On the Cowell-Numerov Type Difference Equation Generated by Finite Elements

Okayama University of Science Masatoshi Ikeuchi 池 内 雅 紀

The Cowell-Numerov type difference operators are generated for n-dimensional linear eigensystems by non-standard finite elements and the convergence theorem for the eigenvalue is proved.

Numerical example is also shown.

1.Introduction

The paper is concerned with the linear difference equation (linear eigensystem) in the form

(E) $A_h \ U_h = \lambda_h \ B_h \ U_h$ in $\Omega \ \square \ R^n$ where A_h , B_h are bounded holomorphic for the parameter $h \in R_+$, and U_h is the solution associated with the eigenvalue $\lambda_h \in \sigma_h (B_h^{-1} A_h)$. Let (E) be the discrete approximation to the original differential equation $A \ u = \lambda \ B \ u$. Assume that A_h and B_h are second-order. Then the best rational approximant to the characteristic solution of the original equation gives rise to the Cowell-Numerov operator in $\Omega \subseteq R^1$ [Froberg 1970], Lambert 1979].

The objective is to form the Cowell-Numerov type(C.N.) operator in $\Omega \subseteq \mathbb{R}^n$ by the use of finite elements[Milne 1980] and establish the convergence theorem for the eigenvalue $\lambda_h \to \lambda \in \sigma(B^{-1}A)$. Unfortunately, the standard finite elements [Strang & Fix 1973] cannot generate the C. N. operators. Thus we start with non-standard finite elements.

2.Preliminary

We prepare the notations:

 Ω the open and bounded polygon $\subseteq \mathbb{R}^n$,

 Δ the Laplacian $\partial^2/\partial x_i^2$ (i=1,2,...,n),

 R_{+} the real subset $[0,+\infty)$,

 $\begin{array}{l} H^{m}\left(\Omega\right) \text{ the m-th order Hilbert space with the inner product} \\ \left(u,v\right)_{m,\Omega} = \int_{\Omega} \{\Sigma_{\left|\mathbf{k}\right| \leq m}(\vartheta^{\left|\mathbf{k}\right|}u/\vartheta x_{\mathbf{i}}^{k_{\mathbf{i}}})(\vartheta^{\left|\mathbf{k}\right|}v/\vartheta x_{\mathbf{i}}^{k_{\mathbf{i}}})\}dx \\ \text{and the semi-norm} \end{array}$

$$|v|_{m,\Omega} = \{\int_{\Omega} (\partial^m v/\partial x_i^{m_i})^2 dx\}^{1/2},$$

a(v,v) the (stiffness) energy inner product $|v|_{1,\Omega}^2$, b(v,v) the (mass) energy inner product $|v|_{0,\Omega}^2$.

Now we present the original eigenproblem

(P1) find
$$(\lambda, \mathbf{u}) \in \mathbb{R}_+ \times \mathbb{H}^2(\Omega)$$
, such that
$$-\Delta \mathbf{u} = \lambda \mathbf{u} \quad \text{in } \Omega \text{ for } \mathbf{u} = 0 \quad \text{on } \partial\Omega.$$

It is known [Strang & Fix 1973, Ciarlet 1978] that (P1) becomes equivalent to

(P2) find
$$(\lambda, \mathbf{u})$$
 in the admissible space $\mathbf{R}_+ \times \mathbf{H}_0^1(\Omega)$, such that
$$\mathbf{a}(\mathbf{u}, \mathbf{v}) = \lambda \ \mathbf{b}(\mathbf{u}, \mathbf{v}) \qquad \text{for all } \mathbf{v} \text{ in } \mathbf{H}_0^1(\Omega).$$

3.Finite Element Spaces

For the formulation of non-standard finite elements, we define the finite-dimensional subspaces \mathbf{S}_h and \mathbf{V}_h^α , as follows.

(T1) The trial space

$$S_h := span\{F_1, \dots, F_N\} \subset H_0^1(\Omega)$$

in which for the piecewise linear function $f_{i}(x_{k})$ with compact support

$$F_{i}(x) = \prod_{k=1}^{n} f_{i}(x_{k})$$
, and $dim(S_{h}) = N$.

(T2) The test space

$$V_h^{\alpha} := \operatorname{span}\{W_1^{\alpha}, \dots, W_N^{\alpha}\} \subset H_0^1(\Omega)$$

in which for the piecewise cubic function $\textbf{w}_{i}^{\alpha}(\textbf{x}_{k})$ with compact support

$$W_i^{\alpha}(x) = \prod_{k=1}^n w_i^{\alpha}(x_k)$$
, the parameter $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_+$, and $\dim(V_h^{\alpha}) = N$.

