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On the minimal thinness in a Lipschitz domain

Hiroaki AIKAWA
/0 8. H

. §1. Introduction

Let H be an open half space in Rn, n > 3, and £ be a point

on the boundary of H. Jackson [5; Théoreéme 1] proved

Theorem A. Let E C H. (i) If E is thin at £ in the
ordinary sense, then E is minimally thin at £.
(ii) If E is contained in a nontangential cone with

vertex at &, then the converse of (i) holds.

The main aim of this paper is to extend the above theorem
to a bounded Lipschitz domain D in Rn, n > 3. A bounded domain
D is said to be Lipschitiif 9D is covered by finitely many open
circular cylinders whose bases have positive distance from 3D and

n-1

for each cylinder ¥ there are a function ¢:R + R satisfying

a Lipschitz condition and a congruent transformation T such that

0 T(Y 0 D) = {(x', x); %, > 6(x')} 0 T(Y),
1.1 '

T(Y n8D) = {(x', x ); x = ¢(x")} nT(¥),
where x' = (xl,..., X 1o 0).

It is known that the Martin compactification of D is

homeomorphic to the Euclidean closure D and that every point & €
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oD 1s a minimal boundary point (see Hunt and Wheeden [4]). Let

G(x, y) be the Green function for D. Letting Zg be fixed, we put

g(x) = G(x, zo). The Martin kernel K(x, y) for D with the reference

point Z, is defined by

G(x, y)/g(y) if (x, y) € D x (D\ {z4})
K(x, y) =

1imY+y G(x, Y)/g(Y) if (x, y) € D x 3D.

The minimal thinness is defined by using the Martin kernel as

follows: Let & € 3D. A subset E of D is said to be minimally

. ) ~E ~E
thin at g if RK(-, £) < K(-, £). Here RK(-, £) stands for the

regularized reduced function of K(+, &) relative to E (see Brelot

[2; p.122]). We shall show

Theorem 1.1. Let D be a bounded Lipschitz domain in Rn,

n > 3. Then (i) and (ii) of Theorem A are valid for each point

& on the boundary of D.

Although the minimal thinness is originally defined by the
Martin kernel, we shall in the proof of the theorem, use another
characterization of the minimal thinness, which was shown in

NaIm [10; Chapitre II]. She introduced a kernel © by

G(x, y)/lgx)gly)] if (x, y) € (DN {zy}) x (D {z,})
o0(x, y) =

lim infy o y,y G(X, Y)/{g(X)g(¥)]

if (x, y) € (D x D) \ (D x D),
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and proved that E is minimally thin at & if and only if there

exists a O-potential O(x, p) = j 0(x, y)du(y) # « such that

(1.2) Hm ¢ xep 0%, w)/0(x, &) = =

([10; Théoreme 8]). We shall give several estimates of O in §3,
which play important roles in the proof of Theorem 1.1. For this
purpose we shall use the boundary Harnack principle (see Wu
[13; Theorem 1]). |

It is well known that the ordinary thinness is characterized
by Wiener criterion. A Wiener's type criterion will be a useful
tool in the final stage of the proof of Theorem 1.1 in §4. By
the aid of the estimates of © in §3, we shall find that the minimal
thinness is characterized by a Wiener's type criterion associated
with Naim's 0-kernel, and that a relationship between the

Newtonian capacity and C -capacity (see §2) leads to Theorem 1.1.

0,1

In 82, however, we shall deal with not only the Wiener's
type criterion for the minimal thinness but also that for the
thinness with respect to LP-potentials, which is a slight
generalization of the (k, p)-thinness in Meyers [7]. This is
partly because the arguments can be carried out similarly, but
chiefly because the Wiener's type criterion for Lp-potentials
and the estimates of © in 83 will enable us to describe the

behavior of Green potentials with LP-densities. Let G(x, f) =

f G(x, y)f(y)dy for a nonnegative measurable function f on D.
D

We shall prove
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Theorem 1.2 (cf. [12; Corollary 6.3]). Let G(x, f) Z « and
(1.3) f £ Ps(x) P lax < =,
D

