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On the Cowell-Numerov Type Difference Equation

Generated by Finite Elements

Okayama University of Science
Masatoshi Ikeuchi W P M 2
The Cowell-Numerov type difference operators are generated for
n-dimensional linear eigensystems by non-standard finite elements
and the convergence theorem for the eigenvalue is proved.
Numerical example is also shown.

l.Introduction

The paper‘is concerned with the linear difference equation
(linear eigensystem) in the form
(E) Ay U, = Ay By Uy - in @ @ R"
where Ah' Bh are bounded holomorphic for the parameter h ¢ R+,and
Uh is the solution associated with the eigenvalue Ah € Oh(BglAh).
Let (E) be the discrete approximation to the original differential
equation A u = A B u. Assume that Ah and Bh are second-order,
Then the best rational approximant to the characteristic solution
of the original equation gives rise to the Cowell-Numerov operator

in Q@ Rl

[Froberg 1970], Lambert 1979].

The objective is to form the Cowell-Numerov type(C.N.) operator
in @@ R"™ by the use of finite elements[Milne 1980] and establish
the convergence theorem for the eigenvalue Ah + )€ o(B—lA).
Unfortunately, the standard finite elements [Strang & Fix 1973]
cannot generate the C. N. operators. Thus we start with

non-standard finite elements.

2.Preliminary

We prepare the notations:
Q the open and bounded polygon G Rn,
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A ,the Laplacian 82/8xi (i=1,2,...,n),

R, the real subset [0,+x),

H"(2) the m-th order Hilbert space with the inner product
_ | k| kiy (glkl Kiyig

(u’v)m,Q = IQ{ZIklgm(a u/3x; 1t (8 v/3x; ) }ax

and the semi-norm

2 1/2
4

Vg, q = (/g (aMv/ax, ™) < ax}

a(v,v) the (stiffness) energy inner product |v]i'g,

b(v,v) the (mass) energy inner product lvlg,g'

Now we present the original eigenproblem
(Pl) find (\,u) ¢ R+ X HZ(Q), such that
- Au=2xnu in @ for u = 0 on 93Q.

It is known [Strang & Fix 1973, Ciarlet 1978] that (Pl) becomes
equivalent to -
(P2) find (A,u) in the admissible space R+ X Hé(ﬂ), such that

a(u,v) = A b(u,v) for all Vv in Hé(ﬂ).

3.Finite Element Spaces
For the formulation of non-standard finite elements, we define
the finite-dimensional subspaces Sy and Vi, as follows.
(T1) The trial space
_ 1

Sy := span{Fl,...,FN} < Hy (?)
in which for the piecewise linear function fi(xk) with compact
support

=g n : =

Fi(x) = Hk=l fi(xk), and dlm(Sh) N.

(T2) The test space

o a o 1
h = span{Wl,...,WN} < Hy(R)

\'%
in which for the piecewise cubic function w?(xk) with compact
support |

Wg(x) = Hkgl w?(xk), ﬁhe parameter o = (al,...,dn) € Rz,

and dim(Vg) = N.

Here, we choose w?(xk) in the form

—_ 2 —
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where gi(xk) is the cubic even function satisfying

IQ gi(xk) dxk = 0.
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Thus, using (Tl1) and (T2), our problem (P2) can be approximated as

(P3) find (Ah,uh) in the trial space R+ X Sh' such that

a(uh,vh) = Ah b(uh,vh) for Vh in the test space Vg.

From (P3) we can derive the following statements:

(S1) (P3) is equivalent to the standard finite element

formulation for (Pl) if and only if the parameters o = 0

(k=1,2,...,n) are chosen.
(S2) For arbitrary parameters Oy (k=1,2,...,n),
subspace of Vﬁ is included in Sh.

(Proof) We know from (T2) that

the minimal

4

— a .
Vh = Zi=p G (Bf oo 95) €V oTe
= ¢ N
for n = 1.
4.Difference Equation
As the trial function u, € S, we set
_ N
up (%) = Loy Upy Fy(x)
where U, = uh(xl) is the nodal eigensolution at xt =

€

R

i i
(xl,...,xn).

Then the finite element solution (Ah,Uh) to (P3) satisfies the

difference equation
a ‘ a
(D) A U = Ah B, Uy

in which U, = {Uhl""’UhN}‘

Let us show some examples for the second-order difference

operators Ah and B, in (D).

