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Classification of Nash manifolds

By MASAHIRO SHIOTA

1. Introduction

In this paper we show when two Nash manifolds are Nash

diffeomorphic. A semi-algebraic set in a Euclidean space is

called a Nash manifold if it is an analytic manifold, and an

analytic function on a Nash manifold is called a Nash function

if the graph is semi-algebraic. We define similarly a Nash
mapping, a Nash ‘diffeomorphism, a Nash manifold with boundary,
etec.. It is natural to ask a question whether any two c”
diffeomorph;c Nash manifolds are Nash diffeomorphic. The answer
is negative. We give a countér—example in Section 5. The

reason is that Nash manifolds determine
’uniquely ﬁheir "boundary". In consideration of the boundaries,
we can classify Nash manifolds by Nash diffeomorphisms as
follows. Let M, Ml’ M2 denote Nash manifolds.

Theorem 1." There exist a compact real non—singular affine

algebraic set X, a non-singular algebraic subset Y of X

of codimension 1, and a union M' of connected components

of X-Y such that M 1is Nash diffeomorphic to M' and that

the closure M! of M' is a Nash manifold with boundary Y.

Here Y 1is empty if M 1is compact.




In the above we call M' a compactification of M.

Theorem 2. Let I%} N2 be any respective compactifications

of Ml’ M2. Then the following are equivalen%.

(1) — M, and M, are Nash diffeomorphic.

2
(ii) Nl and N2 are Nash diffeomorphic.
(1) N, and N, are c” diffeomorphic.

By the h-cobordism theorem [5] we have

Corollary 3. Assure that Ml and M are C° diffeomorphic,

2 —
that the dimension of Ml is not 3,4 nor 5, and that if
dim Ml > 6, for any compact subset A of M1 there exists a
compact subset A'D A of Ml such that Ml—A' is simply

connected. Then M, and M, are Nash diffeomorphic.

1 2

The correspondence M »+ the compactification of M shows

the following.

Corollary 4. The Nash diffeomorphic classses of all Nash

manifolds are in (1-1)-correspondence with the c” diffeomorphic

classes of all C° compact manifolds with or without boundary.

The next corollaries may be useful when we consider Nash

manifolds and Nash functions.

Corollary 5. Let MiDMi, M2 be Nash manifolds and a compact
(o]

Nash submanifold. Let f: M; > M, be a C mapping such that
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£ is a Nash mapping. Then we can approximate f Dby Nash

1
My

mappings fixing on Mi in the compact-open c” topology.

Corcllary 6. Assume that M 1is compact and contained in R

Then there exist Nash fﬁnctions fl"'

the common zero points set of fl,...,fp is M and that
.,grad fp on M span the normal bundle of M 1in R

.,fp on R"  such that

grad f n.

12"

2. Preparation

See [ 3] for the fumdamental properties of semi-algebraic sets.

Iemma 7. Iet. McR'  pe a Nash manifold. Then there exists a

Nash tubular neighborhood U of M in TR, (i.e. U is a Nash

manifold and the orthogonal projection p: U > M 1s a Nash

mapping).

Proof. Iet M be the Zariski closure of M in ]Rn. Let

Sing(M) denote the set of singular points of M. Then M-Sing (M)

is open and dense in M. Consider the normal bundle

N = {(x,y)€f4x}fw y is a normal vector of M at x
in R"}.
Then clearly N 1is an analytic manifold. Moreover N 1is
semi-algebraic. The reason is the following. We define the
normal bundle N of M-Sing(M) in the same way. Since N
is an algebraic subset of (M-Sing(M))xR', Nn(MxR") is

semi-algebraic. The equality
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NN (MxRY) =N N ((M-Sing (M) xR")

and the dense property of M-Sing(M) in M iﬁply that N
is the topological closure of NN (MxE') in M xR, Hence
N 1is semi-algebraic.

The mapping aq: N 3 (x,y) > x¥y€JRn is obviously of Nash
class. Let E be the set of critical polnts of the mapping

1
axq: NxN > R'xR'. Then NxN-E, contains

Ay = {(21,22)€PJXNI z,=2,=(x,0)}.

Let E2 be the set of all points (Zl’ZZ) €e N> N such that

q(zl)=q(zz). Then E, is a closed semi-algebraic subset of

N XN and contains the diagonal

A, = {(zl,zgj €NXN| z =z,].

2

Moreover the topological closure E2-A2 does not intersect

with Al because of the existence of c” pubular neighborhoods
~of M. Hence E1 U(E;:Zg). is a closed semi-algebraic subset

of NXN which does not intersect with Al.
Let ¢ be a positive continuous function on M defined by

¢(x) = dist((x,0,x,0), ElLJ(Ez—AZ)).
It is easy to see that any distance function from a semi-algebraic

set is semi-algebraic (i.e. the graph is semi-algebraic). Hence

¢ is semi-algebraic. Put



N' = {(x,y)€N]| 2]y} < #(x)}.
Then Nf is an open semi-algebraic sﬁbset of N. We want to
see that the restriction of g to N' 1is a Nash diffeomorphism
into R". It is trivial that the festriction is an immersion.

Assume the existence of points z.=(x ) and 22=(x ) in

17 %109 229)

1 =
N such that q(zl) q(zz), zl#zg. Then we have
Xty T XpMps

. 2

2 = Ix=xl 4y Y,
dist” ((x,,0,%,,0),(27,2,)) 5 5

2 60x)%, §(x,)°,

and 2 1yl < ?(Xl), 2(y2\ < ?(Xg).

' L2 2
It follows that [Xl—X2| —\yl—ygl and

‘ 2. 2,2 2 2
(xl—x21 +y1+y2 > Myl, 4y2.

Hence lyl—y2l2 > y§+y§. This is a contradiction. Therefore

g(N'") 4dis a Nash tubular neighborhood of M in R". The proof

is complete.
The following lemma will be used in the proof of Theorem 2,
but this may be iﬁteresting itself. The case of polynomials on

a Euclidean space was treated in Remark 6 in [11].