where 6(x) stands for the distance from x to 3D. Then there is

a subset F of 3D, of vanishing (n - 1)-dimensional Hausdorff measure,

such that for each & € 3D \ F, there is a set E% c {x; |x| = 1}
satisfying Bz’p(Eg) = (0 and
1imr~>0 G(¢& + ra, £) =0

for all o € N(&§) \ Eg. Here B2 p stands for the Bessel capacity
> c

of index (2, p) (see [6; Definition 16]) and N(£) denotes the

totality of all nontangential unit vectors at §. If 2p > n, then

Eg is empty; moreover, G(x, f) has nontangential limit zero at §.
§2. Preliminaries

We shall use the following notation: B(x, 1) (resp. C(x, 1))
is the open (resp. closed) ball in R" whose center is at x ahd |
whose radius is r. Letting s, 0 < s < 1, be fixed, we set Ij(g)
= cte, sV ce, sTT) and 13(E) = 1, 4(8) Y LE) VI, ()
for a point £ € R™ and an integer jf If E is a subset of Rn,
then E(g, j) denotes the pért of E in\Ij(g), i.e., E(g, j) = EnNn
Ij(g). We shall abbreviate'Ij(O), I;(O) and E(O, j) to Ij,»IE
and E(j), respectively. The characteristic function of E is
denoted by X(E).

If y is a measure on a Borel set E, f is a (Borel) measurable’
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function on E and k(x, y) is a measurable function on R" x Rn,

then k(x, p) and k(x, f) stand for ! k(x, y)du(y) and

E
J k(x, y)f(y)dy respectively, provided they are well defined.
E

Let Hfﬂp be the usual LP-norm of f and "u"l be the total variation
of u. If U is a Borel set in Rn, then Lp(U) = {f; "fﬂp < o

£=0onR "\ U}, LP(U) = (£ €LPU); £20 a.e. on U}, MU) =

1]

fu; R\ U) = 0} and M_(U) = {u € M(U); u > 0},

For simplicity we let A stand for a positive constant
independent of the variables involved in inequalities where A
appears, possibly changing from one occurrence to the next. The
symbol ~ between two positive functions means that their ratio
is bounded abové and below by positive constants independent of
the variables involved.

Let 0 < r < » and ¢ be a positive continuous function on

(0, r). We say that ¢ is moderate on (0, r), if there is a constant

A > 1 such that

A"l < ¢(t)/d(ot) < A for all t € (0, 1) and all ¢ € [s, 1],

with s appearing in the definition of Ij(é). We observe that s
can be replaced by any constant s' € (0, 1) in the above definition.
We just say that ¢ is moderate if ¢ is moderate on (0, r) for some

T > 0. Let p(¢, r) = 1lim sup SUPG .ty d(t)/o(ot). We see

o0
that if p(¢, 1) <-1, then 1imt+0 ¢(t) = . We simply write p(¢)
<1 if p(¢, r) < 1 for some r > 0.

Unless otherwise specified, the letters &, j, k, p and ¢

will stand for a point in Rn, an  integer, a nonnegative measurable
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function on R" x Rn, a number which is not smaller than 1 and a
moderate function, respectiyely,
Following Meyers [6; Definition 6], we introduce an LP-

capacity. Let U be a Borel set in R". We put

Cy (B 1) = inf{llfﬂg; k(x, f) > 1 on E, £ € 1P}, ifp > 1,

1onE, peM (U

v -

Ck,l(E; U) = inf{ﬂﬁﬂl; k(x, n)

We abbreviate Ck p(E; Rn) to C (B). 1IfuUucuy'rc Rn, then

k,
Cy,pEs U) 2 C (E; U) > ck,pcg) for all E € R™,

Meyers [7; Definition 3.1] introduced the notion of (k, p)-
thinness of k of the form k(x, y) = k(|x - y|), where « is a
positive nonincreasing function on R’ = {x; x > 0}.. We need to
generalize this notion to nonnegative measurable function k on

n

R" x R". Let q > 0.

