Infinite Dimensional Combinatorial Topology

Katsuro Sakai (酒井克郎)

Institute of Mathematics, University of Tsukuba

A <u>simplicial complex</u> K means a geometric one, that is, K is a collection of (closed) simplexes in a real vector space, and the <u>underlying space</u> |K| is the union of all simplexes of K with the weak topology determined by the Euclidian topology on simplexes. A <u>subdivision</u> K' of K is a simplicial complex such that each simplex of K' is contained in a simplex of K and every simplex of K is a finite union of simplexes of K' (hence |K'| = |K|). Simplicial complexes K and L are said to be <u>combinatorially equivalent</u> if they admit simplicially isomorphic subdivisions. We say that a space X <u>is triangulated</u> by a simplicial complex K (or K <u>triangulates</u> X) if X is homeomorphic to |K|.

An \mathbb{R}^{∞} -manifold is a separable paracompact (topological) manifold modeled on \mathbb{R}^{∞} = dir lim \mathbb{R}^n . The real line \mathbb{R} is naturally triangulated by the complex

$$R = \{n, [n,n+1] \mid n = 0, \pm 1, \pm 2, \ldots\}$$
.

For n>1 , ${\rm I\!R}^n$ is triangulated by the product complex ${\rm R}^n$. Such triangulations give the natural triangulation ${\rm R}^\infty$ of ${\rm I\!R}^\infty$.

By the Triangulation Theorem [2], each \mathbb{R}^{∞} -manifold M is homeomorphic to $|K| \times \mathbb{R}^{\infty}$ for some countable (locally finite) simplicial complex K. Thus <u>each</u> \mathbb{R}^{∞} -manifold is triangulated by a countable simplicial complex. Then the following two problems arise:

- (A) What simplicial compelex is an \mathbb{R}^{∞} -manifold?
- (B) Are two simplicial complexes triangulating same \mathbb{R}^{∞} manifold combinatorially equivalent?

We can easily answer to (A) as follows: A countable simplicial complex is an \mathbb{R}^{∞} -manifold if and only if the star of each vertex is homeomorphic to \mathbb{R}^{∞} . In fact, the "if" part is obvious and the "only if" part follows from [6, Proposition 6-3] and the Classification Theorem [2].

By Δ^{∞} , we denote the <u>countably infinite full complex</u>, namely the countably infinite simplicial complex each whose finite vertices span a simplex of Δ^{∞} . From [4, Proposition] (cf [5]) Δ^{∞} <u>triangulates</u> \mathbb{R}^{∞} . Furthermore, using the following characterization, it is easily seen that Δ^{∞} <u>is combinatorially equivalent to the natural triangulation</u> \mathbb{R}^{∞} of \mathbb{R}^{∞} .

CHARACTERIZATION of Δ^{∞} [8, 3-1]: A countable simplicial complex K is combinatorially equivalent to Δ^{∞} if and only if each p.l. embedding f: P \rightarrow |K| from a closed subpolyhedron of a compact (Euclidian) polyhedron Q extends to a p.l. embedding $\tilde{f}: Q \rightarrow |K|$.

A combinatorial ∞-manifold is a countable simplicial complex

such that the star of each vertex is combinatorially equivalent to Δ^{∞} . In this definition, the term "star" can be replaced by "link" [8, Proposition 4-1]. Using the standared pseudo-radial projection srguments, it can be shown that a simplicial complex is a combinatorial ∞ -manifold if and only if so is its subdivision. Using the above characterization of Δ^{∞} , we can prove that if $K = \cup_{n=1}^{\infty} K_n$ where each K_n is a combinatorial k_n -submanifold of K_{n+1} with $k_n < k_{n+1}$ then K is a combinatorial ∞ -manifold [8, Corollary 3-2]. Combining this with the Open Embedding Theorem, it follows

COMBINATORIAL TRIANGULATION THEOREM for \mathbb{R}^{∞} -manifolds [8, 3-3]: Each \mathbb{R}^{∞} -manifold is triangulated by a combinatorial ∞ -manifold.