Lemina 8. let MCR' be a Nash manifold closed in R'. Let f

1

, f2 be positive proper Nash functions on M. Then there

exists a C  diffeomorphism - 1 of M such that floT and

f2 are equal outside a bounded subset of M.




Proof. The case where ‘M is compact is trivial. Hence we assume

~t

M to be not compact. Let f . be the extension of f f

1’ 72 1’ 2
respectively onto a Nash tubular neighborhocod U of M defined
by ?£=ficp, i=1,2, where p 1is the orthogonal projection.

Then ?&4 are Nash functioné, since any composition of Nash
mappings is of Nash class. We regard grad f;, i=1,2 as Nash

-~/

mappings from U to Iglalso.‘ The restrictions of grad f and

1
grad ?é to M  are vector fields of M. Let the restrictions
be denoted by W w2 respectively. Put
B = {xeM| Wy Wy > = -lwlxl|w2X|}.
Here < , > means the inner product as vectors. Then B is

seml-algebraic because of

B=Mn{xeU| <grad ?&(X),grad ?é(x)> =
- |grad ?i(x)“grad'?é(x)\}.

Obviously B 1s the set of points x where Wq 1s zero or

is a multiple of —Wyy and a real non-negative number.

We will prove by reduction to absurdity that B 1is bounded.

Yox
Assume it. to be unbounded. As R" is Nash diffeomorphic to
Sn—{a point al Dby the stereographic projection, we identify them.
The germ of B at a is not empty. Hence, considering the germ,
we obtain easily an unbounded one-dimensional semi-algebraic set
B'C B (see [3]). We can assume that B' 1s a Nash manifold with
boundary and Nash diffeomorphic to [0,»), because the set of

singular points of one-dimensional semi-algebraic set 1s a

semi-algebraic set of dimension 0. Let v Dbe a c” non-singular



vector field on B'. Then, by the definition of B, we have

Vfl(x)XVf2(x) <0 for x €B'.

On the other hand, any non-constant Nash function defined on
[0,2) is monotone outside a bounded subset, because the set
of critical points is a semi-algebraic set of dimension 0.
Hence one of the functions fllB' and f,|g, 1is monotone
decreasing outside a bounded subset. This contradicts the

fact that ¢ are proper and positive.

f
1° "2
Let K be a large real number, let &% be a c” function
on M such that
02z, ‘5’={O ror x| k?
. . 5
1 for jxl;(ﬂOl/“.

Put LM AL =K%, Lr=m o 1xi2k 2, nremn gy (2x) Y2,

For any real C15 Cy 20 with c,+c, > 0, the vector field

. 1 72
w'=¢lw1+c2w2 is non-singular outside B and satisfies w’fl,
w'f, >0 at an oint B h = i
5 vy p X €& such that cl(wlxi cziwle.

Choose K so that L'NB=¢ Put
- 1
w wl/fwli +-yw2/lw2\ on L',

Then w, W4 and w, are non-singular vector fields on L'.
Wfl, wf2 are positive on L', L" respectively. It

is sufficient to consider the case

Moreover

2
fl(x) = x° + el X for x (Xl,...,%q)eﬂﬁ.

1 n
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Since L 1s a level of fl, L is smooth, andv wq is transversal
to L. v

On any maximal integral curve of w, fl /;s non—singular
and monotone, and the set of;valueé is [K,»). Let vbe the

t
local 1 pafameter group of transformations of L' defined by

w. Then wt is well-defined for 0 < t < . Put
T (z,t) =y, (2) for (z,t)€Lx[0,x).
It follows that ' 1is a diffeomorphism onto L'. The mapping

(z,t) - (z,f

l°1T' (z,t)-K)

is a diffeomorphism of Lx[0,»). Let (z,t) + (z,s(z,t)) be

the inverse diffeomorphism. Put

'ﬂ(z,t) = m'(z,s(z,t)) for (z,t)e€ LX[O;w).

Then 7 1s a diffeomorphism from Ix[0,«) to L' such that
flov(z,t) =t + K for (z,t) € Lx[0,).

By the definition of 7 and m' we have a positive Coo function
p on L' such that ﬂ*(%f) = pw.

It follows from w(Lx{t>K})=L" that

3f2°ﬂ ,
§E—"’(Z’t) >0 for t > K.

Hence, for each x elL, the t-function fzon(x,t) on [K,») is

proper and non-singular. Choose real K' (>K) so that

-8 -
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f20ﬂ(x,t) > K for (x,t) € Lx[K',»),

Then we have a C° function f, on Lx[0,») such that fg(x,t)

O<t<=, is

3
c” regular for each fixed xelL, that f3(x,t)=t+K

in a neighborhood of Lx0 and that f3(X,t)=f2°ﬂ(X,t) for

(x,t) € Lx[K',»). It follows that (x,t) - (x,f3(x,t)—K) is a

diffeomorphism of Lx[0,®). Let n":(x,t) + (x,s'(x,t)) be

the inverse. AThen we see that

Hence

f2°ﬂoﬂ"(X,t) = t+K if s'(x,t) K'.

(Y

foem = £ omen” if s'(x,t) > K'.

Since s'(x,t)=t in a neighborhood of Lx0, we can extend

R

on M—Lf.

is proved.

onto M so that the extension T 1s the identity

Then flor=f2 outside a bounded set. Hence Lemma

3. Proofs of Theorems 1,2

For the sake of brevity we assume that M, M and M are

connected.

1 2

We also assume that the manifolds are not compact,

because the other case is well-known. Let n' be the dimension

of the manifolds. Let Gm m' denote the Grassmann manifold of
b4
+m?
m-linear subspaces in BT . Put
m+m'
Enomt = {(x,x) € Gm,m,xiﬁ | x ex}.
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Then Gm o' has naturally affinre non-singular algebraic structure [7].
3

Let ' denote M'-M' if M' is a manifold contained

in R% and the usual boundary if M' 1is a compact manifold

with boundary.

Proof of Theorem 1. (1) .First we reduce the problem to the case
in which there exist a real compaét non-singular algebraic set
X<R"? and an algebraic subset Z of X satisfying the follow-
ing conditions, (this was shown in the proof of Proposition 1 in
(91).

' (i) M 4is a connected component of X-Z.

(ii) For every point ae€?Z, there exists a smooth rational
mapping ¢ from X to IRn" for some integer n"sp' such that
z(a)=0, that
on U

on X

=1 - n" <
Z C C ({(Xl,..a,xn")-em | Xl...Xn"=O})

where U 1is a neighborhood of a in X, and that ¢  1is a
submersion on U. In this case we say that Z has only normal

crossings at a 1in X.

Proof. The boundary oM is a closed semi-algebraic set in R".

By Lemma 6 in [6], there exists a continuous function n on

n

R such that n—1(0)=aM and that the restriction of n to

R7'-3M is of Nash class, (see the remark after Proposition 1 in
[9]). Consider the graph of the restriction of 1/n to M.

Then the graph 1s closed in R"x R and Nash diffeomorphic to

1 n+1

M. Since Zﬁn+ is Nash diffeomorphié to S - a point by

the Stereographic projection, we can assume that the Zariski

closure M in R" is compact and that 8M _ 1is a point. Let

- 10 -
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A:M' > M be the normalization of M (see [7]). Then there

exists a Nash manifold M" open in M' such that the restriction
of A to M" is Nash diffeomorphic onto M and that M" is

a set of non-singular points of M'. It follows that @ aM"cC
A-l(aM) and that M' 1is compact because so is M. Apply
- Hironaka's desingularization theorem [2] to M'. Then we have

a compact non-singular affine algebraic set X of dimension n'
and a smooth fational mépping u:X - M' such that the restriction
of p to u—l(M") is diffeomorphic onto . M". Moreover we can

l(x*?(am)) has only normal crossings (Main

suppose that Z=u"
Theorem II in [2]). This means (ii). As au’l(M")Cz,. u_l(M")

1is a connected component of X-Z. Hence we can assume (i).

(2) Iet p:V >X be the orthogonal projection of a Nash tubular
neighborhood V of X in R'. Put

Z' = INM,

F = {(x,y)éfXXTRnl y is a normal vector of X

at x in :mn}.

Then the projection F - X shows that F is the normal bundle
of X. in R®. It is easy to see that F 1is a non-singular
algebraic set. Let F]Y denote FNYx R, the restriction of
the bundle to Y, for any subset Y of X.

. We want to show the following. There exist a compact
non-singular algebraic set Y in M of codimension 1, a connected
component M' of M-Y, a polynomial mapping q:jﬁnxjmnxjm > RrY

and open neighborhoods U;, U, of Yx0x0 in FIYXJR such that, -

- 11 -
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(1) a(x,0,0) = x for xE€Y,
(ii) ﬁlcuz,
(iii) q[U is a diffeomorphism into R" whose image contains
1 -
N"‘M':
(iv) q{U is an immersion whose image contains M-M'.
Hence we can say that FleZB and q(Ul) are the normal bundle

of Y in R" and a"bent¥tubular neighborhood respectively.

Proof. Iet a be the ideal of the smooth rational function
ring on X consisting of functions which vanish on Z. Let ¢
be the square sum of finite generators of -a'. Then for every
point a of Z, there exists an analytic local coordinate
system (xl,...,xn,) for X centered at a such that £=x§.,.x§"
in a neighborhood of a for some n". Put Y = g‘l(s)r\M for
sufficiently small €>0.  Here. Y is‘not necessarily algebraic,
so we approximate later it by an algebraic set.

For any point a<€?Z', ¢onsider the set of all connected
components of MnM(a small ball with center at a). Let T
be the disjoint union of the set as. a runs on Z'. Hence
an element ¢ of T means a pair of a point cl(c) ,Of Z'.
and a connected set 02(0) contained in M. Then T has a
topological manifold structure such that GI:T_+ X is a topolo-
gical immersion and that cg(c)rxoz(c')#¢ for close c, c'eT,.
Let v1:T %IRH be a continuous mapping which satisfies the

following conditions. For every point ¢ of T, let (xl,..

,X_,) be an analytic local coordinate syStem for X centered

n' ,
at a=cl(c) such that 02(C)={x1>0,...,xn">0}, n"<n', in a
neighborhood of a. Then Vl(c) is a vector tangent to X
at a and satisfies

- 12 -
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vl(c)xi >0 for 1

In
-
In
:S—

here we regard vl(c) as a tangent vector of X at a. This
‘means that vl(c) points at a point of 02(0). The existence
of vy is trivial. Moreover we can assume the. following,
using a CQ partition of unity. For every c¢€T, there exists
a C” vector field Ve(c) on a small neighborhood of a=ol(c)
in R® such that vz(c)a=v1(c) and that vg(c‘)=v2(c") on
the common domain of definition for any close c', c"e€ T.

Put

oé(c) = p_log(c) for ceT.

We remark tha‘c. p_l(Z) has only analytic normal crossings in V (see
[2] for the definition) and that oé(c) can be regarded as a
connected component of p—l(M)rT(a small ball with center at
ol(c)), because we are concerned with only an arbitrarily small
neighborhood of Z'. Consider the restrictions of V2(C) to
oé(c) for all c¢eT. Then the restrictions of v,(c) and

vg(c') to cé(c)(ioé(c') are equal for c¢, c'e T. Hence we

have a C vector field v on (a neighborhood of 2! ~in

3
Rn)(ﬁpfl(M) such that v3=V2(c),‘on oé(c). By the property of
Vs Vg is transversal to p‘l(Y) for any small €>0 (Y=£_l(€)
NAM).

