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A CHARACTERIZATION OF SECOND ORDER EFFICIENCY

FOR ESTIMATORS IN A CURVED EXPONENTIAL FAMILY

By Shinto Eguchi (IO HE&)

Osaka University

Asymptotic properties of estimators are considered in
an m-dimensional curved exponential family @ which is
embedded in an exponential family of dimension n. It is

shown that any first order efficient estimator 1s induced

to a unique right triangle with sides vm/2, V/(n-m)/2 and n/?2.
Let L(u) be the likelihood function of a sample of size N
with respect to an m-component parameter u deécribing ?i

A necessary and sufficient condition for second order
efficiency of an estimator a is given by

lim E

~ 3N
L(u) > 1
N0 -

L(u)

V]
for any first order efficient estimator u. The condition

implies second order efficiency of the maximun likelihood

estimator which is famous as Fisher-Rao's theerem.
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1. Introduction and main results. Let & be an n-dimensional
n
exponential family of densities on the data-space R with

respect to a carrier measure w. The family % is expressed as

{(f(x | 8) = e <x,0>-9(8) 6e® }

by the natural co-ordinate system 6 = (el,---,en) with the
usual inner product <. , -> of R". The dual co-ordinates
n = (nl,n2,--~,nn) of @ is defined by the transformation of

8 into n:

nle] = Ey X.

Then the maximum likelihood estimator of n or 6 based on a

sample (xl,xz,--,XN) is given by

X = (xl + X, N)

==

or 6 = 6[X], respectively, where 6[-] denotes the inverse
transformation of n[-].
An m-dimensional curved exponential family is denoted

~

by N (m <n), i.e.,

G = {r(x | o) : u e},

where U is an open set in R™ and the map 6(-) from U to(:
is nonlinear with the Jacoblan matrix of rank m on U. Let
(xl,xz,---, xn) be an i1.i.d. sample from a density f(-|6(u)).
We may confine estimators of u to the form of mappings of
X or 6 since each of statistics § andy@ is minimal sufficient
owing to the nonlinearity of 6(:). Fisher-consistency of an

estimator U = u(8) is defined by
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a(e(u)) = u

for all u in U. For an estimator 4, py(d, u) denotes the
difference between the information matrix of the sample and
that of the estimator, which is called the information loss
incured by 0. A Fisher-consistent estimator u is said to
be first order efficient if

1im % A

N~+oo
Furthermore a first order efficient estimator U is said to

be second order efficient if

lim [ Ay (¥, w) - & (4, u) ] >0

N+ N
for all first order efficient estimator {t, where M > 0 denotes
the non-negative definiteness of M. The Kullback-Leibler

divergence pKL(fl’ f2) between f, and f, in & is expressed

1
as

pgr, (815 85) = < nloqd1, 09-65, > = ¥(6,) + ¥(6,)

with respect to 6, where fp = f(-lep) with p= 1,2.

The following theorems 1, 2 and 3 will be proved in Section 2.
THEOREM 1. PFirst 5rder efficiency of a Fisher-consistent

estimator U4 is equivalent to each of the following conditions

(i), (ii) and (iii);

(1) 1im N E [pyp (8,0(8)) - pp (6, (0))1 20

N oo

for any Fisher-consistent estimator u.

(11)  1ih N E ppp(8(R), 6(u)) = m/2.

N7eo



(iii) 1lim N E pKL(é,e(u)) = (n-m)/2.

N4
THEOREM 2 = enables us to associate the common property
of all first order efficient estimators with a right triangle,

since the Kullback-Leibler divergence 1s the same order as

the squared distance of & (see Figure).

<<<<<Figure>>>>>

The measure

N E [ppp (8,6(0)) = ppp(8,6(1))]

is closely related to the discrimination rate of pKL’

introduced by Kuboki [5], in the model @, i.e., the case
including the sufficient statistic §. However we, here,
consider this as a criterion between estimators u and .

Let L(u) be the likelihood function based on the sample

(xl,---,xN). Since we have the relation
(1.1) 1log L(up) - log L(u,) = N{py; (8,8(uy)) - pgr, (8,08 (uy))}

for all u, and u, in U, THEOREM 1 can be rewritten as

1 2
COROLLARY 1. A Pisher-consistent estimator ﬁ is first

order efficient if and only if

for all Fisher—consistent estimators. .



Moreover we shall show
THEOREM 2. A first-order efficient estimator G is

second order efficient 1f and only if

(1.2) 1im B N° [pp (8,86(8)) = pyp(8,0(0))1 2 0

N->oo
for all first order efficient estimators .
THEOREM 2 does not hold if the relation (1.2) 1s
replaced by 7
lim E N° [py; (0(1),0(u)) = pyp (8(1),0(w)] 2 0.
N-oo
This phenomen(n comes from the naming term by the parametrization,
which may be similar to the discussion of the mean squared
errors for estimators (c.f. Rao [8], Efron [3] and Amari [1]).
The relation (1.1) leads us directly to
COROLLARY 2. Second order efficiency of a first order

efficient u is equivalent to the condition:
~ N
1im E [ L(u) ]
o0 L(Y)

1

v

for all first order efficient estimators u.
By definition, the maximum likelihood estimator Uy,

satisfies
b Cuyyp )
L(T)

v
=

for any ¥ in U and any sample size N. So COROLLARY 2
implies promptly in second order efficiency of the maximum
like likelihood estimator, which is famous for Fisher-

Rao's theorem.



A contrast function p on F 1s defined by satisfying

the following conditions for any fl and f2 ing :

Iv

(i) p(fl, f2) 0

(11)  p(fy, £f3) =0 ) £y = £, a.e. w.

Dawid-Amari's almost-metric structure is denoted by A, and
the almost-metric structure associated with p is denoted
by A(p) (see Appendix I).

There may remain a question of whether this criterion
E pypp,(8, 6(-))
1s favorable only to the maximum likelihood estimator GML
since the minimum Kullback-Leibler divergence estimator is

nothing but U However this question will vanish by

ML-®
THEOREM 3. Let p be a contrast function with the almost-
metric structure A(p). The condition (1.2) for p in place

of Px1, holds if A(p) = A on éi

2. Proofs of the results, We adopt the
differential geometric formulation, due to Amari [1], including
the almost-metric structure A = (g, ?, ?) over .

For any iflg, let Tf(@O be the tangent space of g;at

f. Tfﬁﬁ) is decomposed into the tangent and normal spaces

of F at £ with respect to the information metric g, i.e.,

- T (F 1y
Te(@) = T.@&) + Ta ().

i .
An nx(n-m) matrix [Bl(u)]i=l,2,--~,n can be chosen to

A=m+l,---,n

satisfy
(2.1)  By(u) gy (e(u)) BJ(u) = 0



i a
for a=1,2,...,m, where B;(u) = aei(u)/au . In the sequal
we use the summation convention as in (2.1). With respect

Y Y
to co-ordinates 8 and u, the bases of TfG;),_TfQ;) and T, (&)

‘at £ = £(+|6(u)) are represented as
lej(u) 2 x5 = my(Whyy 50 no
_ i
{ea(u) = Ba(u) ei(u)}a=l,2,...,m
and
~ a1
e, (W) = By(w) ey (Wl pyy 0o

n[8(u)]. The induced components

respectively, where n(u)

of g to Tf(%) and Tf(gJ at £ = £(-|6(u)) are expressed as

N - o1 J
gp(u) = B (u) gij<6(u)) By, (w)
and
v - i J
gxu(u) = By (u) gij(e(u)) Bu(u),
respectively. '
. m
The second fundamental tensors of & with respect to T
e m e
and ' are denoted by H and H, respectively. The components
m e

of H and H are expressed as

m
Hab)\<u>

1]

By (w) 3,[B) (W) g, (6(u))]
and

e . .
Hopa (8) = By(u) gy5(0(w) 3, Bl(w)

with respect to u with Ba = B/Bua. Henceforth we omit the

-3

arguments of the above geometric quantities at the true value

u and freely raise or lower indices of them, e.g.,

m m
a - neg
Hpx = Hopy(w) 87 (w)
and
eA = glu(u) eu(u),



co

where gca(u) and g*“(u) are the 1nverse elements of

n n, .
{gac(u)}a,c=1,2,.,.,m and {guﬁu)}k,u=m+l,...;n respectively.

For a first order efficient estimator u(6), the set

{£(-]8); u(8) = u}

is called the ancillary subspace of u of which the second
m

6(u)) with respect to T is

fundamental tensor at f = f(-
denoted by H. Then we can rewrite THEOREM 7 in Amari [1]

in the following convenient form:

THEOREM A. Let u be a first order efficient estimator

of u. Then
m

e
~a a _ _a l,a b.c a b A 12
(2.2) u” - u" = e" - §Tbce e~ + kue e’ - 5}{

Furthermore the estimator u is second order efficient if and

iiexe” 1LO(H@HS)-

~only if the tensor ﬁ vanishes on @.