For combinatorial ∞ -manifolds, we can answer affirmatively to (B), that is, we can prove the following:

HAUPTVERMUTUNG for combinatorial ∞ -manifolds [8, 2-4] : Any two homeomorphic combinatorial ∞ -manifolds are combinatorially equivalent.

We have a characterization of combinatorial ∞ -manifolds [8, 3-4] similar to one of \mathbb{R}^{∞} -manifolds [5, Theorem 1-3]. Using this characterization, we can see that <u>for each countable simplicial complex</u> K, <u>the product complex</u> K \times Δ^{∞} <u>is a combinatorial ∞ -manifold</u> [8, Theorem 3-6]. Thus the following is proved:

STABLE HAUPTVERMUTUNG for simplicial complexes [8, 3-8]: For any two homeomorphic countable simplicial complexes K and L, the product complexes K \times Δ^{∞} and L \times Δ^{∞} are combinatorially equivalent.

The next problem remaines open:

(C) Can an R[∞]-manifold be triangulated by a simplicial complex which is not a combinatorial ∞-manifold?
Can R[∞] be triangulated by a simplicial complex which is not combinatorially equivalent to Δ[∞]?

In finite dimensional case, R.D. Edwards [1] showed that the 5-sphere has non-combinatorial triangulation K as a corollary of his double suspension theorem. For this complex K, each n-fold suspension Σ^n K is a non-combinatorial triangulation of the (n+5)-sphere S^{n+5} . However the infinite suspension Σ^∞ K = dir lim Σ^n K is a combinatorial ∞ -manifold by [8, Corollary 3-11].

R.E. Heisey [3] defined \mathbb{R}^{∞} -piecewise linear (\mathbb{R}^{∞} -p.1.) maps between open subsets of \mathbb{R}^{∞} and introduced the notion of piecewise linear \mathbb{R}^{∞} -structure (p.1. \mathbb{R}^{∞} -structure) as in Differential Topology. A piecewise linear \mathbb{R}^{∞} -manifold (p.1. \mathbb{R}^{∞} -manifold) is a separable paracompact space together with a p.1. \mathbb{R}^{∞} -structure (His p.1. \mathbb{R}^{∞} -manifolds are essentially same as infinite polymanifolds defined in [9, Ch.2, p.10].) Then \mathbb{R}^{∞} -p.1. maps and \mathbb{R}^{∞} -p.1. isomorphisms between two p.1. \mathbb{R}^{∞} -manifolds are defined similarly as differential maps and diffeomorphisms between two differential manifolds. Since $\mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ is identified with \mathbb{R}^{∞}

by the natural linear homeomorphism, p.1. \mathbb{R}^{∞} -submanifolds (of infinite codimensions) can be defined as locally flat submanifolds. He established the following:

 \mathbb{R}^{∞} -p.l. EMBEDDING THEOREM [3] : For each p.l. \mathbb{R}^{∞} -manifold M , there exsists an \mathbb{R}^{∞} -p.l. isomorphism f : M \rightarrow N , N a closed \mathbb{R}^{∞} -submanifold of \mathbb{R}^{∞} .

He also showed in [3] that \underline{a} p.1. \mathbb{R}^{∞} -submanifold N of \mathbb{R}^{∞} is an \mathbb{R}^{∞} -polyhedron, that is, for each compact polyhedron C in \mathbb{R}^{∞} , C n N is a polyhedron in the usual sense.

The author [7] proved the following:

 \mathbb{R}^{∞} -p.1. HAUPTVERMUTUNG : <u>Two</u> p.1. \mathbb{R}^{∞} -manifolds are \mathbb{R}^{∞} -p.1. isomorphic if and only if they are homeomorphic.

By the Open Embedding Theorem [2], each \mathbb{R}^{∞} -manifold can be embedded as an open subset of \mathbb{R}^{∞} . Since open subsets of \mathbb{R}^{∞} have the p.l. \mathbb{R}^{∞} -structure inherited from \mathbb{R}^{∞} , we have the following:

UNQUENESS of p.l. \mathbb{R}^{∞} -structure : