the proposed machines such
as RAP, RELACS, and DPNET, eic. employ. [t can process the data stream very
rapidly and follow the stream completely. Its capacity, however, 1is generally limied
in current technology and this imposes the condition that at least the cardinality of
one relation should be very small. On the other hand, in our approach of using a
sorter there is not so severe capacity limitation and operand relations can be treated
equivalently. The sorler can not complete sorting until the last data item arrives, so i
takes longer to process a bucket than the associative processor. But this hardly
affects the performance because buckets are processed in a pipelined fash.wn
3) On Bucket Allocation

Bucket serial processing s necessary under the environment of finite resources of
processors. And as a whole to complete an operation in O(n) time, efficient
generation of buckel serial data stream must be realized. It is Tequired fo owﬁput
tuples of a bucket conlinuously, which are not mnecessaridy placed adjacenily each
other inside the memory devices. . Of course i is possible to do some preparalory
processing when a memory bank inputs the data, dbul i also needs to be performed
not disturbing the inpul stream. Il is almost tmpossible to do wilh magnetic disk.
On the conlrary, # 1s clearly possible to achieve #6 by RAM. Recently the
development of semiconductor technology is extraordinary and even at presend lime i
is found in a disk cash, so i will be feasible lo use RAM as the slaging buffer.
However the capacity of the relation is very large even afler the filter processing by
an associative disk, so i is meaningful to seek a memory device lying belween RAM
and disk on memory hierarchy. We can find a magnetic bubble memory satisfying
our conditions. The chip capacity of bubbdle is at present four or more {imes grealer
than that of semiconduclor RAM and much more development 1is expected by
contiguous disk lechnology. Transfer rate is relatively low but i can be improved by

-8 -

32

activating multiple chips in parallel. And dual conductor technology also seems to
make a big contribution on ©#. Recent rapid progress promises well for the future..
Moreover bubble has another advantages such as nonvolatility and flexible start/top
mechanism. Considering above features, we think magnetic bubble memory is also
a good candidale for a staging buffer medium. We put some modification fo a
conventional major/minor bubble chip and make it suitable for efficient bucket serial
generation. ' :
4) On Nonuiformity of Buckets

In a Direct Access Method the bucket overflow often degrades its performance
largely because the storage medium 1is disk. In our case we are going to use
magnetic bubble memory or large capacity and low speed RAM for storage media of
staging buffers where a bucket is constructed using linked list in the former and mark
bits in the latter, so there is no conventional overflow problem such as degradation in
access time and memory effictency. Bul the bucket size fluctuation itself arises
another type of problems discussed before. In pipeline processing of bucket gathering,
% 1s destrable that the size of each buckel is uniform. And the size iself had betier
be close to the processor capacily from the point of the processor utilization efficiency.
If it takes O(nz) ttime to process a buckel, the smaller the bucket is, the faster a
bucket can be processed. On the other hand, in the environment of our case where
a bucket can be processéd i O(n) time, we do not have to have the size of a
buckel so small. Ezxcessive bucket generation with the purpose of bucket size
reduction incurs extra overhead rather than the load reduction because the bucket
allocation cost must be paid. Therefore it 1s desirable that the size is close io the
processor’s capacity. However, # is difficult to find a hash function dynamically
which generates buckets with the size of processor’s capacity. So we do ‘bucket size
tuning’. Namely we at first partition the relation into more buckets and then iniegrate
some of them into a larger bucket with the capacity less than that of a Processor.
Through . this preprocessing, we can have buckets of near uniformity. This ‘bucket
size tunmg process. _1s. well known as Bin Pac/cmg Problem which is NP-complete,
“and the pseudao optrmal solution is already obtained. The overhead brought about by
buckel integration s mot so large. This can be overlapped with the data stream -
. generation of the bucket. Once the first integrated bucket is obtained, then the data
.‘streamy generation of the bucket can be overlapped with the buckel mtegmtwn Even
by this bucket size tuning, it is impossible to make the size of each bucket completely
vumform L

33

5. , Abstract Architecture of GRACE and Execution Overview

5.1 Abstract Archilecture

Abstract architecture of GRACE is shown in fig 2-1. GRACE 1is composed of
three major components; DSP(Data - Stream Processor), DSG(Data Stream
Generator), and SDM(Secondary Date Manager).