Fix e. Using the integral curves of V3, we obtain a C°
imbedding a4 of a neighborhood Ul of ¥xOx0 in Fllx R

into.IRn such that

q;(x,¥,0) = x +y,

- 13 -
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aq

55;(X,y,t) = v for (x,y,0), (x,y,t)eU,

3q, (x,¥,t)

and that q.(U.) 1is equal to (a neighborhood of Z' in R")
171

N p_l(M). Here U, 1is chosen so that (U15YXOXO) is C

diffeomorphic to (F]YXIR,YXOXO). From these arguements it

oo

follows that M-Y has two connected components the closure of
one of which does not intersect with oM. Let thé component be
written as M'. Then we can assume that ql(Ui) contains M-M'
and hence that (iii). Let q, be a ¢” extension of a; to
R'x R'x R. Then there exists an open neighborhood U2 of
¥Yx0x0 in F]Yxiﬁ such that (ii) and (iv) are satisfied.

We need to épproximate Y and a5 by an4algebraic set
and a polynomial mapping. Since M' is a‘ ¢® manifold with
boundary, we have a c”  function x on X such that x 1is
c” regular on Y and. that the zero séﬁ of x 1is Y. Approximate
X by a smooth rational function 1n the c” topology, and
consider the zero set. . If we use the same notatibn Y for the
set, Y 1s a compact non-singular algebraic set in M of codim-
ension 1. We have no problem to apply the above arguement to
this Y, because the old Y can be’tranéformed to the new one
by a o diffeomorphism of R" arbitrarily close to the identity

By the equality

qz(x,0,0) = x for x€Y,

we have'polynomial functions ViseresV on jRnXIRHXZR and C°

k
. n n n '
mappings pl,...,pk:IR x R'xR -~ R  such that

VyPy4 + the projection onto the first factor,

q2 = i

i

™ s

1

- 14 -
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b3

and that vi=0 on Yx0x0. Approximate p, Dby polynomial mapp-

ings pi in the compact-open Cé topology. Then
v . .
Vi Py + the projection

is what we wanted. We have to modify U;> U, so that (i),

(iv) remain valid. But this is easy to see, hence we omit it.

The diagram is inserted here.

(3) By (i) in (2), @ maps diffeomorphically (q_l(M—M')(\Ul,
Yx0x0) onto (M=M',Y). The construction of Y and q in (2)

'shows that (q_l(M—M')r)U Yx0x0) is C° diffeomorphic to

1°
(Yx(-1,0],Yx0). Hence M and M' are C° diffeomorphic. We
want to prove that they are Nash diffeomorphic. As it is not
easy to prove directly this, we will use an intermediary Nash
manifold N which sﬁall be Nash diffeomorphic to M and M'.
In (3) we will define a ¢® manifold M" whose approximation
shall be N.

Let q’:ZRHXZRHXZR~+IEn be the projection to the first
factor. Put | |

A:iﬂxxm ,  S= the critical points set of q%le,
Y

B=(ANQ Y(2))-8 (where — reans the Zariski closure),

- 15 -
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c=(Ar\q“1(X))-S and B' = Bnﬁl.
Then A 1is a non-singular algebraic set, B and C are
algebraic sets of dimension n'-1l, n' respectively, and B’
is a semi-algebraic set of dimension n'-1l. Moreover B has
only normal crossings in C at every point of B‘1U2 (see (ii)
in (1)), ¢ is non—singulér at every point of CnMU,, and for
every point a of B' there exists an algebraic local coordinate

system (xl,...,x ) for C centered at a such that

n'

B'={x =O,x2;O,...,xn";O}L}...LJ{XILO,...,xn"_lio,xn"=0}

1
in a neighborhood of a for some n"<n' and that
(i) q' maps diffeomorphically {x1=0},...,{xn"=0} into Y.

We remark that B' 1is naturally homeomorphic to T in (2). Put
— "‘1 YT
C' = qg ~(M-M )f\Ul.

Then C' 1is the subdomain of C sandwichedvin between B' and
Yx0x0,
We want to find a C° manifold M" in R"x R'x R and
a ¢ diffeomorphism ¢ :M" - M such that
(i1) M"DC' , ¢=qg on C' , M'NB = 3M" = B' and

Mm"nc =C'.

Proof. Since q maps (C'UYx0x0, Yx0x0) diffeomorphically
to (M-M', Y), we only have to find a compact c” manifold M(B)

with boundary in R'x R'x R and a diffeomorphism ?‘:M(B) - M

- 16 -
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such that
(i) BM(B) = Yx0x0,
(iv) g =¢' on YXOQO,
v) m3nac = vxoxo, and
(vi) M3uc' is a ¢® manirold.

Let O_ denote the e-neighborhood of Y¥x0x0 in EB'x B’ R
for small €>0. Let Xy i=1,2, be a c” funétion on R™R"x R
such that

0<xy 21,5 x4 =f1 outside 0,

lo in o,

and that if (x)#1 then (x)=0. Consider the mapping
X1 X

P":0,_ N(C-C') > R'x R'x R

3
defined by
" = - ' - =
¢ (Z)"(l Xz(z))(0322:Z3)+X1(Z)(Q(Z) Zl,oso)+(Z1)O:.Q)9 zZ (Zl:
| 22,23).
Take sufficiently small €. Then, choosing X3 suitably we see

_that ¢" is a C diffeomorphism. It follows that

?"'((038_028) N(C-C'))c M'x0x0.
Put
(3)_ fars ' 0 . .
M =(M "Q(O3€n(C—C Y))x0 O»U‘f (038(\(0 cr)).

Then M(3)- is a compact C° manifold with boundary YxO0x0 (iii).

1

Let &' —:M' - m3) pe defined by

?'-l(x)={?"(q_l(x)r\OBE(\(C—C')) if x eq(o3€rw(c-c'))

(x,0,0) otherwise.

- 17 -
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Then ¢'"1 isa C” diffeomorphism such that ¢'=q in a

neighborhood of Yx0x0 (iv). From ?"(Oalﬂ(C-C'))=O€r](C—C'),
(3)

(vi) follows. For (v), we modify M as follows. Increasing

the dimension 'n 1if necessary, we can assume that

n-1 1

XcR'™ %0 , and hence C, MCR' 'x0x R'x R.