Here, we choose $\mathbf{w}_{\mathbf{i}}^{\alpha}(\mathbf{x}_{k})$ in the form

$$w_i^{\alpha}(x_k) = f_i(x_k) + \alpha_k g_i(x_k)$$

where $g_{i}(x_{k})$ is the cubic even function satisfying

$$\int_{\Omega} g_{i}(x_{k}) dx_{k} = 0.$$

Thus, using (T1) and (T2), our problem (P2) can be approximated as

(P3) find (λ_h, u_h) in the trial space $R_+ \times S_h$, such that $a(u_h, v_h) = \lambda_h b(u_h, v_h) \text{ for } v_h \text{ in the test space } V_h^{\alpha}.$

From (P3) we can derive the following statements:

- (S1) (P3) is equivalent to the standard finite element formulation for (P1) if and only if the parameters $\alpha_k = 0$ (k=1,2,...,n) are chosen.
- (S2) For arbitrary parameters α_k (k=1,2,...,n), the minimal subspace of V_h^α is included in S_h

(Proof) We know from (T2) that

$$\nabla_{\mathbf{h}} = \sum_{i=1}^{N} c_{i} (f_{i} + \alpha_{1} g_{i}) \epsilon V_{\mathbf{h}}^{\alpha} ; \nabla_{\mathbf{i}} \epsilon R$$

$$= \sum_{i=1}^{N} c_{i} f_{i} \epsilon S_{\mathbf{h}}$$

for n = 1.

4.Difference Equation

As the trial function $u_h \in S_h$ we set

$$u_h(x) = \sum_{i=1}^{N} U_{hi} F_i(x)$$

where $U_{hi} = u_h(x^i)$ is the nodal eigensolution at $x^i = (x_1^i, \dots, x_n^i)$. Then the finite element solution (λ_h, U_h) to (P3) satisfies the difference equation

(D)
$$A_h^{\alpha} U_h = \lambda_h B_h^{\alpha} U_h$$

in which $U_h = \{U_{h1}, \dots, U_{hN}\}$.

Let us show some examples for the second-order difference operators ${\bf A}_{\bf h}$ and ${\bf B}_{\bf h}$ in (D).

(EX1) Case of n = 1:

$$A_{h}^{\alpha} = -E_{1} + 2I - E_{1}^{-1} = -\delta_{1}^{2},$$

$$B_{h}^{\alpha} = (h^{2}/6)[(1-\alpha_{1}) E_{1} + 2(2+\alpha_{1}) I + (1-\alpha_{1}) E_{1}^{-1}]$$

$$= (h^{2}/6)[(1-\alpha_{1}) \delta_{1}^{2} + 6I]$$

where \textbf{E}_k is the shift operator to \textbf{x}_k direction and $\boldsymbol{\delta}_k^{\ j}$ is the central difference operator.

From (EX1) we have readily the following statements:

- (S3) For an arbitrary parameter $\alpha_1 \in R_+$, A_h and B_h satisfy the consistency conditions [Lambert 1979].
- (S4) For the parameter $\alpha_1 = 1/2$, $B_h^{(1/2)} = (h^2/12) [\delta_1^2 + 12I]$

which is the Cowell-Numerov operator [Henrici 1962, Froberg 1970, Lambert 1979].

(S5) For the parameter $\alpha_1 = 0$, $B_h^{(0)} = (h^2/6) [\delta_1^2 + 6I]$

which is the standard finite element mass operator.

Therefore we call the Cowell-Numerov type (C.N.) operators both A_h^α and B_h^α with α = (1/2) in the paper.

(EX2) Case of n = 2:

$$A_{h}^{\alpha} = [4(4+\alpha_{1}+\alpha_{2})I-2(1+\alpha_{1}+\alpha_{2})(E_{1}+E_{1}^{-1}+E_{2}+E_{2}^{-1}) - (2-\alpha_{1}-\alpha_{2})(E_{1}E_{2}+E_{1}E_{2}^{-1}+E_{1}^{-1}E_{2}+E_{1}^{-1}E_{2}^{-1})]/6,$$

$$B_{h}^{\alpha} = (h^{2}/36)[4(2+\alpha_{1})(2+\alpha_{2})I+2(2+\alpha_{1})(1-\alpha_{2})(E_{1}+E_{1}^{-1}+E_{2}+E_{2}^{-1}) + (1-\alpha_{1})(1-\alpha_{2})(E_{1}E_{2}+E_{1}E_{2}^{-1}+E_{1}^{-1}E_{2}+E_{1}^{-1}E_{2}^{-1})]$$

Fig.1A Cowell-Numerov type stencils for n = 2.

(EX21) The whole C.N. stencils for n=2 are illustrated in Fig.1A. (EX31) The C.N. stencils for n=3 are illustrated in Fig.1B.

Fig.1B Cowell-Numerov type stencils for n = 3.