SDM employs disks as secondary storage devices and stores the 'relatwns on them.
The disk can transfer data from all heads of a cylinder in parallel, and i s
equipped with filter processing function which includes selection, restriction, bit map
manipulation, and simple projection(attribute selection). On-the-fly processing limits
the allowable complexity of the predicate in selection. The remainder of the predicate
which cannot be evaluated in the filter processor of SDM 1is rendered to DSP. The
hashing unit hashes the tuples on specified atiribute and generates bucket ids. .

DSG employs RAM or magnetic bubble memory and provides the working space.
To DSG, the relation fillered and hashed on SDM s slaged and the result relation
generated tn DSP 1is returned. 'From DSG, the bucket serial data stream 1is generaled
and sent to DSPs. .

Fach DSP consists of ha,rdware sorte'r filter processor, data mampulatwn unit,
and hash unil etc. . Il processes a bucket senl from DSG wusing such unids and
produces a result relation. '

5.2 Query Execution on GRACE

Here we consider how the query is execuied on GRAC‘E The query s assumed
to be a complex one and have many joins and projections, elc. - The query processing
consists of two major phases: staging phase and processing phase.

At the staging phase, relations mnecessary for the first join operation are staged
from SDMs indo DSGs. The data stream from disk 1s led o the filler processor in
SDM, where seleclion and stmple projection are performed on the fly And lhen the
filtered stream 1is hashed on the aflribule which participates in that operation and
hashed id 1s altached with each tuple. These hashed data streams are lransferred
from SDM to DSG over network between them. Once the SDMs begin to output
their data streams, DSGs receive the tuples and mainiain buckets corresponding to
the hashed value. The relations are clustered overlapped with data fransfer during
the staging phase. When DSG completes dala stream input, the cluslered relation
depicted in fig 1 1s conceplually produced i DSG.

Al the processing phase, actual processing 1s performed between DSGs and
DSPs. After the staging phase DSG's literally generate dala stream bucket-serially to
DSPs. As a bucket 1s equally spread over DSGs, the DSP has io alitach the
appropriate data stream and gather the tuples which belong to that bucket This
proceeds in pipeline fashion and the data streams generated by DSG are not disturbed
so much. The data gathering process dself is overlapped wilh the sorling process. A
hardware sorter tn DSP sorls the tnpul tuples keeping up with the stream. When all
the tuples of a bucket are took in a DSP, i begins to operale on the soried daia
stream from the sorter. Most of the operalions mnecessary for relational dala base
support can be performed efficiently on the sorted stream. After DSP processes a

- 10 -

34

bucket, % then proceeds to next bucket. Buckels are processed in parallel using
mulliple DSPs. Omne relational algebra operation terminates when all the buckets are
consumed. '

5.3 Owperator Level Pipeline

Each operation in a query tree is execuled as described above. As is shown in
fig 2-2, ome operation corresponds to one data flow cycle: a data stream is generated |
at first in DSG and then passes through DSP and at last is returned back to DSG.
In a cycle, all the tuples in the source DSGs is transferred to the target DSGs. A
complex query comprising multiple operations is implemented by repeating such cycles.
As we can see in fig 2-2, once a data flow cycle terminates, new cycle of the next
operation “begins. Here we should notice that we don't have to inferleave the
hashing cycle of a result relation for the next operation. When a DSP processes a
bucket, it hashes the result tuple on the subsequent operation and outpuls a result k
data stream to DSG. Namely clustering operation of & result relation for the next
operation is overlapped with the actual processing of the present opeMtion. We
named ‘this ‘Operator Level Pipeline’. By this processing ‘schema, vanishes the
overhead which we are afraid to be caused by clustering as preprocessing. The: first
clustering processing is overlapped with the staging phase. We don’t have to erecule
operators ome at a time for the cases where sufficiently large space in DSG is
avaiable. More ‘than one operation could be performed simultaneously. As many
cycles as the height of a query tree which could be optimized as low as possible would
be required to get the result. e S

As meniioned above, our machine GRACE can execule a complexr query very
efficiently with repetitive data flow cycles. Accordingly, we can expect that GRACE
can execute join sequence much faster than the any DBMs proposed so far.