Let X3 be a C° function on M(3)LJC' such that X3 = 0
on YxO0x0UC' and >0 on M(3)-Yxoxo. Consider
(0% 5 %3 (%1 ,0,5,8),7,8) | (x,,0,5,8) e M3}
1)X3 13 > b > 3 l) b b

(3)

in place of M Then (v) is satisfied.

(4) Here we will approximate M" by a Nash manifold N fixing
the "boundary". Let L' be a small open semi-algebraic
neighborhood of B' in C, and L Dbe the union of M" and
L' such that I is a C~ -manifold with boundary. This 1is
possible since C 1is non-singular at every point of B'. Let
~-D' be an open tubular neighborhood'of L in IRHXIRHXIB, and D
be an open semi¥a1gebraic subset of D' containing L. We
can choose 4Mﬁ, L' and D so that DNC is a small neighbor-
hood of C' in C and that DNB is equal to L'MB and that
B has only normal crossings in C at every point of DnB.
Let r:D » L denote the orthogonal projection. Let h:D »> E

m,n'’

m=2n-n'+l, be defined by

n(z) = (hy(z),h,(z)) =

2n+1

(the normal vector space of L at r(z) in R ,z=r(2))

- 18 -
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for ze&D. Then h is a Nash map on r_l(L'), and h51(0)=L.

Remark 9. let f:M, =M, be a ¢c” mapping of Nash manifolds. .

Then we can approximate f by Nash mappings in the compact-open

c” topology (this is announced in [9]).

. Proof. By Proposition 1 in [9] there exist a compact non-singular

: n
algebraic set XlCZB 1, a closed semi-algebraic subset Bi of

X1 and a union Mi of connected components of Xl_Bi such that

(1) M1 is Nash diffeomorphic to Mi,

(ii) for every point x of B!, there exists an analytic local

1’
coordinate system (Xl""’xni) for Xl centered at x such

that

(M1,B]) = ({xl>o,...,xn,i>0},

{X:L:O: Xgio’ cee ,Xnn_z_O}U oo U{X:L;OJ v ’Xnn_lj__osxnn=o})
1 1 1

in a neighborhood of @ x, for some n{;pi. Hence we can say that

Mi is a compact analytic manifold with cornered boundary. We

' =M1 =R!
assume M1 Ml' It follows that aMl Bl'

In the same way as (2), we can construct a compact non-sin-

gular algebraic set Yl in leﬁ(an arbitrarily small neighbofhoo<

l) and an analytic imbedding qi:Y1XE—1,O] > Xl such that
qi(Y1XO)=Yl ~and that the image of qi' is an arbitrarily small

of oM

neighborhood of Bi. Put

{1 J— 1 - “
Ml ql(le[ 1,0])(JM1.

Then MH is a compact analytic manifold with boundary containing

- 19 -
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Ml’ and there exists a C° diffeomorphism mw of X1 arbitrarily

close to the identity such that v(Mg)c;Ml.
n
Let M2 be contained in TR 2, and p be the orthogonal

n
projection of a Nash tubular neighborhood of M in R 2 (Lemma

2

7). Consider fem on Mz. Then femr 1s extensible to Xl
N | R

and hence to R as a C° mapping to R Let n Dbe an

extension, and n' be a polynomial approximation of n. Then
n n
2

f'=n » R 2 is an approximation of f:lVI1 - R . Since

\) .
lMl’Ml

the closure of w(Ml) in Xl is compact, we can assume that
f!(Ml) is contained in the Nash tubular neighborhood of M2.

Hence pof':M1 - M2 is a Nash approximation of f. Thus Remark

is proved.

In many cases we want Nash approximation to be fixed on a

given semi-algebraic set. So the following are useful.

Lemma 10. For any c” function g on D wvanishing on DnB,

there exist C° functions Gpseeesly ‘and Nash functions By

.,62 on D such that

- Proof. Iet . p be the ideal of the smooth rational function ring

on RIXRXR consisting of functions which vanish on B. Let

81”"’82 be a system of generators of DP. We want to find
Upseeesly so that the equality in Lemma i1s satisfied for
these Bi, oy - By a c” partition of unity we only need to

- 20 -
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see this locally. This 1s trivial in a neighborhood of any
point of D-B.
For any point a of DMNAB, there exist smooth rational

functions Yl""’yk’al""’an" with k=2n+l-n' and for some

n"<n' such that Yys--+5Y, vanish on C, that §j...8 .

vanishes on B, that

B = {y;=...=y,=68;...8,4y=0}

nll
in a neighborhood of a and that

Y %o XY X6 %08yt Rix BUx R > gET

is a submersion in a neighborhood of a, since C is non-singular

at a, and B has only normal crossings at Aa in C.

-

Hence it is sufficient to prove that 1if

~ k"— ) _ ;_ _ _
D= R —{(xl,...,xk")} and B—{xl—...—xk—xk+l... .

[ee) "
with k<k'<k", and if a C function g on IRk vanishes on
B, then

= + e n
g = OqXqFe. o X oy Ky Ky

for some C functions QyseeesOpyqe The case when k=0 is
trivial. Hence, considering g(O,..;,O,xk+l,...,Xk"), we have
o . . . ' k" _ 4
a C function a, ., on R such that B=0p 41Xkt s X on
k"-k . s . .
O0x IR . This implies that 8=0y 1 Xyt Ky vanishes on
1" :
ox B ~X. Then the existence of ay5...50, Which satisfy

- 21 =
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= o,X,+...+0, X

g*dk+lxk+l...Xk, 1% k Xk

is well-known. Hence Lemma follows.

Lemma 11. With the same ‘g as in Lemma 10, there exists a Nash

function g' on D arbitrarily close to g and vanishing on

Dn B.

Proof. Using Remark 9, we approximate oy in Lemma 10 by

2
Nash functions af. Then g'= I ol

!8. 1s a Nash approximation
;1 171

i
of g and vanishes on BnND.

