
23

Relational Algebra Machine

GRACE

University of Tokyo
Facvlty of Engineering

Masaru Kitsuregawa
Hidehiko Tanaka
Tohru Moto-oka

数理解析研究所講究録
第 482巻 1983年 23-40

24

1. Introduction

$\prime Log_{7}c$ per Track’ concept by $Slotn\tau ck[1]\tau s$ consldered to be the origin of Data
Base $Machme(DBM)$ Many of the machmes pumoposed so far adopted $th_{l}s\tau dea$ as
basis wdh some enhancement As $?s$ shoum m RAP. 1 $\zeta 2J$ or $CASSM[5J$, each head
of a dtsk τs equrpped wrth some srmple $log’\iota c$ and $\prime dc$an $eff|\mathcal{L}’wn1ly$ perform selectwn of
records whtch $sat’\iota sfy$ a certam cond#wn. Thts filter processmg can reduce the
amount of data that must be transferred between the $seco7ulary$ storage $dev[ce$ and
the main memory of a $host$ computer Later the storage media are changed fi om

disks to elec$tron\tau c$ devtces $such$ as CCD and magnettc bubble me$mor\iota\epsilon s$. And the
$machme$ of thts type, namely the 0ne $wh’\downarrow ch?s$ constructed by many $\tau de?u\tau calce\mathcal{U}s$,

where a ceu is composed of a palr of a processor and a memory bank, comes to be
known as ’the ceuvlar logtc $t\Re$)e data base machin$e’[7]$. In the $suI\varphi 0\tau t$ of a
relahonat data base, $th\dot{\tau}s$ ovlperfoms the conventiomlone by orders of magnitvde in
the $execut_{l}on$ of relahvely light $loado$perations such as selection an update. In

heavy load operatwns such as join $a7ul$ projection including dupltCate elimination,

however we can not expect large scale of performance improveme$7tl$ but $0\eta ly$ stight
$one[3J$ The brute force applicatio n to jom of the filter processing $apI^{J\Gamma oach\mu 0}$neered
by $Slotn’\iota ck$, whtch $?s$ very po werfiA to the 0peration for $wh?\mathcal{L}h$ one scan of the ftle $?s$

sufftctent, has gradually revealed its hmtt ation. That is, most of the machines are
regarded as $basicau_{y}$ flter $processo7S$ and it $’\dot{\epsilon}$ dlfficuu to judge that they $hold$ a full
$effic?encymjom$ and dupltCate elimmatio n which are essential operations for a
$relat?onal$ data base manageme$\eta 1$.

Here we examlne the jom processmg method on several machlnes. There might
be $lots$ of another interesting features pecvliar to the indintual machine but we ignore
them and concentrate on jom

In the $ceu\omega arlog?c$ type DBM_{l} the processing load of $jom’\dot{\epsilon}$ proportional to the
product of each relahon’s $cardinal?ly$, and it is processed in parauel on each $ce\mathcal{U}$. That
is, tuples of the source relatto$n\tau sbro$adcast to the ceus comprising the target relation,

and then au target ceus stmultaneously compare the obtained tuples wdh its oum

tuples. Therefore the processmg $hme?s$ proporteonal to $N^{*}M\nearrow\iota^{*}k$ where M and N

are the cardmaUttes of bo th relations. $n’\iota s$ the number of ceus arvd $k?s$ the number of
comparators per ceu . $RAP[2,3_{l}4]$ and $EDC[8]$ etc. belong to $th\dot{\tau}s$ category As was
$shovmm$ performance evaluatio n of $RAPf^{\backslash }3$], DBM of $th?s$ tmpe $’\dot{\epsilon}$ no t always surted
$forJ^{om}o$peratio n and the $perf_{C7}mance$ gain agamst a conventional $mach\prime me?s$ no t so
definite.

In RELA $CS[9,10]$ which is $characten\dot{z}ed$ by ds extensrve use of asso $cxat\dot{w}e$

processors, the pro cessing $load$ ttsetf is same but the parameter $k\prime is$ relatrvely large,
whde m ceuular approach the processing $power$ of one $ceu?ssm\alpha u$ because of $?ts$

co st. Anyway tt also employs exhaustive matching $algo\tau dhm$, so $\prime d$ is defficull to
attam htgh performance . The separatwn of the htgh performance processtng unil and
the memory banks necessitates the data transfer path $ha7\dot{n}ngh\dot{\tau}gh$ bandwldth
between them

In $DIRECT[11,12]$ whtch actuadzes page the level control, the load of $jom\tau s$

$O(n^{*}m)$ where n and m are the number of pages occupied by two relattons

$arrow 1-$

25

respecttvely, and it $’\iota s$ pro cessed by uswtg $\max(m_{J}n)$ processors $mO(mm(m,n))$ tlme
$Jom\tau s$ lmplemented m the manner that many pro cessoτsac ttvated by the controller
are allocated 0 ne page of $th\vee\circ$ source relahon and scan all the pages of the target
relatwn Thts machme do es no t adopt a spectal pro cessmg $un\tau tsuch$ as a flter
processor but employs a general purpo se μprocessor and the page dself $’\iota s$ pro cessed
m the conventwnal manner; the page $process’ mg$ $cony\iota sts$ of 3 phases, page loading,
page processmg based on sort, and page stonng

Syst $ol\propto$ array based $DBM/j13$] reltes on techn$olog7\mathcal{L}al$ advances m VLSI $circu\# 7y$.

The spectat pzcrpo se VLSI $ch_{l}pwh?chac$tlvates many comparators m Inpelme fashwn
can jom two relatwns by only feedlng them m counter dire ction But $th?s$ dose not
generate a jomed relahon but $0\eta ly$ a $jolmb\tau 1\# y$ matrix. Htghly Concurre$7d$ Tree

MachmeIl 4] als0 assumes the VLSI mplementatwn and can join m ab $out2^{*}(N+$

no of result tuples) where $N?s$ the $cardlml\# y$ of both relatwns. $Wh\tau le$ these two

machlnes are $ve7y$ fast when the $?^{\sim}el\alpha ted$ data can be accommodated m the machme,

there remalns a partdwnmg pro blem for cases where the pro blem $s?ze$ exceeds its
$capac\# y$. The fact that bo th $requ?xe$ at least $O(N)$ comparators $should$ be no $t_{l}ced$.

Jom processor $mDBC[15,16]$ also relies on the $develoI^{ffnent}$ of VLSI technology

and takes $O(N_{/}h+M)$ tlme $mjom$ The $jomalgo$rdhm τs basvcally the same as the
cellular $log?\mathcal{L}$ type DBM, namely exhaustwe $match_{l}ng$ of bo th relabio ns.

Data stream data ftow data base $compnter\zeta 17$] τs composed of two $m\alpha m$

functwnal mo dules, sort englne and search engme, whtch reahze $O(N)$ sorl and
$O(logN)$ search respectwely On $jomprocess\iota ng$, the source relatwn $?s$ fed $l\eta 10$ a
so τl engme and τts sorted data ss then led to a search engme. When lo admg of a
search engme completes, the target relahon $?sp\iota dlnto\#$, and a γomoperaho $n\tau s$

performed $mp\iota pelme$ fashwn. In thts manner, two pages of bo th relatwns are jomed
m $O(N)$ tlme where $N’\iota s$ the page stze. The $co\eta trol$ scheme at page level $?s$ no t

$cta7^{\vee}Lf\iota ed$

DPNET based $DBM[18J$ whtch takes srmdar appro ach to ours completes jom in
$O(N^{*}M\nearrow\iota^{2_{*}}k)$ tlme. The data streams from each head of a dtsk are part#wned
dynamtcally and sent to the same number of IJrocessors. It assumes to use an
associative memory m the $process’mg$ und in order to fouow the data transfer rate of
the $d?sk$. Therefore dscapac$\prime 1ty’\iota sl?mded$ and $\#$ needs several revotutwns like RAP
when the source relatwn canno t be fdted into.

$CAFS/j19]$ employs an $un’\iota que$ algonthm based on the hashed bil array for jom

operatwn $wh?ch?s$ exammed m detad m the next sectwn. It can be regarded as
$gomab\tau 1cty$ ftlter; $\#c$an jflter out many of tuples whtc h cannot be jomed. Thts leads a
targe load reductwn but actual γom must be done at a host machme. The same
approach can be found in $LEECH \int 20$] and $CASSM[6]$.

It $?s$ obmovs from the ab ove suruey that there τs no machme that can perform

effcte $7d$ executwn of the relatwnal algebra 0perahon, $espec?allyjom$ In $th\tau s$ paper,
we propose a no vel relatwnal algebra machme based on hash and sort
algo$mhm[21,22J,$ $wh’\iota chc$an $jommO((N+M),h)$ trne where N and M are the
$cardmal\#\tau es$ of two relatwns and $n?s$ the number of memory banks

-2-

26

2. Relational Algebra Execution based on Hash

Hash $’\iota sweu$-knoum as a $d\uparrow rect$ access method in the data base storage
$organ?zatwn$, where necessary records can be obtained wdh almostone access
$pro^{!}\iota mled$ that $load$ factor remames to w, and $th^{J}\iota s?so$ne of the fastest access method .

Besides these $stat\tau c$ data $m\alpha nageme\eta t$ metho d, hash techmque $’\iota s$ applled $dynami\mathcal{L}auy$

m data base machme. Follourng two methodologtes can be identifted m supportlng
relatioml algebra 0peratwns of heavy load.

1 JoinabUty Frlter Appro ach

2. Clustenng Appro ach

The first appro $ach?s$ taken m CAFS where a hash bit array $?S$ used. Tuples from
one relation are hashed on the jom attnbute and ds corresponding $b\#$ store $?s$ set.
Then the 0 ther relatio $n?s$ read and hashed als0 on the J^{om} attnbute, and the $I^{I\Gamma 0}per$

$b^{}dm$ the hashed $b\tau l$ array $?s$ checked. If the $b\prime ll\tau s$ set, $\prime l1’\downarrow s$ assumed that thts tuple
has posstb tlUy to be $j_{ol}ned$. $Th?s$ hashed bit array as a $jo\prime imbl4lly$ fdter makes many
tuples that canno t be $j_{ol}ned$ swved $outa7ul$ thereafler the $cardiml?1\tau es$ of bo th
$relat?onsfau$ tnto $sma\mathcal{U}$ szes, whtch results m large load reductwn. Whtle $th’\iota s$

method $?s$ very $powerf\omega$ as $preprocess’ mg$, remamlng tasks such as $el?mimhon$ of
$5pur\iota ous$ tuples and tuple concatemtwn $mexpl_{l}c\tau l$ join must be done on the host
$machme$.

In the seco ml approach whtch we adopted, no t the number of tuples m two
relatwns bvl the load of join ?tself can be reduced by the clustenng feature of hash
0peratwn. The srmple jom algorithm takes hme proporlioml to the product of two
relatvons’ cardtnal#tes. However, if two relatwns are clustered on the jom attrtbute,

that , the tuples are grouped $mtod_{W^{0l7}}d$ buckets based on the hashed value of the
jom attnbute, there τs no jomlng between tuples from buckets of $differe7d\tau d$. Tuples
of i-th $bucketmo$ne relatwn cannot be joined with tho se of j-th $bucket$($j\neq$ i) m the
other relahon but wdh only i-th bucket. So the total $load$ of $jomo$peratu: $n?s$ reduced
$mtojom$ between buckets of the same $?d$. Let

s s

$N= \sum_{x=1}n_{i}$ $M= \sum_{=l1}m_{i}$

where N and M are the $cardlml\tau 1les$ of two relahons,
n_{i} and $m_{?}$ are the $s|zes$ of the

t-th bucket m each clustered relation, and $s\tau s$ a number of buckets. The total
processing tlme Tcan be $exIJressed$ as $f_{0}uows$

s

$T \propto\sum_{i=1}n_{i^{*}}m_{t}$

$ThlSload$ reductwn effe$ct\tau sdep\kappa tedm$ fig 1, where two axes denote two relahons
$wh\tau ch$ are drnd$edmto$ s interuals and the cross sectwn reveals the jom load of $n^{*}m$

The shaded areas correspond to the processmg $load$. $Accord\tau.ngly$, thrs clustered

-3-

27

approach can $dramat7cally$ $dlmm\tau sh$ the $loadmcompar\iota son\prime nMh$ nonclustered
ordlmry appro ach

DupltCate elrminatwn task m projectwn also used to be a $b?g$ burden in relational
data base systems. The $ab0ve$ approach can be applied to $I^{Jrojec\hslash on}$ qu#e as weu as
J^{om} . Through hashlng extracted fields of the tuples, the $g^{J}iv$en relatio$n?s$ broken up
mto many $d?S \int unctlve$ buckets. Au the same tuples $faumto$ the same bucket.

Therefore dupltcate ellmlmhon can be done m each $bucket\lambda 71depe7ulently$. No need

for lnter-bucket compar $O\eta S$ A database $machme$ utdwing thts c lustenng approach
would attain a very rapd relatwnal algebra executio $n,$ $wh?\mathcal{L}h$ we dtscuss in the next
sectwn

-4-

28

3. Parallel execution of the hash based method and its some
problems

In the $I^{yrev\iota 0}$us sectwn, shown was the fact that great reductwn of pro cessmg $load$

of J^{om} and $pro\gamma ectwn$, etc. $?sactml\tau zed$ by $d’\iota vtd’mg$ relations into many buckets
through hash. Here, we wdl constder how to $mater\iota al\tau zeth’\epsilon$ method for database
machme .

The buckets generated by hash are independe$nteach$ other Therefore, rather
than $process^{r}mg$ them $ser au_{y}$ us ng ody one processor, the relatwml algebra
operation can be executed much faster by $process’mgeachbucketm$ parauel usm9
many pro cess073. Note that there τs no inler-processor $commun’\kappa atxon$ dunng bucket
processmg. $Fouow\iota ng$ pro blems can be $\tau de\eta 1lfied$ $mdes\iota gmng$ a $relat\tau onal$ algebra
machme whtch $real?zesth\tau s$ bucket parauel processm9.

1) $Utd?zatwn$ of Bank $Parauel?sm$

If a relatwn $’\iota sst$ored $over$ many memory banks, execuhon could be faster than m

the case where a relatio $n\tau sst$ored mone memory bank.
In database proce ssrng, data stream $’\iota s$ a $mamconst\tau 1uent_{J}$ ancl several $kl71ds$ of

pro $cess’\iota ng$ are applted along the stream However, even if the data stream could be
processed fo uowmg the stream, that $w,$ $O(N)$ processmg be realtzed, the stream may
become very $longm$ the case of large databases, and $?t\tau s$ desrrable to $di^{\prime\iota fl}de$ a long
stream by $d?stnbuting$ the relalwn over several memory banks and to process

segmented streams in parauel By exploUtng bank $p\alpha rauel?sm$ if the relatio n could be
staged in the working page space whtch $con\infty ts$ of mvltmple memory banks,

processmg time can be mdependent of the $cardinal_{l}ty$ of the relahon and τs determmed
by the memory bank capa$c\# y$ whtch τs constant.

2) $O(n)$ processing wtthm a bucket
By hash, processmg $load$ can be reduc ed fro$mO(s^{2})$ to $o(s)$ at bucket level,

where $s\tau s$ the number of buckets Processmg of a bucket ?lself $sho\tau Ad$ be fast m

order not to dtsturb the data stream Namely $O(n)$ processmg of a bucket rather
than $o(n^{2})\tau s$ preferable where $n?s$ a sue of a $bucket$. Integration of both $o(s)$

proce$ss\iota ng$ at bucket level artd $O(n)$ processmg $vMhmbucket$ makes $\# poss\iota ble$ to
$organ’\iota ze$ a relattonal algebra machme of $h\tau gh$ performance.

3) Bucket Altocatwn to Processors
Buckets can be processed m parallel by $auocah71g$ them to many processors In

$th?s$ bucket $auoca\ell wn$, it τs necessary that each processor can gather the data of the
auocated bucket effiictently.

$Generau_{y}$ relations $m?ght$ be very $b’\iota g$ and the number of buckets generated by
hash $?s$ larger than that of $ava’\iota$table processing un#s. So buckets beyorul the number
of avadable processors must be processed senally, where bucket senal data stream
needs to be generated efficienuy by memory banks.

4) $Nonumform?4y$ of Generated Buckets
Thecapac#te s of buckets are no t necessarity umform but may differ each 0 ther so

much. There $m?ght$ be a $bucket$ overflow, $wh?\mathcal{L}h$ here stands for the $case$ that the
$bucket$ $s\iota ze$ τs larger than the capa$c\# y$ of a processor This phenomenon of
nonumform#y caused by hash functwn $’\iota s$ mevdable. On the other hand, for the

-5-

29

-6-

30

4. Design Consideration

We vflll explam our treatment of pro blems descnbed at the premous $sectwn$.
1) On Bank Parallehsm

As $?skno$um fro m the bnef suruey of jom $process’ mg$ $msectwn1,$ $Syst$oltc Array,
Tree Machme and SOE-SEE method can execule $jommO(N)hme$, bul ?I τs

$dlffi\mathcal{L}ult$ to do $mO(N,h)hme$ wrth n modules, $wh\tau ch$ we mean here by ’bank
parallelism’ For example, DBC Jom processor cannot $exec\tau Ae$ jom in
$O((M+N)_{/}h)$ tlme but $mO(M\nearrow\iota+N)hme$. In DIRECT, if $n^{*}m$ processon were to
be acttvated $a7ul$ each processor could process a page m lmer $hme,$ $O((M+N)_{/}h)$

jom would be $poss’\iota ble$ However $d\tau s$ too expensrve. Our $alm’\iota s$ to seek a machine
whtch can reflect bank $paraueltS7n$ at reasonable $\cos t$.

We proposed m sechon 2 the hash based jom metho d, where the relatwns are
hashed lnto several $d?S\dot{\int}unc\hslash ve$ buckets and thereafler each of them is processed
$ser\iota au_{y}$ Inc $07p$orating bank $parauel\tau smm$ thts method, we can $\tau de7dxfy$ two
approaches.

a) Bucket converging method

b) $Buck$ et spreading me$thod$

Suppose the relation stored over $m\tau\Lambda lbple$ source memory banks are to be hashed and
transferred to the same numb er of deshmtwn banks. If the correspondence between
the source $a71d$ the destmahon $?s$ fixed, the tuples composing a certam $bucket$ would
be spread $over$ banks. On bucket processmg, a processor has to gather the tuples of

$\tau 1s$ allo cated $bucket$ from au the banks. In order to avorxl thts sttuatto n, the bucket
convergmg method can be denved $naturau_{y}$, where tuples of a bucket $over$ source
banks are converged $lnto$ a srngte deshmhon bank. There are two majo r pro blems m

$thlS$ appro ach. One $’\iota s$ a bank 0verflow pro blem whtch is a conventioml one caused
by nonumformity of the $hash$ functio n. Since the data distribvlio n can not be

umform and a bank capac#y is $l\tau mded$, a situatw$nwould$ occur where some bucke ts

have to accept the tuples beyond ds capacity. At least we have to prepare a larger
space than the actual capacdy of the relation. The determimtion of load factor $’\iota s$

$ve7y$ hard, which is also related to the efftciency of the storage $ul\dot{\tau}l\dot{\tau}zahon$. This
diffculty m memory management $?s$ cruczal m the bvcket convergmg method.

DPNET whtch $adoptsth\tau s$ method promles no solution to this pro blem, where the
$d?stnbutiontermlm$tes when one of banks overflows in source $load\tau ng$. Another facet
of this nonumformtty ’is dtscussed m the next paragraph. The 0 ther problem $?s$ data
$conflt\mathcal{L}hon$ dunng transfer The conflict occurs when a number of tuples are se$7d$ to
the same bank at the same hme . We have to manage this pro blem by an appropmate
method $s\iota xch$ as $i7d’roducing$ some buffer. This pro btem is due to the fact that muttiple
data streams are hashed srmuttaneously.

In the bucket spreadmg method, tuptes of a bucket have to be gathered from
banks $smce$ they spread $over$ them But the gathering process τkelf can be $p\iota pelined_{J}$

that $’\iota s$, a processor $?J\downarrow\dot{s}1s$ memory banks $seriau_{y}a71d$ a bank outputs the tuples of
the $bucket$ auocated to that processor, so a processor runs through the I^{npe} composed

of banks. Thus we can activate the same number of processors as the banks and
can expect falr performnce $m\iota proveme\eta 1explo\tau 1mg$ bank $parauel?sm$. Moreover

-7-

31

there $?s$ no memory manageme$7\iota t$ difficutty of the overftow as is found in the bucket
convergmg metho d . Thts appro ach also $accompan’\iota es$ some pro blems. $P?pel\dot{m}e$

processmg works well when each segment bme of $\tau 1?s$ equal. In the $case$ where the
correspo$\eta dence$ between the source and the destmatwn $?s$ frxed as described before,
the number of tuples which belong to a c erlam $bucket$ differs much among banks.
Thts means that the segment hme of the p.peline varie$sdynam^{J}\kappa au_{y}$. It $?S$

$a7d^{\eta \mathcal{L}l}pated$ to cause performance degradahon, whtch $?s$ no t so large provuled that the
hash functwn $’\iota s$ random In order to resolve $th’\iota s$ segment $tm\iota e$ fluctuaho$nmp\iota peline$,

we have to moke the tuples of a bucket almo$steqmu_{y}$ spread $over$ the banks and to
make au the buckets themselves almost equal in $s\iota ze$. We do ’bucket flat distribvlio n

’

to $sat?sfy$ the ftrst conditwn where a tuple $em\tau tted$ by a source bank $?s$ controued to
$faumto$ the destmatwn bank $wh\tau ch$ has the bucket of that tuple least in number.
We do { $buckets\iota ze$ tuning’ to guarantee the second $C07zdd\dot{w}n$, whtch is $disC’\llcorner Jssedm$

the later paragraph. With the adophon of this bucket spreading approach $’\iota\dot{w}lh$ some

enhancemenl, we can attain htgh performance by achvahng banks in parauel.
2) On $O(n)$ processing of a $bucket$

The processor ’is requlred to process a bucket $mO(n)$ time no t to disturb the data
stream And $\#\tau se\prime mdent$ that the relatwml algebra operation can be completed in
$O(n)hme$ when the relahons are sorled on the attnbute $pa\tau tmpatingm$ that
operatwn. So we decided to attach the processor Utth the $O(n)$ hardware sorter. Of
course an $assocw\hslash ve$ processor or some functioml unil wilh the $capabdi\phi$ of parauel
$compa\mathfrak{n}\dot{s}on$ also may be possible, which in fact many of the proposed machines $such$

as RAP, RELACS, and DPNET, etc. employ. It can F^{rocess} the data stream very
rapidly and fouow the stream completely. Its capac#y, however, is $generau_{y}$ limited
m current technology and this imposes the $C071d\#\dot{w}n$ that at least the cardinality of
0ne relation should be very smau. On the 0 ther hand, in our approach of using a
sorter there is no t so severe capac#y limdation and 0perand relations can be treated
$equlvalen\ell ly$. The sorter can not complete sortmg untd the last data item anives, so $\#$

takes longer to process a bucket than the associatw processor. But thts hardly
affects the performnce because buckets are processed in a $pipel\dot{w}oed$ fashion.
3) On B cket Auo cation

Bucket $se7\dot{w}l$ processing ts necessary under the $em/\dot{r}onme7d$ of finite resources of
processoτs. $A7ut$ as a whole to comple te an operation in $O(n)$ time, efficient
generation of bucket senal data stream must be realized. It $’\dot{\epsilon}$ required to output
tuples of a bucket $C07tlmuo$usly, $wh?ch$ are not necessarily $placed$ adjacently each
other inside the memory devices. Of $cou7se\tau 1$ is posStble to do some $prepa’ratory$

processing when a memory bank $\dot{v}\iota\mu\iota ls$ the data, but it ako needs to be performed
not disturbmg the mput stream It is almost in$\iota pos\dot{r}ble$ to do wilh magnetiC disk.
On the conlrary, Ct $?s$ clearly po ssib le to achieve it by RAM. Recently the
$deve\iota_{opme7}a$ of semtConcluctor technology is extraordmary and even at prese$7dtmed$
is found in a disk cash, so $d’\iota \mathcal{M}l$ be feasible to use RAM as the $sta\dot{\wp}7\iota g$ buffer.
However the capacity of the retation is very large even after the flter processing by
an associatiue disk, so il is meamngful to seek a $memo\eta$ dezrice lying between RAM
and dtsk on memory hterarchy. We can $fi\eta d$ a magnettc bubble memory satisfying
our $condit\dot{w}ns$. The chip capacily of bubble is at present four or more times greater
than that of semiconductor RAM and much more developmeτd is expected by
$cont\tau guous$ dtsk techno logy. Transfer rate is relatively tow but $’|l$ can be improved by

-8-

32

$acb\iota va$ting mulhple chlps in parallel. And dual conduc$tortechno$ logy also seems to
make a $b’\iota gco$ tnbution on $\#$. Recent $rap_{7}d$ progress $prom\tau ses$ well for the future
Moreover bubble has an0 ther advanlages such as nonvo latthly and flextble $start/stop$

mechantsm. $Cons7/lenn9above$ features, we thlnk $m\alpha gnet^{r}\iota c$ bubble memory $’\iota s$ also
a good $cand?datefor$ a stagmg buffer medlum We $p\iota\iota t$ some modlfixation to a
conventwnal $major\nearrow nmor$ bubble chip $a\tau\iota d$ make tt surtable for $efficw\eta t$ bucket senal
generatwn
4) On Nonulform\’uy of Buckets

In a Direct Access Method the $bucket$ overflow o#en degrades $\prime ds$ performcrnc e

largely because the storage medium τs dtsk. In our case we are gomg to use
magnettc bubble memory or large capac#y and low speed RAM for storage $med_{l}aof$

stagmg buffers where a $bucket?s$ constructed vsmg linked $l\tau stm$ the $fomera\eta d$ mark
$bdsm$ the latter, so there $?s$ no $conve7dionalo$verflow pro blem such as degradahon in
access time $a\tau ul$ memory efficwncy. But the bucket $s\tau ze$ fluctuatwn dself $ar\downarrow ses$

another type of pro blems dtscussed before. In $p\iota peline$ processmg of bucket gathenng,
?1 $\iota sdes’\iota\tau able$ that the $s\mathfrak{l}ze$ of each bucket $’\iota s$ uniform And the $\dot{r}ze$ itself had better
be clo se to the processor capacrty from the point of the processor $?Ad?zahon$ effic$\tau ency$

If d takes $o(n^{2})$ time to process a bucket, the $sm\alpha uer$ the bucket u, the faster a
$bucketc$an be processed. On the other hand, m the envrronment of our $case$ where
a $bucketc$an be Ixrocessed $mO(n)$ tlme, we do not have to have the $s\tau ze$ of a
$bucket$ so $sm\alpha u$. Excesslve bucket generatw$nw th$ the $\mu\iota rpose$ of bucket $s\iota ze$

reductton lncurs extra overhead rather than the load reductio$nbec$ause the bucket
auocatwn $\cos t$ must be $pa\tau d$ Therefore $d?s$ desrrable that the $s\iota ze\tau s$ close to the
processo$r’ s$ capacty. However, $\prime rt’\iota s$ dlfflcult to frnd a hash functwn dynamwauy
whtch generates buckets wdh the $s\iota ze$ of processo$r’ s$ capac#y So we do ’bucket stze

tunmg’ Namely we at first parlWion the relatio n into more buckets and then $lnteg\tau ate$

some of them $lnto$ a larger bucket wdh the $capac\tau 1y$ less than that of a processor
Through $th?spreprocess’mg$, we can have buckets of near umformdy. $Th?s$ ’bucket
stze tumng’ process $’\iota sweu$ knoum as Bm Packrng Problem which $’\epsilon$ NP-complete,
$a\tau ul$ the $pse’\iota 4do$ optmal solutio $n\tau s$ already obtamed. The overhead brought about by
$bucket$ lnlegratwn τs no t so large. Thts can be 0verlapped with the data stream

, generatwn of the bucket. Once the first $lnte$grated bucket $’\iota s$ obtained, then the data
stream generation of the $bucket$ can be overlapped vMh the bucket irdegration Even
by $th\tau s$ bucket sue tumng, $d’\iota s$ imposstble to make the $\dot{\Re}ze$ of each $bucket$ completely
umform

-9-

33

5. Abstract Architecture of GRACE and Execution Overview

5. 1 Abstract Arch#ecture
Abstract arch#ecture of GRA CE $?ssho$um in fig 2-1 GRA CE $?s$ composed of

three major componenls; DSP(Data Stream Processor), DSG(Data Stream
Generator), and SDM(Secondary Data Manager).

SDM employs dtsks as secondary storage $dev ces$ and stores the relatwns on them.
The disk can transfer data from au heads of a cylinder m parauel, $a7td$ ti is

equlpped wrth pter processing functwn which includes selectio n, restriCtwn, bit marp
$mani\mathfrak{X}alwn$, and simple projectwn(attribute selection). On-the-fly processing limtts
the auowable complexdy of the predicate in selection. The remainder of the predicate
whtch canno t be evalmted in the filter processor of SDM is rendered to DSP. The
hashing und hashes the tuples on specefied attribute and generates bucket ids.

DSG emptoys RAM or magnettc bubble memory and $F^{ro\dot{v}des}$ the working space.
To DSG, the relatwn fltered $a7\alpha$ hashed on $SDM\prime lS$ staged and the resnu relation
generated $mDSP$ is retumed. From DSG, the bucket $se\dot{n}\alpha l$ data stream is generated
and senl to DSPs.

Each $DSPco$nststs of hardware sorler, flter processor, data mampulatwn und,

and hash und etc. It processes a bucket sent from DSG using $s\iota tchun\tau ls$ and
produces a $resu t$ relation.

5.2 Query Execulwn on GRA CE
Here we $con\dot{s}der$ how the query $\dot{\tau}s$ executed on GRA CE. The query is assumed

to be a complex one and have many joins and projechons, etc. The $que7y$ processing
conststs of lwo major phases: staglng phase and processmg phase.

At the stagmg phase, relations necessary for the first join 0peratio n are staged

from SDMs into DSGs. The data stream from disk $’\iota s$ led lo the fitter processor in
SDM, where selectton and simple projection are performed on the fly. And then the

fttered stream $1S$ hashed on the attribvle which $pa7ticlpates$ in that 0peratton and
hashed $id?s$ attached wdh each tuple. These hashed data $strea7Y\mathcal{B}$ are transferred
from SDM to DSG over network between them Once the SDMs begin to 0utpat
their data streams, DSGs receive the tuples and mamtam bzeckets corresponding to
the hashed value. The relatwns are clustered 0verlapped wlh data transfer during
the staglng phase. When DSG comptetes data stream input, the clustered relatwn

depicted m fig 1 is $conceptmu_{y}$ produced $mDSG$.

At the processmg phase, actual $process’i7\iota g$ is performed between DSGs $a7u1$

DSPs. After the staging phase DSGs literally generate data stream bucket-sertau_{y} to
DSPs As a bucket is $eqmu_{y}$ spread $over$ DSGs, the DSP has to attach the
appropmte data stream and gather the tuples which belong to that bucket. This
proceeds in pipeline $fash\dot{w}na\eta d$ the data streams generated by DSG are not disturbed
so much. The data gathenng process itself $?s$ overlapped with the sorting process. A

hardware $so\tau Y$er $mDSP$ sorls the inpui tuples keeping up with the stream When au
the tuples of a bucket are took m a $DSP,$ τl begins to opemte on the sorted data
stream from the sorler Most of the operations necessary for relahonal data base
supporl can be performed $effi_{C7}ently$ on the sorled stream $Afle\tau DSP$ processes a

$arrow 10-$

34

bucket, ti then proceeds to next bucket. Buckets are processed m parauel uslng
$mult_{l}ple$ DSPs. O ne relatwnat algebra 0peratwn termmates when au the buckets are
consnmed.

