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On a generalization of homotopy groups

Univ. of Yamaguchi ( AN I R
Tadashi Watanabe ( 3% 3n KE )
In this note we shall introduce generalized homotopy groups
for arbitary spaces. These groups are homotopy invariants.
These are coinceded with usual homotopy groups for ANR spaces,

but do not in general.

§ 1. Spaces and maps are topological spaces and continous
maps, respectively. Let I = [0,1] be the unit interval. For

each integer n 2 1, we define

n , . . ‘
T = {(tl,tz,...,tn). 0 £t. &1 for all 1_%,

X

n-1 n

"= (bt ) €T 8 =0 8,

gt J(tyst,,nst ) €T £, = 0 for some 1, 1 £1 £
< n-1 &. -1 o 71 45 the boundary of I". Let (X,A,XO)

be a pair of spaces with base point. By JZn(X,A,xO) we mean

(In In—l Jn—l
>

b

the set consisting of all maps r ) —> (X,A,XO).

By Cov(X) we mean the set of all normal open coverings of X.

Let f,g:X — Y be maps and V € Cov(Y). We say that f and g



are V-near, in notation (f,g) £ V

, provided that for each x ¢X
there exists a V € V with f(x),g(x) &€ V.

For each U € Cov(X) we define a relation on S)h(X,A,xO)
as follows: Let r,s e_fln(X,A,xO). We say that r and s are

U-chainable in°’ Jﬂh(X,A,XO), in notation r s, provided that

U

..,h

>

there exists a finite subset {hl,h of J)h(X,A,xO)

22"

k
= = = i < 3 <
such that h1 r, hk s and (hi’hi+l) = U for each 1, 1 & i £

< k-1. It is easy to show the followings:

Lemma 1. For each U €& Cov(X), =  forms an equivalence

<

relation on 42h(X,A,xO).

Lemma 2. Let U U, €Cov(X). 1If Ql is a refinement of

12 =2

. . < E . . E
U, ( in notation, U, = Q2), then r U, s implies r U, s for
r,s € th(X,A,xo).

Lemma 3. Let r,s é.th(X,A,XO). If r and s are homotopic

( in notation r =« s), then.rn%? s for each U ¢ Cov(X).

Proof of Lemma 3. Since r and s are homotopic, there
exists a map F: (In,In—l,Jn—1)<xI —> (X,A,XO) such that
(1) F(x,0) = r(x) and F(x,1) = s(x) for each x eI".

Take any U € Cov(X). Then F_l(g) is a covering of ™™ x T.

Since I" and I are compact, there exist a v ¢ Cov(I™) and an

integer k such that



F'l(g).

h,

(2) Vx K
Here K = {[i/k, (i+1)/k]: 1 = O,l,...,k—l’§. Now, we define
maps hieailn(X,A,xO) for i = 0,1,...,k as follows: For each.

x ¢ IP hi(x) = F(x, i/k). By (1) we have that hy = r and h,_ =
s. Take any x e€I". Since V ¢ Cov(I") there exists a V ¢ V
with x &€V. Take any 1, 0 £1 £ k-1. By (2) there exists a

U & U such that Vv x [i/k, (i+1)/k] c F1(U). Hence we have

that hi(x),hi+1(x) ¢ U. This means that (hi’ hi+l) < U.

Hence r and s afe U-chainable 1in Jln(X,A,xO), This completes

the proof of Lemma 3.

Now, we define the usual product on th(X,A,xO) as follows:
Let r,s 6~Qh(X,A,xO) . We defie r¥s eth(X,A,XO) by

r (2t ,t,,...,t ) for 05t,51/2

(r*s)(tl,tz,...,tn) 2

t )

's(2tl—1;t2;..., i

for 1/2 £ ¢t

WA
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From the definitibn it is easy to show the following:

r2 and sl

1<l

Lemma 4. For each U € Cov(X), if ry

=1l

2’
fe = . %
then ri¥s) T rots,.

By Lemma 1 is an equivalence relation on Jln(X,A,XO).

=t

Let [r]U be the equivalence class of r by %? . By Wn(X’A5XO:

U) we mean the set’ {[r]gf_r’ésﬂh(X,A,xo)} . By Lemma 4 we



(S

. . . % = %
can define the product in wn(X,A,XO.Q) by [r']—q [S]Q [r s]U

for r,s e\Qn(X,A,xO). Concerning this product we show the
following:

:U) forms a

Theorem 5. ‘For each U eCov(X) Wn(X,A,XO

group.

Proof. (i) Let Cy :I" — X be the constant map to X
0

Then it is well known in the homotopy groups that

* A * Nr
(1) r CXO ~ r and cxo r 2~ r for each r ¢ AL (X,A,XO).
* = * =
By Lemma 3 and (1) we have that [r]U [cXO]U [r CXO]U' [r]U
* = * v = il
and [cXO]U [r]U [cXO r]U [r]U, that is,

(2) [r]U*[cX

O]g = [r]g and [cXO]H*[r]g = [P]Q.fOP each

r e-fln(X,A,XO).

(2) means that [e, ]U is the identity element of Wn(X,A;xO:Q).

0
(ii) Take any r’e.fln(X,A,xO) and define the map r 6.J2n(X,A

,xo) by F(tl,tg,...,tn) = r(l—tl,tz,...,tn) for each (tl,tg,...,
,tn) e 1. It is well known in homotopy theory that
$p %
(3) r¥r o~ cXO and r¥r ~ cXO.

From Lemma 3 and (3) we have that
() Lr1p*Fly = Loy Ty

(4) means that [f]U is the inverse of [r]U.

and [PJU*[PJU = [cX ]

0 U

(1{ii) Take any r,s,u e_Jln(X,A,xO). It is well known in



()
U

homotopy theory that

(5) (r¥s)*u =~ r¥(s¥*u).

By Lemma 3 and (5) we have that

(6) ([r]g*[sjg)*[u]g = [r]g*([S]g*[u]g)'
(6) means the associative law. By (i),(ii) and (iii) we prove
the required one.

By ’Fh(X,A,xO) we mean the n-th homotopy group of (X,A,xo).

By [r] we mean the homotopy class of r for r & J1h(X,A,xO).

By Lemmas 3 and 4 we have the well-defined functions f%

77n(X,A,XO) _— Wn(X,A,XO:Q) and f%

—1’Q : Wn(X,A,xozgl)———e

2

W (X,A,x,:U,) which are defined by flﬁ[rj) = EPJQ and

= 3 <

5 u ([rly ) = [rly for U,U;,U, € Cov(X) with Uy £ U, and
=1°’=2 =1 -2

for each r G.Qh(X,A,Xo). From the definitions of group

structures in 7Tn(X,A,xO) and Wn(X,A,xO:g))it is easy to show

the following:

Lemma 6. f) and /3 are group homomorphisms and
U U, ,U
=1 21022
P = P £ F =P P for U, <U, <1U,.
U, 21322 Ql > Qlagg g29g3 Ql’gg _1’“—2 =3
By Lemma 6 {W (X,A,x,:U), F) s Cov(X)} forms an
n 0= "0y50,

inverse system in the category of groups. We denote it by
pro-W_(X,A,x,). Also ID(X,A,XO) = {szg ECOV(X)E t T (X,A,%,)

' v
_— pro—wn(X,A,xO) forms a system map. Let Wn(X,A,xO) be
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the inverse limit group of pro—wn(X,A,xO) and let 'ZU : wn(X,A,

’XO) Ewn(XsA’XO’Q) be the natural projection. Then
\V4
‘Z(X,A,XO) = {‘ZQ:Q é-Cov(X)Z pW(X,A,x) — pro-W (X,A,x,)

makes an inverse limit. Trivially F? - induces the

X,A,XO)

v v
homomorphism f%X Ax) ﬂh(X,A,xO)~——é Wn(X,A,XO) with
5 3 O
vV
Pitn,xg) = Txn,xp) Ax,a,xy)

By Wn(X,XO:Q) we mean Wn(X,ixog,xozg). Similarly we define

v
pro—wn(X,xO) and Wn(X,XO). By the standard fact in homotopy
theory and the same way as Theorem 5 we can prove the follow-
ing

Lemma 7. For each U € Cov(X), Wn(X,A,X :U) are abelian

0

for n 2 3 and Wn(X,x :U) are abelian for n Z 2.

0

Let f :(X,A,XO)-——e(Y,B,yO) be a map. Take any V & Cov(Y).

1

Then £ (V) € Cov(X). Clearly f induces the homomorphism

. wn(x,A,xO:f'l(y))——~» W _(Y,B,y,:V) which is defined by

f*v([r]f—l(v)) = [fr]v for each r e.ﬁ%(X,A,XO). Moreover,

for V., V., & Cov(Y) with V, < V, we have that

1

/QV

__1’

1° =2

£ 1 v f*V . These means that f* =

o 1 -
I
o).t o N

¥V, (7,)

-1
f f*z,f }- forms a system map from pro—wn(X,A,xo) to pro—wn(
Y,B,yo). Here £ 1: Cov(Y)——>Cov(X) is the function defined

1

by V —>f (V). Then fy induces the homomorphism



(P
-1 .

v v v
e Wn(X,A,XO)“——9Wh(Y,B,yO) with £,

- T ¢

T
(X,A,XO)
(Y,B,yg) ¥

Lemma 8. Let f,g: (X,A,x5) —>(Y,B,y,) be maps. If
f ~g, then g, gy: pro—wn(X,A,xO)-——y;mw—wn(Y,B,yO) are equi-
valent in pro-groups.