(EX1) Case of n = 1:

o _ R 2

BY = (h%/6) [(1-a)) E; + 2(2+a)) I + (l-ay) E
2 _ 2
= (h"/6)[(1 al) 61 + 61]

_3_
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where Ek is the shift operator to Xy direction and 6; is
the central difference operator.
From (EX1) we have readily the following statements: .
(S3) For an arbitrary parameter o, € R+, Ah and Bh satisfy the
consistency conditions [Lambert 1979].
(s4) For the parameter a, = 1/2,
B{1/2) = m®/12)16,% + 121]
which is the Cowell-Numerov operator [Henrici 1962, Froberg
1970, Lambert 1979].
(S5) For the parameter al =0,
B ") = (m%/6)18,% + 61)
which is the standard finite element mass operator.
Therefore we call the Cowell-Numerov type (C.N.) operators’both
% and B} with a = (1/2) in the paper.

h h
(EX2) Case of n = 2:

A

1 1

Ah = [4(4+al+a2)1—2(l+al+a2)(E1+El +E2+E2 )
-1,.~-1 -1 -1 v
--(2—0Ll-0L2)(ElE2+ElE2 +El E2+El E, )1/6,
¢ _ (2 : _ -1 -1
Bh = (h /36)[4(2+al)(2+a2)I+2(2+a1)(l cxz)(El+El +E2+E2 )
-1, -1_ . -1-1
+(1—al)(1-u2)(ElE2+ElE2 +El E2+El E2 )]
(1/2)
By

2

c.d.=6 c.d.=144h

Fig.lA Cowell-Numerov type stencils for n = 2,
__4_
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(EX21) The whole C.N, stencils for n=2 are illustrated in Fig.lA.

(EX31) The C.N. stencils for n=3 are illustrated in Fig.lB.

c.d.=1728h%

Fig.1lB Cowell-Numerov type stencils for n = 3,

5.Error Analysis

We discuss on the error analysis of the eigenvalue Ay in (D).
For the characteristic solutions to the original equation in (P1)

we meet with the approximate problem

(A1)  expl+i/Ah] =R #+ i(1-R %)1/2

2

+ ek/2
where 1i° = =1, €1 is the residual term and
- [1-(c2 2 - -

Rk(s) = [1-(s /6)(2+ak)]/[l+(s /6) (1 uk)] for s—/khh.
For simplicity, instead of (Al) we can consider the rational
approximate problem in the form
(A2) cos(/xh)==Rk(/Ahh) + € . for k=1,...,n.
From the Pade approximate theory [Cheney 1966, Brezinski 1980],

we have the following statements:

(S6) The parameter o = 1 gives the (2/0)-Pade approximant

to cos(¥YAh) in (A2).

1/2 gives the (2/2)-Pade approximant

(S7) The parameter 0O,
to cos(VAh) in (A2).

In rable 1, we give the (1/m)-Pade approximants to the Ry (s).
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Note that the standard finite element solution derivates from the
Pade table, therefore it cannot gives rise to the best rational

approximation.

Table 1 Pade table for Rk(s).

3=0 1=2 1=4

m=0  1/1 (1-s2/2) /1 (1-s2/2+s%/24) /1
{meaningless} ' 2 2
{(1-s“/3)/(1+s“/6) } *

m=2 (1-5s2/12) / (1+s2/12) nonlinear
v . }
linear (1-11587252+313s%/15120) /
m=4 etgensystem (1+11s2/252+13s%/15120)

note: s = VYA h,

*standard linear finite elements.

From the statement (S6) and the result in Table 1, we have the

following convergence theorem:

(Thl) Let X and Ah be sufficiently small numbers. There
exists a positive constant Ml such that
3/2..2

/Ay = VAl £ M3 277 %'h

for the parameters ap = 1 (k=1,...,n).
From the statement (S7) we have the following convergence theorem

with respect to the C.N. operators:

(Th2) Let A and Ah be sufficiently small numbers. There

exists a positive constant M2 such that

5/2 . 4
[y = VAl < My 2

h
for the parameters o = 1/2 (k=1,...,n).
(Proof) We write
Ry (s) = (1-552/12) / (1+s2/12)
for a = 1/2, in which s =/Ahh. By the total

differentials we have

AR, = -[s/(1+s%/12)%]14s = -¢

k k

_6_



141

where As = (/Ah—/k)h. Thus we obtain
s As = (1+s/12)% e, < m. s®
k =2
for some positive constant M2.

6.Numerical Example

We examine in numerical experiments the validity of the C.N.

operators for n = 3.

Fig.2 shows the convergence characteristics for the ordering

number of Xh and the parameter (or element size) h.
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Fig.2 Convergence characteristics.
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It is directly seen from the result in Fig.2 that (Th2) 1is valigd
and the C.N. operators are more useful than the standard finite
element operators.

7.Conclusion

The main results in the paper are summarized, as follows:
(1) The Cowell-Numerov type (C.N.) operators are generated in Q G
R" by the non-standard finite elements.
(2) The trial space 5y (a H%(Q)l) and the test space Vﬁ @ 5, are
formed for the non-standard finite elements.
(3) The C.N. operators give rise to the best rational approximant
to the characteristic solution.
(4) The convergence theorem for the eigenvalue Ah associated with
the C.N. operators is established by the Pade approximate theory.
It can be concluded that the C.N. operators are efficieht for
linear eigensystems,and that the non-standard finite elements are
more extensive.
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