5.3 Operator Level Plpelme
Each 0perationm a query tree $?sexe$ cuted as descnbed ab ove . As $?s$ shoun in

fig 2-2, 0 ne operahon corresponds to one data flow cycle; a data stream $?s$ generated
at first $mDSG$ and then passes through DSP and at last $\dot{\tau}s$ retumed back to DSG .

In a cyc le, au the tuples m the source DSGs $?s$ transferred to the target DSGs. A

complex query comprisrng mulbiple 0perations is lmpleme$n4ed$ by repeating $such$ cycles.
As we can see $mfi\theta 2- 2$, once a data flow cycle termmates, new cycle of the next
operatwn begins. Here we should $not?\mathcal{L}e$ that we don’t have to $i\eta lerleave$ the
hashmg cycle of a result relatio n for the next operatio n. When a DSP processes a

bucket, it hashes the result tuple on the subsequent 0peratton and $0?A\mu ds$ a resutt
data stream to DSG . Namely ctustering operaho n of a result relahon for the next
operation is 0verlapped with the actual processing of the presenl operahon. We

named thzs ’Operator Level Pipelme’ By this processing schema, $van’|shes$ the
0verhead which we are afraid to be caused by clustering as preprocessing. The first
clustermg processing $?So$verlapped with the stagrng phase. We don’t have to execute
0perators 0 ne at a $\hslash mefor$ the cases where sufficiently large space in DSG is
$ava?4able$. More than 0ne operatwn could be perfomed simultaneously. As many
cyctes as the $he?ght$ of a query tree whtch could be optimtzed as low as posstble would
be requlred to get the result.

As mentioned above, our machine GRA CE can execute a complex query very
effictently $wdhrepet\tau 4we$ data flow cycles. Accordingly, we can expect that GRA CE
can $exec\tau de$ join sequence much faster than the any DBMs $F^{roposed}$ so far

35

6. Summary

$Most$ of the data base machmes propo sed so far adopted a βter processor as their
$baS\mathfrak{l}\mathcal{L}$ component, and selects necessary records by evaluating qualificatwn predtCates
based on exhaustive matching wdh futt scan of the fde, by which the 0verhead caused
by the auxdzary data management such as $md\tau \mathcal{L}es\tau s$ mtended to be reduced. For a
srmple query whtch includes only selectio n, thts approach would $suff\ddagger ce$. There are
$j0$m-dommant $enmronment[23]$, however, and $\#$ is difficult to attam a high
perfomance utth the ordimry approach of the filter processor. GRACE adopted a
novel relatwnal algebra processing algorthm based on hash $a\tau ut$ sort, an can
execute no $to7dy$ srmple que$7y$ but also complex one compnsmg many joins or set
operations rapldly. Whde the data streams are fixed in a secondary storage in the
premus machines, the $cl^{J}t4stered$ data streams appropmte for the given operation are
generated $dynam\dot{\tau}cau_{y}$ in GRA CE and can be processed keepmg up wdh the stream.
Thts auows a complex operatwn also to complete with one data flow cycle, and
moreover due to the operator levet pipeline, time overhead caused by hashing $?s$

effechvely canceted.
According to the taxonomy by O. H. $Bray \int 24J,$ GRA CE is classified int0 MPCS

(Muttlple Processor Combmed Search) machine smce drre ct search by the futer
processors in SDM and intirect search by DSP an DSG are combv ed and both $a\tau e$

processed by using no t a single but muuiple pro cessors. GRA CE ffiters out the
unnecessary records on the fly \’in SDM an processes the suwived records on DSG

an DSP $u!ith$ repetdive data flow cycles, namely it employs the combmed
architecture which inlegrates the merts of direct search and indirect search.

In this paper, we have descnbed the IJrocessing $algo$rithm and it has been shoun
that GRA CE can execute a relatio nal algebra complex very efficeeτdly . The abstract
$arch^{l}l1ecturea7zd$ execvlion 0 vermew on $\prime d$ are only briefly explained $a\eta d$ the deta#
about the actuat impleme$7dations$ such as the stntcture of hardware sorler,

bucket-serial data stream generator in magnettc bubble memory $un\#$, and data
stream $C07\iota lrol$ mechanism are prepared m the fulure paper.

-12-

36

References

1 Slotntck, D. L., $Log?c$ per Track Devtces, Advances m Compders, Vo l. 10,
J Tou, ed., $Academ\tau c$ Press, New York, pp.291-296 (1970)
2. Ozkarahan, E.A., Schuster, S.A. and Smith, K C., RAP-An Asso $c at\dot{w}e$ Processor
for Data Base Managemenl, Proc. AFIPS NCC, Vol.45, m1.379-387 (1975)
3. Ozkarahan, E.A. , Shuster, S. A. and Sevcik,K C., Performance Evaluation of a
Relatwnal $Assoc?at\dot{w}e$ Processor, ACM Trans. Database Syst., Vol.2, No.2,
pp.175-195(1977)
4. Oflazer,K. and Ozkarahan,E.A., RAP.3-A multi-micro ceu architecture for the
RAP database machine, Proc of the Int. Workshop on High Level Language
$Com\mu derArch\tau 4ecture,$ pp. 1 $08- 1$ 19(1980)
5. Copeland, G.P., $Lipovski_{\eta}G.J$. and Su, S. Y. W., The Architecture of CASSM: a