We continue with the construction of N. By Remark 9 we

- have a Nash mapping hi:D - Gm Q' which is an approximation of
_ m,

h,. Apply Lemma 11 to h Then we have a Nash approximation

1 2°

. 2n+1 ' 1 [ .
h2.D + R of h2 such that h2—0 on DNB. Let W be a

: "
Nash tubular neighborhocod of Em 0t in R" XIR2n+l where
3
1"
Gm N is naturally imbedded in R" for some n'".
3

Let s:W = Em nt be the orthogonal projection. Put

3

h" = (h",h") = soh' = se(h!,h

2 2

2

Then h":D = Em nt is a Nash approximation of h, and hg is identical to

3

h2 on D nB. Shrinking L and D if necessary, we take this

approximation in the uniform C° topology. Put

"o _ n—l - n"‘l
L" = h"" (G ,,x0) = hi"=(0).

>

Then thefe exists a Coo diffeomorphism ¢ from L" to L

- 22 -
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close to the identify such that w=ideﬁtity on DnNB, because

h is transversal to G x0 in E . Put w_l

My
mon mont (M)=N. It

follows that L" is a NaSh manifold containing Dn B ‘and that .
(M",B') is C° diffeomorphic to ' (N,B') identically on B'.

Hence N 1is the required Nash manifold:

(5)1mawiLLprowethat M and N are Nash diffeomorphic.

Let ®:L - X be the C° extension of the diffeomorphism
¢:M" > M to L such that &(z)=q(z) for z¢gM". Let Y¥:D >R

be a Cm> extension of = ¢ey:L" - X to D. Then V¥=q on DnB,
| and WIL" is an immersion. Apply Lemma 11 to Y¥-q. Then we
obtain a Nash approximation ¥' of ¥ such that V¥'=q on
DrﬁB. Compose W'lL" with the orthogonal projection p of a
Nash tubular neighborhood of X in Rr". This is well-defined
if we shrink L and D -and if the approximation is chosen
closely. Then the composed function V¥":L" - X is an approxi-
mation of ¥| ,=®ey:L" > X such that ¥"=q on DAB=L"NB.
Moreover we see Y"(N)=M as follows from the facts ¥"(B')
=q(B')=Z', that M 1is a connected component of X-Z' and that
W"IN is an immersion. It is ﬁrivial that MNOY"(N) 1is an
open subset of M.  Assume it to be not closed. Then there exists
a convergent sequence of points Xy>Xg5... in 'W"(N) whose

limit x €M is not contained in V¥"(N). . .Let be

_zl,zé,.;.
points of N such that W"(zi)=xi, i=1,... . Choosing a

subsequence, we can assume that converges to zg N.

ZysZosens
Then we have VY¥'"(z)=x. This is a contradiction. Hence ¥"(N)

>M. In the same way as above, we see that the set
txeu| #1502 2)

- 23 -
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is empty or equal to M. For any point =xeM, if we choose the
above approximation closely, this set does not contain x.

Hence V¥"| is diffeomorphic onto M. From the same

NNy
reason it follows that any connected component of X-Z'-M does
not contain any point of V¥"(N), namely that ¥Y"(N)CMUZ'.

Then ¥"(N)NZ'=¢. Hence ¥"|  1is a Nash diffeomorphism onto

M.

(6) Finally we -will prove: that M' and N are Nash diffeomorphi
For any point xé€ L"n B=DNB, let C;(L") denote the ring of C°
function germs at x in L". Then the ideal chc;’(L") of
germs vanishing on L"N B is principal because of the normal
croséings property of B in CpAD. Moreover we have a polynomial
function- on R'x R™x R which vanishes on DNB and the germ of
whose restriction to L" ~is‘a generator of 4. Choose D  so
small that the fundamenﬁal class of L"MNB 1is mapped to the zero

class-in Hn,_l(L";§Z2) by the inclusion map (this is possible

since N is a compact topological manifold with boundary B',
here we use infinite chain). Then we see easily that the ideal ﬁ
of Cm(L"), the ring bf ¢® functions on L", of functions
vanishihg on L"MN B is principal (see Lemma 1.in [12]). Appro-
ximate a generator of @ by a Nash function p by the method
of Lemma 11 so that p=0 on L"Nn B. Then it follows that o
generates d. Choose p so that p>0 on N.
Recall q': R™x R™x R + R", the projection to the first

- factor. The restriction of vQ' to B' is homeomorphic onto
Y. Let us extend this to N so that the extenéion maps diffeo-
morphically N to M'., Let v Dbe the unit normal vector field

of Y in X pointing to the interior of M'. Choose small L'.

- ol -
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Put
8(z)=pe(qlop(z)+p(z)veq'ey(z)) for zéaw_l(L').
Here we regard v as a mapping from Y to IBn, and p 1s the

orthogonal projection of a Nash tubular neighborhood of X 1in

]er

This is well-defined because q'(z)eY for =zel'.
Clearly © ié a Nash mapping. -

We can assume that L' M'={zeM"] pow_l(z)<é} for some
e >0. Let v' be the wit € vector field on L' the family of

whose maximal integral curves consists of {q' 1(x)N L' and

}xeY
which points into M" at every point of B'. For any point
aefB', there exists a local analytic coordinate system z=(zl,..

) for L' centered at a such that pow_l(z)=zl...z "

s Z
3 n

nf
for some n"<n' and that M"={zl>0,...,zn”>0} in a neighborhood
of a. By (i) in (3), v'zi>0, i=1,...,n" at a. It follows
that v'pcq)_l >0 on L'MM". Hence v' 1is transversal

to {zeNM"| pow-l(z)=€'} for some €'>0. This implies

that q' . maps,»{zé M" | pow’l(z)=s'} diffeomorphically onto Y.