Definition 2.1. A set E is said to be (k, p, q, ¢)-thin

(resp. (k, p, ¢)-semithin) at & if

@ ] P 1 q/ oo
R UICORCCICRIEDRI L

: - £ ) -0y,
(resp. llmj»w $(s?) Ck’p(E(E, i) = 0),

where j0 is some positive integer such that ¢ is moderate on (O, sJO)

This definition is independent of the choice of s, 0 < s

< 1. We shall sometimes suppose that s is small enough. If E
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is (k, p, 9, ¢)-thin at g, then obviously E is(k, p, ¢)-semithin

at E,

Remark 2.1. If k(x, y) = «(]x - y|) and $p(t) =

n(p—l)/p’

p(t)t then the (k, p, p/(p-1), $p)~thinness is identical

with the (k, p)-thinness in the notation of Meyers [7; Definition

3.1]. If Uu(x, y) = |x - y]@—n, 1 < p < n/a, then the (U&, p;

t“'n/p)—semitninness is identical with the (o, p)-semithinness

in the notation of Mizuta [9; §1]. The ordinary thinness (resp.

semithinness) is identical with the (U,,. 1 g2

(resp. (U,, 1, tz—n)—semithinness) in case n > 3.

1, )-thinness

b

The next lemma is a generalization of [7; Proposition 3.1].

We omit the proof.

Lemma 2.1. If {Ei}O;=1 is a sequence of sets which are
(k, p, q, ¢)-thin (resp. (k, p, ¢)-semithin) at g, then there
| such that E = UL _, Uj=j(i) E.(g, J)
is (k, p, q, ¢)-thin (resp. (k, p, ¢)-semithin) at g.

exists a sequence'{j(i)}?=

Hereafter we shall deal with k satisfying for some s, 0 <

s < 1, and hence for all s, 0 < s < 1,

A

rb(ly-&l) if |x - g] < sly - g]
(2.1)  k(x, Y)éAl
o(lx - &) if |y - ¢] < s|x - &},

where A is independent of x and y, and ¢ is a moderate function

on (0, ©). We have
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Proposition 2.1. Let $p(t) = ¢(t)tn(p'1)/p as in Remark
2.1. Suppose that k satisfy (2.1) and p(ap, ©) < 1. Then E is

(k, p, q, $p)—thin (resp. (k, p, $p)~semithin)'at £ if and only i

% A~ JND . N V42
zj=j0 [qbp(S ) Ck’p(E(g, i) Ij(,g)),]

& odyD . T*(E)) = 0)
(resp. 11mj_>OO ¢p(s ) Ck’p(E(g, i) Ij(E)) = 0),

where jO is chosen as in Definition 2.1.

We consider the behavior of a potential k(x, f) under a

certain condition on f. Noting Definition 2.1, we introduce

Definition 2.2. Let M(¢, p, q, &) (resp. N(¢, p, &£)) be
the totality of all locally integrable functions f (p > 1) and

measures ¥ (p = 1) such that

2 [¢(sj)pf C1£0y) [Pay1 VP < w
1730 B(E, s9)

(resp. limj+m¢(sj)pj | £(y)|Pdy = 0) for p > 1,

B(E, s?)
I eshnleeE, s < e
J"JO .
(resp. 1imj+m¢(sj)IUl(B(€, sj)) = 0) for p = 1,

where j0 is chosen as in Definition 2.1 and |u| is the total

variation of M.

This definition is independent of the choice of s. It is

clear that M(¢, p, q, £€) € N(¢, p, £€). The main theorem of this

section is



Theorem 2.1. Let k satisfy (2.1) and ¢y be a nonincreasing

moderate function satisfying p(¢/y) < 1.
(i) If f € M(ﬁp: P, q, f';) and
vy - g])|f(y)]dy < » in case p > 1,
(2.2) ly-glzr

[ o(ly - £DDd|E[(y) < » in case p = 1,
ly-g|>r

for some r > 0, and hence for all r > 0, then there exists a set

E (k, p, q, @p)-thin at £ such that

(2.3) Lim e ygp [WUX-E[)/6(|x -g)]k(x, £) = 0.

(ii) If f € N(@p p, £) and it satisfies (2.2), then there

exists a set E (k, p, $p)-semithin at & such that (2.3) holds.

Here, if E includes B(¢, r) \ {¢} for some r > 0, then
the left hand side of (2.3) is understood to be equal to zero.

The theorem follows from Lemma 2.1 and

Lemma 2.2. Let k, ¢, and ¢ be as above and c > 0.

(i) If f € M(@p, P, q, £) and it satisfies (2.2), then there

exists a set E (k, p, q, $p)-thin at £ such that

(2.4)  suppe qpp O - ED/e0x - EDIkCx, [£]) < c.

(ii) If f € N(q“,p, p, £) and it satisfies (2.2), then there

exists a set E (k, p, $p)-semithin at £ such that (2.4) holds.

Proof. Without loss of generality, we may assume that £ =



0 and f > 0. Suppose that f € N(@p, P, g) and satisfies (2.2).’
We claim that

(2.5)  lin [wcsj)/¢(sj)]supxe1j k(x, £-£;) = 0,

j—>00

where fj = fX(IE). We shall prove (2.5) only in case p > 1,
because the case p = 1 can be proved similarly. Since p(¢/¢) <1
it follows that 1imt+0 v(t)/o(t) = 0. On account of (2.1) and
(2.2); we have for all r > 0

lm o [w(lx])/¢(x])]1k(x, £ B0, r)C) = 0.

Holder's inequality leads to

lim.  w(s? . f(y)dy = 0.
M, VIS )jB(O, o) y)dy

We have by (2.1)

Zim supy ., [0(s7)/0 (s Isup,e  kix, (U7, 15,50
J .

< A lim supj+°o w(sj)JB(O j) f(y)dy = 0.
s

b

Take s > 0 and r > 0 so that n = SUDP( ¢ oy [¢6 (D)y(st)]/[o(st)y(t)]

<1. Ifxel;, yel,;,25i<j - jjand s70 < r, then (2.1)
yields »
w(s?) /o (s 1k(x, y) < Alw(s?) /e (s 1e(s?™h)
< AntysiTly,
Since 0 < n < 1,
15 3y /6 (s Kex, 800 20 1. )
im supj_wo [V(s’)/d(s )]superj x, fx (V. _, j-i

J—J . s s
catmosup,, 50 nvesT ] foay
I. .
J-1
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< A lim sup, 21, nJ'lw(sl)[ f(y)dy = 0.

1 IB(0, st

: )
Thus (2.5) follows.

Since ¢ and Y are moderate, there is a constant A independent

of j such that y(s?)/¢(s?) > A SUP. e | W(lx[)/¢(|x])]. In view
J
of (2.5), we can find a positive integer N such that if j > N, then

E; ={x € L W(lx)/e(Ix)1k(x, £) > c}
ci{x € Ij; [w(sj)/¢(sj)]k(x,‘f)‘; Ac}
cix € L [0(s))/0(sHIkx, £) 2 Ac/2}.

Therefore
¢y p ) = A/ Pl /6P|  £0)Pay
1
< e/2) Pr, (s /8, (D17 £ ay.
p p B(0, s’ 1)
Let E = U?=O Ej' If f satisfies the hypothesis of (i) (résp.

(ii)), then E is (k, p, q, $p)-thin (resp. (k, p, ap)—semithin)

at 0 and (2.4) holds. The proof is complete.

The size of the exceptional set in Theorem 2.1 is best

possible in the following sense. The proof will be given elsewhere.

Theorem 2.2. Let k satisfy (2.1) and p($p, o) < 1. If
E is (k, p, q, $p)-thin (resp. (k, p, $p)-semithin) at £ and £ is
not an isolated point of E U {£}, then there exists f € M(@p, P, 4,

£) (resp. N(@p, p, £)) such that £ > 0, supp £ is compact and

Lim . yep W0x - ED/0Ux - EDIk(x, £) = o.
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§3. Estimates of Naim's O-kernel

Let D be a bounded Lipschitz domain as in §1 and let S be
a portion of 3D which is expressed by (1.1). For simplicity we

assume that T is the identity. For £ € S and r > 0, we put

1

Y(g, r) = {(x', xn) e R"™* x R; Ix'v— g'] < T, ]xn - gnl < mr},

where m > 1 is a positive constant large enough as in Hunt and
Wheeden [4; p. 510], depending only on D. We can choose ry > 0
and EO € S so that Y (&, 4mr0) C ¥ for all g € S0 = SN B(go, rO)

and B(z ZrO) c D\ V¥, where ¥ is the cylinder in (1.1) and 24

0’
is the point in the Definition K(x, y).

The set T'(£, a, a) = {x € R"; (x - £, o) > a|lx - g|} with
a unit vector o and a constant a, -1 < a < 1, is called a cone
with vertex at & and axis along o, where (-, ) denotes the inner
product. If there are r > 0 and a', -1 < a' < a, such that
r¢¢, a, a') n B(¢, r) ¢ D, then I'(¢, a, a) is said to be a non-
tangential cone of D with vertex at & and a is said to be a non-
tangential unit vector at £. We observe that e = (0, ..., 0, 1)
is a nontangential unit vector at & € S.

We putfrg(r) = g(& + re) with g(*) = G(-, zo) and ¢£(r) =
rZ-nTg(r)—Z for r > 0 such that £ + re € ¥. For convenience, we
put Tg(r) = 0 and ¢£(r) =+ o, If a is a different nontangential
unit vector at &, then by the Harnack principle we have g(§ + ra)

4y Tg(r) for r > 0. The Harnack principle also implies that ¢g,is

moderate. Throughout this section we let E € SO.’ We shall show




that © satisfies (2.1) with ¢ = ¢€ at &,
A useful tool is the boundary Harnack principle, which was
independently proved by Dahlberg [3], Wu [13] and Ancona [1].

We need a slight stronger form of the boundary Harnack principle,

which can be immediately deduced from [13; Lemma 7]. This is

Lemma 3.1. Let r < . Suppose that u and v are positive
harmonic functions on B = D n ¥(g, 4mr) \ v (g, (4m)'1r) which

vanish on ol n aD. If u(g + mre) < v(g + mre), then
u(x) < Av(x) for x € DN ¥(g, 2mr) \ v(g, (Zm)-lr),

where A is a positive constant independent of u, v, £ and r.

By the aid of Lemma 3.1, we have

2
ly - g

|x - &|, then with constants of comparison independent of x

Lemma 3.2. Let x and y € B(g, 1,) N D. If 4m

A

and vy,
0(x, y) v ¢€(lx - EI)

In particular o(x, &) ~ ¢g(lx - £]).

Proof. 1In view of the definition of 0, we may assume that
x and y are points in D. Let |x - g£| = mr and x* = ¢ + mre.
Since m > 1, we observe that x € ¥(¢, 2mr) \ v(g, (Zm)’lr) and

that y € ¥ (¢, (4m)-1r). Since G(+, y) is positive and harmonic



e
v

in D\ vy(g, (4m)_1r) and vanishes on 3D, it follows from [4;
(2.4)] that

g(y) < AG(x*, y)wZO(W(€, r) n 3D),

z
where w 0(-) is the harmonic measure at z, with respect to D. On

0
account of [3; Lemma 1], we have
(3.1) g(y) < AG(x*, y)r" %g(x*).
Hence,
G(x*, y) 2 Ap(mr)g(y)g(x¥).
On the other hand, letting B = B(x*, Z_lmr), we have

2-n
z|

G(x*, z) < |x* < A¢€(mr)g(x*)2 for z € 3B.

By the Harnack principle, g(z) ~ g(x*) for z € 3B, so that
G(x*, z) < A¢£(mr)g(x*)g(z) for z € 3B.
Since B n V¥ (g, (4m)_lr) = f, the maximum principle leads to

G(x*, y) < A¢£(mr)g(X*)g(y)-

Let u(z) = ¢€(mr)g(z)g(y) and v(z) = G(z, y). Then both u and v
are positive and harmonic in B, vanish on 33 N 3D and u(x*) ~

v(x*). On account of Lemma 3.1, we have

u(z) ~ v(z)  for z € D N ¥(E, 2mr) \ ¥(&, (2m) 'r),
so that

0(x, y) v ¢ (mr) = ¢g(|x - £]).

The lemma follows.
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Now we list up several further estimates of ©. For lack
of space we omit the proofs, which will be given in a seperate

paper.

Lemma 3.3. If x € B(Z, ro/(4m2)) nDandy€ D\ B(E, ry),
then with constants of comparison independent of x and vy,

o(x, y) ~ |y - z,|""%.

Lemma 3.4. VLet T(£, e, a) be a nontangential cone of D
with vertex at £ and a < a' < 1. If x€ T(g, e, a') N B(g, rO),'

y € D n B(g, ro) \ T(¢, e, a), then

G(X, Y) A A¢€(|X - gl),

where A is independent of x and y. If furthermore, [x - &| ~
v - €], then

o(x, y) < A¢g(!x - y).

Lemma 3.5. Let T be a nontangential cone of D with vertex

at £ and let x and y be points in I 0 B(§, r If |x - &] »

0)'
ly - €|, then
2| |2-n

0(x, y) ~ Tg(lx -g]) Yx -y

Lemma 3.6. Let x and y be points in D n B(g, ry). If

|x - g| ~ |y - &], then

0(x, ¥) 2 Aty(|x - e Hx - y)tm,
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We conclude this section by showing an estimate of g. It
is well known that if 3D is sufficiently smooth, then g(x) is
comparable to dist (x, 3D). TFor a Lipschitz domain this does

not hold. Nevertheless we have

Lemma 3.7. There are positive constants § and A depending

only on D such that

(3.2) g(g + ore)/g(€ + re) < AgO

for all £ € S,, all r, 0 < r < fo, and 0, 0 < o < 1. 1In particular,

if B < n -2 + 26, then p(¢g(r)r8)~< 1 for all ¢ € SO'
Proof. We can find a positive constant a such that T (&,

-e, a/2) N D =@ for every § € SO. Let h be the‘harmonic function

on R"™ r(o, -e, a) such that h(e) = 1 and h vanishes on 3I'(0, -e,

a). Then h(x) is of the form ]x[ﬁh(x/lx!) for some positive

constant § depnding only on a and the dimension n. From the

Harnack principle it follows that

A!XI6 < h(x) < leCS for x € R"\ 1(0, -e, a/2).

Let v be the harmonic measure of 3B(&, 2r) N D in B(¢, 2r) N D.

The maximum principle and the boundary Harnack prinéiple leads to
g(x) < Ag( + Te)v(x) < Ag(e + te)r h(x - &)

for x € B(¢, r) n D. Hence if x = & + ore and 0 < o < 1, then

2-n -2

(3.2) follows. Since ¢g(r) =r Tg(r) = Tz_ng(i + re)-z, we have

the second assertion immediately.
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§4. Proofs of Theorems 1.1 and 1.2

It is sufficient to prove Theorem 1.1 only for points & in

S We assume that the constant s appearing in the definition

1

0
Ij(g) is smaller than (4m2)_ It is convenient, for the sake

of application of the results in §2, to extend the Naim's O-kernel
defined in §1 to a funcfion on R™ x R™ which is equal to O on

D x D and vanishes on the complement of D x D. We also write ©
for the extended function. We extend ¢£, which was originally
defined for small positive r, to a moderate function on R" = {r;

r > 0} so as to satisfy p(¢g, ©) < 1. This is possible on account
of Lemma 3.7. In particular, we see that 1imt+0 ¢£(t) = + oo, |
Since 0(x, y) is symmetric, it follows from Lemma 3.2 that ©

satisfies (2.1) with ¢ = ¢E at §& € S We infer from Lemma 3.3

0
Lemma 4.1. Let u be a measure on D. Then O(x, u) % «.
Furthermore, if the support of p does not contain &, then 0(x, M)

is bounded when x tends to £.

Proof of Theorem 1.1. First we show that E is minimally
thin at £ if and only if E is (0, 1, 1, ¢E)-thin at &.

If E is minimally thin at £, then there is a © potential
O(x, u) # » satisfying (1.2) ([10; Theoreme 8]). On account of
Lemma 4.1, we may assume that u is a finite measure on B(&,
1

(4m2)- ro) N D\ {g€}. Letting w(t) = 1, we apply Theorem 2.1 to
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o(x, u), and find a set E' (06, 1, 1, ¢E)—thin at & such that

Lim o g 0(x, W/0(x, €) =0,

since ¢€(|x - &) ~ o(x, &) from Lemma 3.2 and p(¢€) <1 from
Lemma 3.7. Hence if r > 0 is small enough, then E © B(g, r) C

E', so that E is (6, 1, 1, ¢g)—thin at £. On the other hand,

it follows from Theorem 2.2 that if E is (e, 1, 1, ¢g)—thin at

£, then there is a finite measure py on D N B(g, (4m2)_1r0) \ {g}
satisfying (1.2). Obviously 0(+, u) Z ». Therefore E is minimally
thin at ¢ by [10; Théoreéme 8].

By virtue of Lemma 3.6 we have

Co 1 (E(E, 3)5 T3(E)) < Arg(sj)chz,ICE(e, i): 150,

where U, (x, y) = |x - ylz_n. We observe that C; ; coincides with

U,,
the Newtonian capacity up to a multiplicative constant. Hence
Proposition 2.1 and Remark 2.1 imply that if E is thin at & in
the ordinary sense, then E is (0, 1, 1, ¢£)-thin at £. In case
when E is in a nontangential cone with vertex at &, we have by

Lemma 3.5

Co 1 (E(E, §)3 17(E)) » rg(sj)zcuz,l(ﬁ(z, )5 13(8)),

so that E is thin at & in the ordianry sense if and only if E is

(e, 1, 1, ¢E)—thin at £. Thus the theorem follows.

Remark 4.1. Let XOGED\ ({zO}LJ B(g, s)). We observe

ffom Lemmas 3.2 and 3.3 that

- 18 -



31

E(E, j) j YL T
Hence a set E C D is minimally thin at & if and only if

o  SE(E, §) .
2ia Rl o) <

I1f 1imj*m ﬁﬁ%%: g%(xo) = 0, then E is said to be minimally semi-
thin at & (Hunt and Wheeden [4; p. 522]). It follows from (4.1)
that E is minimally semithin at & if and only if E is (0, 1, ¢£)-

semithin at £. The relationship between C, and CU

0.1 lxin the
3 )

2
proof of Theorem 1.1 yields that if E is semithin at £ in the
ordinary sense then E is minimally semithin at &; in case when
E is contained in a nontangential cone with vertex at g,

E is semithin at & in the ordinary sense if and only if E is

minimally semithin at .

Remark 4.2 (cf.[11l; Theorem 1]). By Theorem 2.1 we have
the following: Let y be moderate; o(y) < 1, p(¢£/w) < 1,}and
u be a measure on D \ {20} such that 0 (x, u)li o, We set v(x)
= ¢E(Ix - £|)_1w(|x ; £])o(x, u). If T is a nontangential cone
with vertex at &, then the succeeding four statements are equivalent:
(1) lim_, ¥(r)u(B(g, 1)) = 0.
(ii) v(x) has minimal semifine limit zero at &, i.e.,

there is a set E minimally semithin at & such that

(iii) v(x) has nontangential limit zero in LP at £ for



l1<p<n/(n-2), i.e., for eachT
lim_ r_n( v(x)Pax = 0
>0 .J oo
rNB(g, r)
(iv) There 1s a sequence {xj}?zlvconverging to £ such
that {xj}c:r for some T, ]xj - gl/[xj+1 - £| is bounded, and
lim. v(xj) = 0.

J+

Now we give a local version of Theorem 1.2.

