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The Gamma Function and

Stirling's Formula Revisited

by TAKESHI -KANO (Okayama Univ.)
JEEF  F (ALEE-12)

The gamma function T'(x) may be defined in several ways.

An elementary one to define T(x) as the unique solution of

the functional equation f(x + 1) xf(x) has been developed
by Artin, who deduced from it many properties of I'(x), e.g.
Stirling's formula. The purpose of this article is to show

elementary methods of obtaining Stirling's formula, some

of which have recently drawn my attention.

§ 1. Functional Equations

Define for x>0 the gamma function T'(x) by

(0) ’ r(x) = [® 7" X1 g
0

As is well known T'(x) plays an important role in mathemat-
‘ical analysis as well as in number theory, and (0) can be

defined for complex values of x with real part positive.
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One of the most useful properties of T'(x) in applications

is Stirling's formula, i.e. in its simplest form,
, x——  _x

(1) T(x) ~ V2m x°~ 2 77, (x » @)

Even the special case of (1) (I'(n + 1) = n!),
n+—- -n

(2) n! ~ Y2n n 2 e , (n » «)

is only desirable in many cases.
It was Bohr and Mollerup [ 3 ] who first characterized T(x)

by the (unique) solution of the functional equation

f(x + 1) = xf(x)
(3)
(1) =1

with additional conditions on f(x). This idea of introducing
I'(x) by (3) was later noticed by Artin, who further developed
the theory to deduce many known properties of T(x) [1]J[2].
The starting point is the result that if f(x) > 0 for x>0 is
log-convex, i.e. log f(x) is convex, and satisfies (3), then
f(x) = T(x). Note that (3) does not yield a unique solut-

ion if we instead assume f(x) is real analytic. Indeed,
f(x) = I'(x) exp(A(x)),

where A(x) is an arbitrary periodic analytic function with
period 1 and A(l) = 1, always satisfies (3).

The crucilal point to obtain Stirling's formula is to prove

~1
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(4) ot = O

for which Artin gave two different proofs. In Kuczma ([ 7]
Chap.XI) is reproduced the one leading to (1) via "Legendré's

relation"

(5) Xt e Eor A = r(3r).

The following lemma plays an essential part in the proof.

Lemma. The only C1 solution of the equation

x + 1

(6) o(5) + o2 = 9(x), w0,
which is periodic with period 1, is ¢(x) = O.

Artin showed ([ 2 ] Theorem 6.2.) that the mere continuity
of ¢(x) is not sufficient to ensure the unique solution.

For example,

2™ sin(2™wx),
1

o~ 8

(1) o) =

n

which is continuous but not a constant, satisfies (6).

(¥) From (0), it is plain that (4) is equivalent to .

j exp(—u2) du = V/n/2.
0
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A stronger assertion may be in fact true. For example, in
the lemma the hypothesis ¢ € Cl cannot be relaxed to ¢ €Lip,
i.e., ¢ of ordinary Lipschitz class. (Proposition B below).

It is natural and convenient to consider more generally the

-functional equation

(67) $(5) + s(EED) = ae(x),

where ¢(x) is assumed periodic with»period 1 and o is a posi-

tive constant.

Then the following propositions about the solution ¢(x) of

(67) are obtained in an elementary way.
A) When 0<a<l, there exists a non-constant ¢€ECl.
B) When o = 1, there exists a non-constant ¢ € Lip.

C) When 1l<o<2, there exists a non-constant continuous ¢,

while ¢=0 1s the only Cl solution.

D) When a22, there exists a non-constant Riemann inte-

grable ¢, while ¢=constant is the only continuous

solution.

It is worth remarking that the proof in Artin [ 2] is
invalid as it stands, if a<l. Further, general theorems as

presented in [ ] seem to be inapplicable if a<2, for example.
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§ 2. Stirling's formula for n!

In most textbooks (2) is .obtained,depending upon some

‘existence theorem of limit ,through Wallis' formula:

.6 .- (2n)
.5-..(2n__l) -~

(8) s R, (ns =),

A somewhat different approach to (2) has recently been
proposed by Kurokawa [ 8 ], who employed the trapezoidal rule
for definite integral as well as (8). The method was refined
and sharpened by Hitotumatu tS‘]. He reproduced the proof of
(2) by Kurokawa in the new edition of his textbook([ 6 ] Chap.
6), where he coﬁments in the footnote that the main advan-
tage of it over the previously exlsting proofs is that it
leads to (2) straightforward avoiding any consideration on
the existence of limit, while keeping its elemehtary and
simple feature. It was after reading the book when another
elementary proof, which appears to have been hitherto escaped
attention, has come into my notice. I found the proof in
Todhunter([411] Chap.XVI). From a historical view-point, the
following commentary by Todhunter may be noteworthy: From
Wallis's formula we may deduce in an elementary way the for- -~
mula for the approximate value of 1.2.3....x, when x is very
large. Professor De Morgan seems to have first noticed this
in his Differential and Integral Calculus, page 293; and the
‘process has been put in a very simple form by Serret: see
his Cours de Calcul Differentiel et Integral, Vol. II. page

206.
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Although I was unable to see both De Morgan and Serret as
cited above in my university library, I found there the German
translation of Serrets' instead [10]. The proof given in
Todhunter is essentially the same as in Serret, and I wiil

describe the central procedure of it with a slight modifica-

tion.
Put
n!
(9) ¢n =
“na o
Then (8) implies
(10) 05 /by 1, (n>w).

The thing is to prove

/b

(11) 2 %n /% a1, (0 )

and together with (10) obtain ¢n - 1.

Since by definition

i

eSS R S
o e n

n+l ) ?

it follows that
¢n 1 1
logcb = -1 + (n + T)log(l + —n—-).

n+l
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Hence the estimate

2
(12) log (1 +x) =x - 5 + 0(x7), (x20+)
leads to
¢ .
log5— = -1+ (n + S {3 - —55 + 0(5-)1= 0(5).
n+1l 2n n n
Therefore
) ) by
logg—— + log— o= + - -+ + logg=i=t = O(n—i5)= 0(—-),
n+l n+2 2n n
i.e
¢
- 'n 1
log = 0(—=)
¢2n n >

which implies (11), and the proof of (2) is complete.

It is worth mentioning that a slight modification of the

above argument will give a much more precise estimate such as

0

o, (0<e<1).

4
(13) n! = /27 nt2

o=
Also it will be remarked that a similar proof can be seen in
some textbooks (cf. e.g. [4 ] [9]). Fujiwara ([ 4] Chap.l)
attributes it to Cesaro, Algebraische Analysis, 1904, p.154.
However,such a direct calculation as mentioned above is not

shown in them.
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§ 3. Stirling's formula for T'(x)

In this section I will present an elementary way, due
essentially to Serret([{10] Kap.IV §5.), to prove (1). I
have only replaced his argument on uniform convergence by
a direct estimatioh so that the proof might maintain ifts

thorough elementariness as a whole.

Assume Gauss' formula

nx—l n!
(14) I'(x) = lim :
n>o x(x+1)--- (x+n-1) °

which can be deduced, for example, from (3) and log-convexity
of f(x) in an elementary way as shown in [ 2 ].
Obviously (14) is equivalent to
x-1 x-1

n n! (1 + 49 (1 +0(1)),
x(x+1) .. - (x+n-1) " )

T(x) =

as n - » , because 1im (1 + 1/n)X—l'= 1.
n-+o

This may be written as

x-1 n
r(x) = ()T (3t ... 2t (1+0(1)),
x+n-1
or equivalently,
n .
(15) log T(x) = ] {(x-1)log((H) - 1og(FEED)Y + 0(1),
k=1

on account of the fact log(l+o(1l)) = o(l), as n » =,

_8__
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Now put

k + l) (k+x—l)

(x-1)log( (k=1,2,..,n)

- log

c
i

For arbitrary Voo the following obvious identity holds.

n-1 .

‘ _ 1 1 1,1
Sp T oWt Yy PV -y +k§1{§uk+ 201 b Vi1 Vi)
Therefore, the choice
v, = (x +n-1)log(x +n - 1) — (x +n - 1)
will yield
' _ 1 ! n+1 x+n-1
S, = §{(x—l)log2 - log x} + 5{(x—1)1og—ﬁ—~ - log=—; }
n-1
+ xlog x - x - (x+n-1)log(x+n-1) + (x+n-1) + ) W
k=1
where
o 1 k+2 1
W, = (x+k—-—)log(l+x+k l) 2(X -1)lo g( ) + §logk(k+l).
Thus from the identities
n-1 n-1
) log (Ei%) = lo ggi%ill R ) logk(k+l) = 2log n! - log n,
k=1 k=1 v

it follows that
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s, = 3{(x-1)log(1+3) - log(1+X2%)} + (x-3)log x

+ %(x—l)log(n+l)n - (x+n-1)log(x+n-1) + n-1 + log n!

1 n-1
- zlog n + o {(x+k- )1og(1+
k=1 -

I

X+k-1 - 1.

On the other hand , Stirling's formula (2) which is estab-

lished in the preceding section implies

log n! = % log(2w) -= n + (n + %)log n + o(l).
Therefore
(16) S, = {(x 1)log(1+ ) - 1og(1+ )} + % log(2m) -
+ (x— Ylog x + { (x- 1)10g§i§ill—§ - nlog(l+ )}
(x+n-1)
ns2 1
+ Z {(x+k+ )log(l+—=r) - 1}.
Since
(x-1)1og(1+3) - log(1+4%1) = o<;%~>,

the first curly bracket in (16) tends to 0 as n » =,
Also the second curly bracket to -(x-1) as n - =,

On the other hand, by (12)
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(x+k+%)1og(1+§l_) 1= - — 1 4o

x+k+1/2 )
+k 4(X+k)2

‘(x+k)3
Accordingly, by letting n » o,

log T'(x) = 1im S_ = 3 log(2m) - 1 + (X—%)log x - (x-1)

n-> o n

12 1 T x+k+1/2
JET 3o mense
TeZo (x4x)2 k=0 (x+k)>

=1 L _ 1
=3 log(2m) + (x—2)1og X X + O(x)’
which proves (1).

It is evident’that by a slight modification a much more
precise asymptotic estimate‘such as

x=1/2 e—x+6/(l2x)

I'(x) = /27 x 0<6<1

can be deducible from the above argument. Moreover, it is

an important fact that this method obviously applies to

complex values of x provided T'(x) is defined by (14).
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