In practice THEOREM A 1s also equivalent to THEOREM 1 (ii)
by Ghosh and Subfamanyan [7] in the case of one parameter.
We set about, on the basis of THEOREM A and Appendix II,

PROOF of THEOREM 1. The Kullback-Leibler divergence
pKL can be also expressed as
Pk, (NysN5) = <ny,00n,J-6[n,1> - w(6[ny 1) + ¥(8[n,1)
with respect to n. Let & be a first order efficient estima-
tor. Then the statistic pKL(;’ n(a)) can be expanded as
(2.3) by (xs n(W) = F ey (e, et + o(lle] 1),
where gij is the inverse element of {gij}. It follows from

THEOREM A that

e, (W) = B et + o([le]]?).

ix
Hence we have from Appendix II that
lim N E pKL(x, n(u)) = 5,8 U = (n-m)/2

N>

The rest ofuthe assertions are similar to the above and so
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we complete the proof.

To prove THEOREM 2, we prepare
LEMMA 1. Let u be a‘first order efficient estimator

A

with the second fundamental tensor H. It holds that

(2.4) 1im E N[N ei(ﬁ)ej(ﬁ)gij - (n-m)]

N>

m e N em m
- RUTHZ w 1IENZ + AN - 2B - 5y,
m m_-m v
. 2 - na a o ~be w~ef
wnere |[T||® =T T :8,48 & .
e e e
2 a c v ~bd ~A
[HIT = 80 Hyy €, 8 &0,
T112 = na Lb.ov ~AV wuE
HEHS = 5y, Hyp g, 870 8,
e m e_. m
- a c W ~vbd ~Au-
(H,H) = Hyy Hdp Boo B g‘ and
m m "
- na c N vbd ~Ap
(H,7) = Hoy Tay Bac & €75
m e
with the tensor T = T - T.

PROOF. The statistic ei(G) is expanded as

~y A a 1 ab a,b
(2.5) e;(u) = By; e” + B4 A" - 5 9B g e7e” - 3B e"A
- l’g 5. B ' eaebeC +:b([|e|{u)
6 %c’bTail '
by Taylor's theorem, whefe Aa S ea - To. It follows from
(2.2) that
v m e A
- a_1-a _b.ec a _b_A 1l a _Au 3
(2.6) AT = 5 Tpe € e = Hyy ee’ + 35 qu ee"+ 0(lle]]”).
Substituting (2.6) into (2.5), we Have
AR 5, E,¥ Au o, a,b , 1 1j
(2.7) ej(u)eJQu)g gy, e * g AA” + 7 3,B.,; 8
m m
a b c d ab A a by
adBcj e e e e - Habk e e e’ + 2Habu A"e"e
m
1 L1 a b c A ab.c 5
- = +
3 By 3,9, Byy eTeee Tope Oe e o(llel|”)
m_ m e
= 5 A_H 1l La a o~ b c e f a b
= gxu e'e 5 Pbc ref gad e e’e e + Hck Hdu
~ m m
x €ab ecede)‘e11 + % HfLH&% e)‘e“eveE + Habu Hch
m m m
x gAML g8ePeCed g e?ePe? + H r ebecedex



1) _ o1 vab .j i vAp oJ
g Ba g Bb + BA g BU

Hence from (2.7) and Appendix IT,
SR 5 - 1yiny2 112 4 L1402
Efe (De ()g™1 = B + S (- [T1% + [18]]° + gl |H]|
i N | ~
e m m -3
- 2(H,H) - (H,T)} + O(N °).

This completes the proof.

Now we set about
PROOF of THEOREM 2. Let 4 be a first order efficient

estimator. Then the statistic p,. (x, n(&)) is expanded as
KL

(2.8) oy (x, n(@) = & g,88™ - 3R & e, ¢ Tt S Y
+ 3 sijm%’igjeke2 + Sijkzgi%jgkez + g sijkzéiéjgkgg
+0(]le] ),

where Sijkz = 5%7 Tjkz and gi = ei(a). By a simllar argunent

as in the proof ;f LEMMA 1, we have from (2.8) that

(2.9) oy (%, n(@) = 3 & g™ - 3 my ; eteted
e Aaekei + % TAUQ exe“ev + Tkua e)\e“Aa
- % SAuij eAe“eiej + quui e}‘e“e\)ei + % Skpvg eAe“eveg
+ 0(]]el]”)

Let ¥ be the second fundamental tensor of the ancillary

subspace of 4. It follows from (2.9) and LEMMA 1 that

10
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- v 1
(2.10) E py (8, 8(1)) = 55 + §5 BIH 1+ w4 o),

where
w= - BTN+ 3m2 - R - e
- % TAuv Y - % Txua Tkua
+ %? Sluvé wku gvé + % quab ~ab gku.