Proof. Take any V eCov(Y). Take any U & Cov(X) which
refies f_l(z) and g_l(y). By Lemma 3 we can easily show that
f*y:Fg)ffl(y5 = % PQ;é_l(z)" Hence we completes the proof of
Lemma 8.

Lemma 9. Let f :(X,A,xo)-——)(Y,B,yO)'and g: (Y;B;yo)——‘ﬁ

(2,C,z4) be maps. Then (gf)y = gy fy and l(X;A,xO)* _

=1 ST
pro—wn(X,A,xO)

Corollary 10, pro—wn(X,A,XO) and %n(X’A’Xb) are‘homotopy
invariants.

Remark 11. 1In [/leuréwicz introduced groups ‘an(x,x) for
each real number £:b, His groups are coihéided Withvﬁhé kérﬁéi
of F%: T;(X,x)—;—a Wﬁ(X;x:g) in our Sénse. Since éil homomor-

phism f%

are onto, our group Wn(X,X:g) 1s isomorphic to

Wh(X,x)/Ker( FU), that is, Wn(X,X:Q) is isomorphic to

Wh(X,X)/ %;eﬁx,x) in the sense of Hurewicz. Therefore, we

have to say that our groﬁpswn(x,x:g) are defined in essential

by Hurewlcz. However he did not consider pro—Wn(X,x) and



Wn(X,X).

2. In this section we shall state results on our groups
without proofs. The detalled proofs are contained in Watanabe
[$7.

Theorem 12. Let X be a compact Hausdorff space. Then
%O(X,x) corresponds to the set consisting of all connected
components of X.

Theorem 12 means that in general %O(X’X) and Wb(X,x) are
different.

Theorem 13. Let X and A be paracompact Hausdorff spaces

with A € X, and let A is P-embeded in X. If X is Lc? and A is

n-1
. r - . . _
LC , then ﬁ%X,A,X) n(X,A,x)__._a pro wn(fo’X) is iso
v v
morphic, and hence P(X,A,x) Wh(X,A,X)———a~Wn(X,A,x) is an
isomorphism.

Corollary lM.k Let X and A be ANR spaces and let A be a
closed subset of X. Then /)(X,A,ﬂ W (X,A,%) —> pro-W_(X,
v v
" ‘7‘,—' . .
A,x) and P(X,A,x)' n(X,A,X)——A,»WH(X,A,X) are isomorphisms
for each n.
Theorem 15. Let X be a compact metric space. Then pro-
_ v
Wn(X,A,x) is stable if and only if wn(X,A,x)‘is a countable

group.
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Corollary 16. Let X be a compact metric space. If Wn(X,A,

v
x) 1is a countable group, then f%X,A,X) : Wh(X,A,X)-—————é
\'d
Wn(X,A,X) is surjective.
Theorem 17. If (X,x) is a pointed AANRN( see [«]), then

pro—wn(X,x) is stable, for each n.

3. In this section we define a system map from pro—wn(X,A,
X) to pro- ﬁh(X,A,x). Let (X,A,x) be a pair of spaces with

base point. By using Theorem 6 of Mardesic[g] and a method of

Watanabel[4] we can construct an approximative resolution p =
fppi0 €8} s (A0 — (OLAK,T) = {((Xy,a,,%)50,)5 Py ps
B} satisfying the followiling condition:

(1) Xb and Ab are ANR spaces and Ab are closed subset of

Xb for each b €& B.

(2) U, is a covering of Xb such that for any closed

=b

metrizable pair (Z,C,z) , if any maps f,g:(Z,C,z) —> (Xb,Ab

,xb) with (f,g) <

U, , then f and g are homotopic.

From (2) we have that

(3) Wn(Xb,Ab,xb:Qb) = rﬁh(xb’Ab’Xb) for each n.
Since Py induces a homomorphism Ppx: Wn(X,A,X:.pgl(Hb)) —_—
Wn(Xb,Ab,xb:gb) for each b € B, 1t is easy to shoe that py =
fopesp b prosi 06a,0) —5 U, O AL x5 By s BY
= {Wh(Xb,Ab,xb),pb,’b*,B }= pro- Th(X,A,X) forms a system
1,

map by (3). Here p ~: B—=>Cov(X) is a function defined by



4

p-l(b) =>p;l(gb) for each b & B.
Theorem 18. If (X,x) is a pointed AANR,, ( see [4]), then
Py : pro-wn(X,x) —> pro- W%(X,x) is an isomorphism for each
n .
, o :
Corollary 19. If (X,x) is a pointed AANR,, then W (X,x)
_ C n?

is isomorphic to shape group ﬁ%(x,x) for each n.

Addendum 20. By Corollary 10 we show that pro—wn(X,A,x)

v , ‘
and Wn(X,A,x) are homotopy invariants. However, these are not
shape invariants. For example, let X be the circlé and Y be a
Warsaw circle. Then X and Y have the same shape . However
pro—wl(X,x) is isomorphic to Z and pro—wl(Y,y) is isomorphic to

0.
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