35

6. Summary

Most of the dala base machines proposed so far adopted a filler processor as their
basic component, and selects necessary records by evaluating qualification predicates
based on exhaustive matching with full scan of the file, by which the overhead caused
by the auzxiliary data management such as indices is tntended to be reduced. For a
simple query which includes only selection, this approach would suffice. There are.
join-dominant environment[23], however, and i is difficult to altain o high
performance with the ordinary approach of the filter processor. GRACE adopted a
novel relational algebra processing algorithm based on hash and. sort, and can
erecute not only simple query bul also complex one comprising many joins or set
opemtioh‘s rapidly. While the. data streams are fized in a secondary storage in the
previous machines, the clustered data streams appropriate for the given operation are:
generated dynamically in GRACE and can be processed keeping up with the stream.:
This allows a complexr operation -also to complete with one daia flow cycle, and.
moreover due lo the opemtor level prelme ttme overhead caused by hashing s
effectively canceled.

According to the tazxonomy by O.H. B'ray[24] GRACE s classified. into MPCS
(Multiple Processor Combined Search) machine since direct search "by the filter
processors in SDM and ndirect search by DSP and DSG are combined:and both are
processed by using nol a single bul mulliple processors. GRACE filters out the.
unnecessary records on the fly in SDM and processes the survived records on. DSG
and DSP wih repelitive data flow cycles, nmamely i employs the' combined
architecture “which infegrates the meris of direct search and indirect.search. - :

In this paper, we have described the processing algorithm and il has been shown
that GRACE can execule a relational algebra complex very efficiently. The abstract
architecture and erecufion overview on i are only briefly explained and the details
about the actual implementations such .as the structure of . hardware . sorter,
bucket-serial data stream generator in wmagnetic bubble memory uni, and dala
stream conirol mechanism are prepared in the future paper.

36

References

1. Slotnick,D.L., Logic per Track Devices, Advances in Computers, Vol.10,
J.Tou,ed., Academic Press, New York, pp.291-296 (1970)
2. Ozkarahan,E.A., Schuster,S.A. and Smith, K.C., RAP-An Associative P'rocesso'r
Jor-Dala Base Management, Proc. AFIPS NCC, Vol .45, pp.379-387 (1975)
3. Ozkarahan E.A., Shuster,S.A. and Sevcik,K.C., 'Performance Evaluation of a
Relational Associative Processor, ACM Trans. - Dalabase Syst., Vol2, No.2,
pp.175-195 (1977) :
4. Oflazer,K. . and Ozkarahan E.A., RAP.3-A multi-micro cell architecture for the
RAP database machine, Proc of the Int. Workshop on High Level Language
Computer Architecture, pp.108-119(1980)
5. Copeland,G.P., Lipovski, G.J. and Su,S.Y.W., The A'rchztecture of CASSM a
Cellular System for Non-numeric Processing, Proc.- 1st Annu. Symp. Compuler
Architecture, pp.121-128 (1973) : o . o
6. SuS.Y.W., Nguyen,L.H., et al., The Architectural Features and Implementation
Techniques of: the Multicell CASSM, IEEE Trans. Comput Vol.C-28, No.6,
pp.430-445 (1979) : ‘
7. SuSY W., On Logi-per-Track Devices: C'oncept and Applications, - IEEE
COMPUTER, Vol.12, No.3, pp.11-25 (1979) : ‘
8. Uemura,S., Yuba,T., Kokubu A., et al., The Design and Implementation of a
Magnetic-Bubble Database Machine, IFIP 80, pp.433-438 (1980)
9. Qliver,E.J. and Berra,P.B., RELACS A Relational Associative Compuler System
Proc. of the Fifth Workshop on. Computer Architecture for Non-Numeric Processing,
pp.106-114 (1980)
10: Berra,P.B. and Oliver,E.J., The Rale of Associative Array Processors in Datla
Base Machine Architecture, IEEE Computer, Vol.12, No.3, pp.63-61 (1979)