Clearly the term M in the RHS of £2.10) is independent
of U and dependent only on the model @. Hence it holds for

A

a second order efficient estimator u that

(2.11) E[p (8, 0(X) - (8, 6(0))] = = gHHli2 + 005

A~

since the estimator u has the vanishing second fundamental
tensor on account of THEOREM A. Therefore the second order
efficiency of S implies the inequality (1.2). The inverse
assertion is clear since ]I%}I = 0 implies H = 0. This
completes the proof. |

Similary we have

PROOF of THEOREM 3. The statistic p(6, 6(1)) is expanded

as
(2.12) 38 H@)%8, + Lo"rle) Wk 4 p(0UIkGy8 vy
+ D(D)ljkkgigjgkgz + O(Ile!|5),
(g(o)’ P(p)’ 1)y ana

where A(p) =

L
(p)ijke - p)
D » = p(6lnl, 6(u))|
anianjankanz

n=n(u)’

If A(p) = A on &, the expansion (2.12) is equal to (2.8) on
pKL except the last term because of A(pKL) = A. This impliles

the condition (2.11) with p

1L replaced by p, which completes

the proof.

11
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REMARK 1. From the first term of (2.12), it follows
(p)

n,
that Theorem 1 holds for p with g = g on % in place of

PyL,-
Let p be a contrast function on th with the almost-
metric structure A(p). By a similar argument as in the proof

of THEOREMS 2 and 3, we may conclude the relation

glinte) -8

lim N° E[p(8, U) - min p(8, 8(u))]
N+ ueU

. for any first order efficient estimator &, where,ﬁ and H(p)
denote the second fundamental tensors of the ancillary

subspace of & and the subspace

{ £(-]8) ;5 p(B,6(u)) = minu%EU p(8,8(u")) }‘m

at f-= f£(+|8(u)), respectively, with respect to T, Finally
1im N° E[ (3% - u®)g b 1° - w23
N+oo p--a p

= 1lim N2 E[p(a, 6(&)) - min p(g, o(u))l,
. N uelU

where up denotes the minimum contrast estimator based on p}
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Appendix I
Let 1 be a co-ordinate system (pafameter vector) of &
with the transformation 6{<} of T into 6. The log-likelihood
log f(x|6{t}) with respect fo T is denoted by &2(1). Then
m e

the almost-metric structure A = (g, I', T'), iIntroduced by

Amari [1], is defined as the following components

gy, (0) = (2% —a-j-] ,
. 9T~ oT
m 2
Tyjpele) = EL R 9% 7 + Bl 3%_ 9% 9%
J 9T BTJ 9T dtt a1Y At

12



and

e 2
3°%
T () = B[S J
13 [k 3tiard 5

with respect to T with & = 2(T) (see also Dawid [2]).
On the other hand, the almost-metric structure associated

with a contrast function p on @ is defined as the following

components
2
(p) 3 .
eiy (V) = = o7 Pt Tl o ar
172
r(0) 23
T) ¥ 3% p(T4, T )I =
ESIE sriotdaty =TT
and
*r (o) d
(1) = = ———— p(15, 1| - __
Tk priotdars o 1 Tt
with p(rl, T,) = o(£(: f(-|6{12})) (c¢.f. Eguchi [47).

Appendix II

It holds for any sample silze N that

ab 1 ~vab
E ee = N g 5
A 1 vA
E e'et = T8 H R
E e®ePe? = j§ Tabk ,
N
B eaeb ALM j§ gab gku . j§ Sabkp
N N
and
B eaebecex - j§ Sabc)\ ,
N
where
abip _ Ak HL
S = g2 B B aiajakazw
with 3, = /30

13
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0
Vn;?
6(u)  6(0) > /(n-m)/2
{e(u') ; u'= U} /m/2

Fig. 1. The right triangle. Let u be first order

efficient estimator of u. The triange with sides /N E p(6,6(u)),

/ﬁ E p0(8,6(u)) and JN E p(6(u),06(u)) converges to the right

triangle with vn/2, V/(n-m)/2 and vm/n.
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