Proposition 4.1. Let p > 1, p($€p) <1, &, ¢, p and v

be as in the above remark. Suppose that u satisfies

(4.2)  lim_ o $(0u(B(E, 1)) = 0,

[F b(Ix - EDdu(x) < o, ifp -1
(4.3)

if $p(|X - £|)pf(x) Pax < =, dyu(x) f(x)dx, if p > 1
T

for all nontangential cones TI' with vertex at . Then there exists

a set Eg C N(&) such that B2 p(Eg) = 0 and if o € N(g) \ Eg, then

(4.4) : 1imr+0 V(g + Ta) = 0.

Here, N(§) is the totality of all nontangential unit vectors at

& and B is the Bessel capacity of index (2, p).

2,p
If in addition, 2p > n, then v(x) has nontangential 1limit

zero at g.

We postpone the proof of Proposition 4.1, and prove Theorem ‘

1.2 first.




Proof of Theorem 1.2. It is sufficient to prove the

theorem for £ € S_ provided supp f C B(Eg» ro)fWﬁ. Since G(x,'f)

0
Z @, g(y)£(y) is integrable. Let y(t) = t' ™. We have by (1.3)

F {€ € 9D; either (4.2) or (4.3) does not hold for £} has

1
(n - 1)-dimensional Hausdorff measure zero. On the other hand

5 = {g € 3D; ag/anE does

not exists or vanishes} has (n - 1)-dimensional Hausdorff

Dahlberg [3; Theorem 1] proved that F

measure zero. Since Tg(r) v r for £ € 3D\ F the theorem

2’
follows from Proposition 4.1 with F = F, U F

1 2°
Now the proof of Proposition 4.1 remains. For this purpose

we need

Lemma 4.2. Let T and T'' be nontangential'cones with vertex
at & such that ' D T\ {¢}. 1If u satisfies (4.2) and (4.3) for

I'', then there exists a set E (U,, p, P, tzyn/p)—thin at £ such

2’
that
(4.5) 11mx+€, XE€T\ E v(x) = 0.
Proof. Let O'(x, y) = 0(x, y) if y € I'' and 0'(x, y) = 0
otherwise. Put 0" = © - ©'. On account of Theorem 2.1, Lemma

3.3 and (4.3), we can take a set E (U,, p, P, tz-n/p)-thin at &

2’
such that

. -1
llmx—}g, XED\ E ¢€(IX - g') w(lx - EI)O'(Xa UJ = 0.
Similarly, we find a set E' (0", 1, ¢E)—semithin at £ such that

1imx—>€, XED\E"! ¢£(IX - El)-l‘I)(lx - El)@"(x, U) = 0.



It is sufficient to prove that ' n E' N B(g&, r) is empty if r >

0 is small enough. In view of Lemma 3.4, we have

Con 1 (1x}5 T1(E)) 2 A (s1)Th for x e 101 (8),

where A is independent of j. Since E'is (0", 1, ¢£)-semithin

at &, T n E'n B(g, r) = @ if r is small enough. The lemma follows,

Proof of Proposition 4.1. Without loss of generality, we
may assume that & = 0. Let L =T n {x; |x| = 1}. It suffices
to show that there is a set E° C L such that Bz’p(Ew) = 0 and
(4.4) holds for all a € L\ E°. 1In view of Lemma 4.2, we find a

set E (U,, p, P, tz'n/p)-thin at £ such that (4.5) holds. Let

2’
E(j)” = {x; |x|] =1 and rx € E(j) for some r > 0} and

E” = lim sup;,, E(j)". Since B, (E(3)") ;Asj(zl"“)ﬁ2 S(EG)) (185
p. 116]), we have

so that B, p(E~) = 0. Obviously (4.4) holds for all o« € L \ E~.
, .

In case 2p > n, letting E(j)' = s JE(j), we observe that

Zj=1 Bz,p(E(j) ) < =,

Since B p(F) > 0 if F # #, at most finite number of E(j)' are

2
not empty, which implies that

11mx+0’ XET v(ix) = 0.

Hence v(x) has nontangential 1limit zero at 0. The proof is

complete.
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