Therefore is diffeomorphic onto, (a c® collar of

O low™ @)
M')-Y. The transversality of v' shows also that (M"-L',9(M"-L!
is diffeomorphic to (M"-C',3(M"-C')) so that if the diffeomor-
phism maps a point =z €3(M"-L') to =z'e€3(M"-C') we have q(zf
=q(z'). Hence there exists a diffeomorphism from (M"-L',3(M"-L')
to (M',Y) ‘whose restriction to 3(M"-L') is q'. Therefore we
extend © to 0:L" > X such that 6|y is a C” diffeomorphism
onto M',

Apply Lemma 11 to ©6-gq', and compose (the approximation
mapping+q') with p. Then we have a Nash approximation 0':L"
> X ~of © such that ©'=0 on L"AB. To see that O‘IN is a

Nash diffeomorphism onto -M' we only need to show the following

by the same reason as (5).



(1) ©'(B')=q'(B')=Y.

(i1) M ‘is a connected component of X-Y.

(1) G'|N is an immersion.
(i) and (ii) have’been shown already; It is trivial that
e'lN—w_l(L') is an immersion. Hence We only have to prove the
following.

1

n' . n'_ . : n'
Statement. .Iet 6,:R° -+ R be a submersion, K¢R be

1

a compact set. Let vl be a unit C° vebtor field on Iﬁn

the family of whose all maximal integral curves consists of

]

{eil(y)}q Lro1e Put o e, (x)=xq...x ) ERD .

for x=(x1,...;x
yeR

n" n'

'Assume that v.x,>0, i=1,...,n"(<n'). Let (ei,eé) be a C% close

171
approximation of (61,62) such that aé-l(O)ZDGEI(O). Then

(ei,eé) is an immersion on {x1>0,...,xn">0}fﬁK.

_ Proof of Statement. Since eé vanishes on {xl=O}U .o U{xn,,=0},

1
there exists a C function n on R such that eé=n62. We

see easily that n 1s close to the function 1 (see the statement
at p. 268 in [10]). Replacing n by a C° function which is
equal to n 1in a neighborhood of K and is close to 1 in the

Whitney c” topology, we can‘assumé that

a(nil)

Bxl

> 0 on R .

Then n:(xl,.:.,xn) - (nxl,x2,...,xn) is a C diffeomorphism

close to the identity. Since 6é0ﬁ—1=92 and  w{x,>0,...,x >0}

={x,>0,...,%x,»>0}, we need to treat only the case where 05=6,.

n
By the same reason as above, we can assume that ei is suffici-

ently close to el in the Whitney c” topology. Then ei is

- 26 =~
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a submersion. Let +v! be the unit vector field on Zﬁn' the

1
family of whose all maximal integral curves consists of {ei—l(y)
} nt—y and which is close to v,. Then we have vixi>0, i=1,
yeR
-«..,n". Hence
vilxy.oox w) >0 on {x;>0,...,x 4>0}.

This means that the Jacobian matrix of >(8',62) has the rank n'.
on {x1>0,...;xn">0}. We complete the proofs of Statement and

hence of Theorem 1.

Proof of Theorem 2. lLet Nl’ N2 be contained in non-singular
n . —

1° X2C:R respectively so that aNl—Yl and

8N2=Y2 are non-singular. The implication (ii) = (i) 1is trivial

First we will prove (i) = (ii). Let ?l’ ?é be Nash

algebraic sets X

functions on X X respectively such that ?;l(o)=Yi, {?i>0}

1’2 72
=M; and that ?i are C° regular at Y;. The existence of

such ?i follows from the non-singular property of Yi(see
Lemma 1 in [12])(in fact, we can choose as ¥, polynomial

functions). Let @l, @2 be positive proper Nash functions on

Ml defined by

0y = VBl s 9 = AFly Do

where T:Ml -> M2 be a Nash diffeomorphism. Apply Lemma 8 to

@l and @2. Then there exists a C° diffeomorphism w of

Ml such that @1 and @20n are equal outside a compact subset

of M,. Hence we have §a=§20Toﬂ on (a neighborhood of aMi

1
in Ml)-aml. This means that Tom maps {91=€} to -§b=s}

for small €>0. Hence the restriction of Tom on {?1;8} for
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small >0 is a €~ diffeomorphism onto {¢2;e}. As {?l;e},

{92;5} are C. diffeomorphic to Nl’ N2 respectively, N, and

N2 are C° diffeomorphic.

We prove the inclusion (i) = (ii) in the next general form.

Lemma 12. Iet LlDI?, IﬁfDLé be compact Nash manifolds with

or without boundary and cOmpacf Nash submanifolds. Assume L2=

8L, 1if L,N3L,#$. If there is a C diffeomorphism from

(Ll,L2) to (L',Lé), we can approximate it by Nash one. If

the restriction of the given diffeomorphism to L2 is of Nash

class, the approximation can be chosen to take the same image

as the diffeomorphism at each point of Lg.
~Proof. The idea of the. proof is the samé as in Proof of Theorem

1, and this proof i1s easier than that since L2 and Lé are

smooth. Hence we give only the sketch. The case where Ll’ Li

have the boundaries: Consider their doubles L3, Lé, and give

them Nash structures [7]. We approximate the natural respective

imbeddings- of Ll’ Li into L3, Lé by Nash mappings. Then Wacén

1 Li as contaired in L3, Lé

morphism from (L3,L1,L2) to (L',Li,Lé). If we can approximate

regard L respectively, and there is a ¢ diffeo-

the induced diffeomorphism from (L3,3L1L/L2) to (L',BLiuzLé)

by a Nash one, Lemma 12 follows. Hence we can assume that Ll’

Li have no boundary. Here we do not necessarily assume that L2

has the global dimension, namely that the local dimension 1s constant.

Assume that L is connected for the sake of brevity.