5.Error Analysis

We discuss on the error analysis of the eigenvalue λ_h in (D). For the characteristic solutions to the original equation in (P1) we meet with the approximate problem

(A1)
$$\exp[\pm i\sqrt{\lambda}h] = R_k \pm i(1-R_k^2)^{1/2} + \epsilon_k/2$$

where $i^2 = -1$, ϵ_k is the residual term and $R_k(s) = [1-(s^2/6)(2+\alpha_k)]/[1+(s^2/6)(1-\alpha_k)]$ for $s=\sqrt{\lambda_h}h$.

For simplicity, instead of (Al) we can consider the rational approximate problem in the form

(A2)
$$\cos(\sqrt{\lambda}h) = R_k(\sqrt{\lambda}_h h) + \epsilon_k \text{ for } k=1,...,n.$$

From the Pade approximate theory [Cheney 1966, Brezinski 1980], we have the following statements:

- (S6) The parameter $\alpha_k = 1$ gives the (2/0)-Pade approximant to $\cos(\sqrt{\lambda}h)$ in (A2).
- (S7) The parameter $\alpha_k = 1/2$ gives the (2/2)-Pade approximant to $\cos(\sqrt[l]{\lambda}h)$ in (A2).

In Table 1, we give the (l/m)-Pade approximants to the $R_k(s)$.

Note that the standard finite element solution derivates from the Pade table, therefore it cannot gives rise to the best rational approximation.

Table	1	Pade	table	for	R_{ν}	(s)	•
-------	---	------	-------	-----	-----------	-----	---

100			K.		
	Z =0	<i>l</i> =2		₹=4	
m=0	1/1 {meaningless	$(1-s^2/2)/1$ $\{(1-s^2/3)/(1+s^2/3)$		$1-s^2/2+s^4/24)/1$	
m=2		(1-5s ² /12)/(1+s	s ² /12)	nonlinear † \$/252+313s ⁴ /15120))/
m=4		eigensystem		² /252+13s ⁴ /15120)	

note: $s = \sqrt{\lambda_h h}$,

From the statement (S6) and the result in Table 1, we have the following convergence theorem:

(Thl) Let λ and λ_h be sufficiently small numbers. There exists a positive constant M_1 such that

$$|\sqrt{\lambda_h} - \sqrt{\lambda}| \leq M_1 \lambda^{3/2} h^2$$

for the parameters $\alpha_k = 1 \ (k=1,...,n)$.

From the statement (S7) we have the following convergence theorem with respect to the C.N. operators:

(Th2) Let λ and λ_h be sufficiently small numbers. There exists a positive constant M_2 such that

$$|\sqrt{\lambda_h} - \sqrt{\lambda}| \le M_2 \lambda^{5/2} h^4$$

for the parameters $\alpha_k = 1/2 \ (k=1,...,n)$.

(Proof) We write

$$R_k(s) = (1-5s^2/12)/(1+s^2/12)$$

for α_k = 1/2, in which s = $\sqrt{\lambda_h}h$. By the total differentials we have

$$\Delta R_k \simeq -[s/(1+s^2/12)^2] \Delta s = -\epsilon_k$$

^{*}standard linear finite elements.

where
$$\Delta s = (\sqrt{\lambda_h} - \sqrt{\lambda})h$$
. Thus we obtain $s \Delta s \simeq (1 + s^2/12)^2 \epsilon_k \le M_2 s^6$

for some positive constant M_2 .

6.Numerical Example

We examine in numerical experiments the validity of the C.N. operators for n = 3.

Fig.2 shows the convergence characteristics for the ordering number of $\lambda_{\bf h}$ and the parameter (or element size) h.

Fig. 2 Convergence characteristics.

It is directly seen from the result in Fig.2 that (Th2) is valid and the C.N. operators are more useful than the standard finite element operators.

7.Conclusion

The main results in the paper are summarized, as follows:

- (1) The Cowell-Numerov type (C.N.) operators are generated in $\Omega \subseteq \mathbb{R}^n$ by the non-standard finite elements.
- (2) The trial space S_h ($\Box H_0^1(\Omega)$) and the test space $V_h^\alpha \Box S_h$ are formed for the non-standard finite elements.
- (3) The C.N. operators give rise to the best rational approximant to the characteristic solution.
- (4) The convergence theorem for the eigenvalue λ_h associated with the C.N. operators is established by the Pade approximate theory.

It can be concluded that the C.N. operators are efficient for linear eigensystems, and that the non-standard finite elements are more extensive.

References:

Brezinski, C.: Pade-type approximation and general orthogonal polynomials, Birkhauser (1980).

Cheney, E. W.: Introduction to approximate theory, McGraw-Hill (1966).

Ciarlet, P.G.: The finite element method for elliptic problems, North-Holland (1978).

Froberg, C. -E.: Introduction to numerical analysis, Addison-Wesley, 2nd ed. (1970).

Henrici, P.: Discrete variable methods in ordinary differential equations, John Wiley & Sons (1962).

Milne, R. D.: Applied functional analysis, Pitman (1980).

Strang, G. & Fix, G.J.: An analysis of the finite element method, Prentice-Hall (1973).