1. DeWilt,D.J., DIRECT-A Multiprocessor Organization for Supporting Relational
Database Management Systems, IEEE Trans. Comput., Vol. C-28, No.6 (13979)
12. DeWit,D.J., Query Ezxecution in DIRECT, Proc. ACM-SIGMOD 1979,
pp.13-22 (1979)
13. Kung,H.T. and Lehman,P.L., Systolic (VLSI) Arrays for Relational Database
Operations, Proc. of ACM-SIGMOD pp.105-116 (1980)
14. Song,S.W., A Highly Concurrent Tree Machine for Database Applications,
Proc. of the 1980 Int. Conf. on Parallel Processing, pp.259-268 (1980)
15. Banerjee,J., Hsiao,D. K. and Kannan,K, DBC-A Database Computer for Very
Large Databases, IEEE Trans. Comput., Vol.C-28, No.6, pp.414-429 (1979)
16. Menon,M.J. and Hsiao,D K., Design and Analysis of a Relational Join
Operation for VLSI, Proc. Int. Conf. on Very Large Data Bases, pp.44-55 (1981)
17. Tanaka,Y., Nozaka,Y., et al, Pipeline Searching and Sorting Modules as
Componends of a Data Flow Database Computer, IFIP 80, pp.427-432 (1980)
18.. Oda,Y., Database Machine Archiecture using Data Partitioning Network,
IECEJ Technical Group Meeting, EC80-72 (1981) (in Japanese) :’
19. Babb,E, Implementing a Relational Database by Means of Specialized

- 13 -

37

Hardware, ACM Trans. Database Syst., Vol 4, No.1, pp.1-29 (1979)

20. McGregor,D.R., Thomson,R.H. and Dawson W.N., High Performance
Hardware for Dalabase Systems, Systems for Large Data Bases, North-Holland,

pp.103-116 (1976)

21. Kisuregawa, M., Suzukt, S., Tanaka,H., and Moto-oka,T., Application of Hash
to a Data Base Machine, The 23rd Information Processing Sociely Nalional
Convention (1981) (in Japanese) '
22. Kilsuregawa, M., et al., Relational Algebra Machine based on Hash and Sort,

JECEJ Techinical Group Meeting, EC81-35 (1981) (in Japanese)

23. Hawthorn,P., The Effect of Target Applications on the Design of Dalabase
Machines, Proc. of ACM-SIGMOD, pp.188-197 (1981)

24. Bray,O.H. and Freeman H.A., Data Base Compulers, Lexington Books, (1979)
25. Wah,B.W. and Yao,S.B., DIALOG-A Disiributed. Processor Organization for
Database Machine, Proc. AFIPS NCC, Vol.49, pp.2438-253 (1980) (not cited)

26. Leilich, H.O., Stiege,G. and Zeider,H.C., 'A Search Processor for Dala Base
Management Systems Proc. Int Conf on Vevy Large Data Bases, pp.280-287
(1978) (not C'zted) »

38

uopexsdo NIOP ul Bupysey 4g sjospm Bupxssnio c| Brd

(£3178UTpIBO SUOTIBIAI OB JO jonpoad ,mﬁ

03 1Teuoyjxodoad awyy seye; wyjrazodre NIOL oldwis)

peor] Jdussavdoxd
Suyssavoxg paxeisniy (z)- Sursseooxg Ppexasjsn[o-UON (+)
= _
m g Uor3ersy Jo 38yonq yi-r yatm
gV UuoTyBISY JO 38)0NQ Y3-1 Jo NIOCL
g 1 :
2
W g ’
g
5 T RRA
g9
°_,
o
L
R
a
o
3
g;
sardny jo xaquny —fe—-

$:

vV uonE[ey Jo jexong uj-

v uoperey

g uoryerey

Data
Stream
Processor

Data
Stream -
Generator

Secondary
Data
Manager

Fig.2.1 Abstract Architecture Of
GRACE

39

40

Fig.2.2 Execution Overview