2

Let m:(L.,L.) - (L!',L!) be a C° diffeomorphism. If |
1°72 T2 L2
is not of Nash class, by Remark 9 we approximate ﬂlL by a
‘ 2

Nash diffeomorphism 'n':L2 - Lé. Choose 7' very closely.
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Then we easily- find a Cé extension 7r":L:L - Li of m' such

that 7" 1is an approximation of mw. Hence, from the beginning

is of Nash class. Let ‘L,, L! be
5 1 1

1
respectively, and 'p:IBnXIRn« +2Rn,

we can assume that ﬂlL

\]

contained in R", R"
| 1] . 1

p’:IBnXIRn > R’" be the projections. Let LECJRn+n denote

the graph of ﬂIL . Then L} 1is a Nash manifold such that
2

?IL"’ p'lL" are Nash diffeomorphisms onto L2, Lé respectively.-
2 2 -
By the normalization of the Zariski closure L" of L!", there
2 2

exist a non-singular connected component S of an algebraic

2
1" 1" 1
set in R" and a linear mapping ¥ from Rr" to :Rn+n such
that 948 is diffeomorphic onto Lg. Increasing n" if
‘ LU ©
necessary, we construct a ¢ ‘manifold Sl in ®" and C
+ 2 . . 1
diffeomorphisms w.Sl > Ll’ P .S1 > L1 such that SZC:Sl,
= 1=n'0¢ 3 = . 3 : 1
Y=po¢ m182,u)~p ¢ m1825Hﬁ Szf\31 82 Using Em mt A the same

>

way as Proof (4) of Theorem 1, we reduce Sl to a Nash manifold.
Then we can find in the same way as Proofs(5),; (6) Nash approxi-

mations ¥:S; ~ Ll’ ‘P':Sl > Li of ¥, ¥' such that V¥=y, ¥'=y’

on S,. Hence w'ow'lle + 'L} 1is a Nash approximation of m

such that yroy lar on L.. Lemma is proved.

4,  Proofs of Corollaries

Proof of Corollary 3. Let N;, N, Dbe the compactifications of

Ml’ M2 respectively. By Theorem 2, we only have to prove that

-Nl -and N2 are C° diffeomorphic. Let L be
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a closed C- collar of N,. Put L' = N;-L, L" = L'-L"'.

Let m: M1 - M2 be a C diffeomorphism. We see easily that

(N2—ﬂ(L'); aN ﬂ(L")) is a C° h-cobordism. On the other

23

hand it followé from the assumption that 8N2 is simply

connected for dim My 2 6. Hence, by the h-cobordism theorem

Nz-ﬂ(L') is diffeomorphic to 3N2 x [0,1]. This means that

there exists a homeomorphism T: Ny > N, such that TIL

and are C° diffeomorphic. It is easy to modify

TIL'uL"
T to be a C° diffeomorphism.  Hence Corollary 3 is proved.

Proof of Corollary 4. The correspondence is trivially injective

by Theorems 1,2.

Sﬁfjectivity: .Let N Dbe a compact ¢” manifold with or
wifhout boundary. We need to give to N a Nash manifold structure.
If N has the boundary, consider the double N', and regard N
as néturally contained in N'. 1In the other case, put N'=N,
oN=¢. Then; by a theorem in [1], (N',3N) is c” diffeomorphic
to a pair (an affine non-singular algebraic set, a non-singular
algebraic subset). By this diffeomorphism, we give to N' an
algebraic structure. Then, since N-9N 1is a union of connected
'éomponents of N'=-9N, N-9N 1is a Nash manifold. Obviously N

is the compactification of N-3N. Hence Corollary follows.

Proof of Corollary 5. Let N1 be the compactification of Ml'

Obviously we can assume that f 1is extensible to Nl and hence

to the double of Nl' Consider a Nash manifold structure on the

double and a Nash imbedding of Ml into it. Then, from the

beginning we can assume that Ml is compact. Let M2 be containd
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in ]Rn, and q be the orthogonal projection of a Nash tubular

neighborhood of M in R". Regard f as a mapping to Rr". 1If

2
we can approximate f by a Nash mapping f':Ml +R" so that
f=f' on Mi, then qef! :IVIl - M2 1s a required Nash approximation
of f. Hence it is sufficient to consider the case of M2= R.
We regard R as Sl—{a point al}. Let
LCI\/IlXSl be the graph of f. Put L' = MIX{b} where Db
is a point of Sl. Then there exists a C° diffeomorphism
m  of M1 XSl such that
mT(x,b) = (x,f(x)) for xéMl.
It follows that w(L')=L and that W|M,x{b} is of Nash class.
1

Apply Lemma 12 to

T (M xSt MIx (b)) (M xst,m(M1x{b1)).

Then we obtain a Nash approximation

., T of 7w such that T = 7 on MiX{b}. For every point

X eMl’ put

g(x) = pot(x,b)

where p: Ml b Sl - S1 be the projection onto the second

factor. Then g  1is what we want.

Proof of Corollary 6. This corollary follows from Lemma 12 and the

fact that R’ is Nash diffeomorphic to S"-{a point} and
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that (S",M) is ¢° diffeomorphic to (an affine algebraic

set, a non-singular algebraic subset)[1].

5. An example

Iet W, W' -Dbe compact ¢® manifolds with boundary such that
the interiors are c” diffeomorphic, but W and W' are not
diffeomorphic (see Theorem 3 in [4]). Let X, X' be the doubles
_of W, W' respectively. We regard W, W' as naturally contained
in X, X' respectively. By a theorem in [1] we can assume that
X, X' 9W and 9oW' are all non-singular algebraic sets in Rr".
Let P} P' be polynomials on R"' such that

oW, P"l(o> = JW'.

p 1 (0)
Put

Y = {(x,y)€ Xx R| yP(x)=1},

Y' = {(x,y)e X'x R| yP'(x)=1}.

Then Y and Y' are C° diffeomofphic non-singular affine
algebraic sets, and their compactifications are the disjoint

unions of 2 copies W+W (< X+X) and W'+W' (C X'+X') vrespectively.
Hence, by Theorem 2, Y and Y' are not Nash diffeomorphic.

Here it is not essential that Y, Y' are not connected. In fact

we can find connected examples.
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Kyoto University, Kyoto 606, Japan
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