$c_{e}u_{ular}$ System for Non-numeric Processing, Proc. 1 st Annu. Symp. Computer
Archdecture, pp1 $21- 1$ 28(1973)
6. Su, S. Y. W., Nguyen, L.H., et al., The Architectural Features and Implementaれ on
Techniques of the $Muu_{7\dot{\mathcal{L}}e}u$ CASSM, IEEE Trans. Comput. Vol. C-28, No.6,

pp $430- 445$ (1979)
7. Su.S. Y. W., On Logtc-per-Track Devtces; Concept and Applications, IEEE
COMPUTER, Vol. 12, No.3, φ. 1 $1- 25$ (1979)
8. Uemura,S., Yuba, T., Kokubu,A., et al., The Design a7ut Implementahon of a
Magnettc-Bubble Database Machme, IFIP 80, pp.433-438(1980)
9. Olwer, E. J and Berra, P. B., RELA CS A Relatwnal Associatwe Computer System,
Proc. of the Fifth Workshop on Computer Architecture for Non-Numertc Processmg,
pp1 $06- 1$ 14(1980)
10. Berra, P B. $a\eta d$ Oliver,E.J., The Ro le of Associahve Array Processors m Data
Base Machine Arch#ecture, IEEE Computer, Vol. 12, No. 3, pp.53-61(1979)
11 De $W\# t$, D. J., DIRECT-A Mdtlprocessor Organizatwnfor $SuI^{y}porling$ Relatwnal
Database Managemertl Systerns, IEEE Trans. Compd., Vol. C-28, No. 6 (1979)
12. De $W\# t,D.$ J, Query Executionm DIRECT, Proc. ACM-SIGMOD 1979,
pp1 $3- 22$ (1979)
13. Kung, H. T. and Lehman, P. L., $Systol’ic$ (VLSI) Arrays for Retatioml Database
Operahons, Proc. of A CM-SIGMOD pp. 105-116(1980)
14. Song, S. W., A Highly $Concu7\tau en1$ Tree Machine for Database AppliCatwns,
Proc. of the 1980 Inl. Conf on Parauel Processing, pp.259-268 (1980)
15. Bane$7\dot{\eta}ee$, J., Hstao, D. K and Kannon, K, DBC-A Database Computer for Very
Large Databases, IEEE Tmns. $Com\mu Jt.$, Vol. $Carrow 28$, No. 6, pp.414-429(1979)
16. Menon, M.J. and Hstao,D.K, Design and $Analys?s$ of a Relatwml $Jo\dot{\tau}n$

Operahonfor VLSI, Pro c. Int. Conf on Very Large Data Bases, pp $44- 55$ (1981)
17. Tamka, Y., Nozaka, Y., et $\mathfrak{a}l,$ $P’\iota pelme$ Searchmg and Sorling Modules as
Compone7ds of a Data Flow Database Computer, IFIP 80, mp 427-432 (1980)
18. Oda, Y., Database Machine $Arch\tau tecture$ usng Data $Part?4ionmg$ Network,

IECEJ Techntcal Group Meetrng, EC80-72 (1981) (m Japanese)
19. Babb, E, Implementing a Relahoml Database by Means of Speceahzed

-13-

37

Hardware, A CM Trans Database Syst., $Vol.4$, No. 1, $pp1- 29(1979)$
20 $McGregor_{\text{・}}D.R.$, Thomson, R H. and Dawson, W N., $H’tgh$ $Perfo7mance$

Hardware $forD$atab ase System, Systems for Large Data Bases, Norlh-H$oua\tau 1d$,

pp. 103-116(1976)

21 Krtsuregawa, M., Suzuki S., Tamka, $H,$ $a\eta d$ Moto-oka, T., Appltcahon of Hash
to a Data Base Machme, The $23rd$ Informatwn Processmg Society Nahonal

Convenlio$n(1981)$ (in Japanese)
22. K#suregawa, M., et al., Relatioml Algebra Machme based on Hash and Sort,

IECEJ Techinical Group Meetmg, EC81-35 (1981) (m Japanese)
23. Hawthom, P., The Effect of Target AppltCatwns on the $De\dot{\mathfrak{B}}^{n}$ of Database
Machmes, Proc. of ACM-SIGMOD, pp.188-197 (1981)
24. Bray, O. H. $a\tau ul$ Freemcrn, H.A. , Data Base $Com\mu den$, Lexington Books, (1979)
25. Wah, B. W. and Yao , S. B., DIALOG-A $D\tau stnbuled$ Processor Organizatton for
Database Machlne, Proc. AFIPS NCC, Vol.49, pp.243-253 (1980) (not cded)
26. $Le\tau lich$, H. O., St

\cdotoege , G. $a7ul$ Zeider, H. C., A Search Processor for Data Base
Management Systems, Proc. Int $Conf$. on Very Large Data Bases, $w_{-}^{z80- 287}$

(1978) (not cited)

$r\backslash$

-\sim

-14-

38

a $uo\iota 1^{\epsilon}1\ominus H$

39

fig.2.1
$Abst\ulcorner ac_{-GRACE}1Architectu\tau e$

of

40

.
$\underline{G\geq_{J}}\cdot$

.

$>$
沖

$O^{\Phi}>$

$\underline{o\subset}$

$\overline{\supset\cup}$

田

$\dot{N}\sim$

$\frac{\dot{O}}{\dot{\llcorner}}1$

$\mathring{O\overline{\infty}}$
$0\infty \mathcal{O}$

$\mathring{\overline{\infty}O}$
ωCDO

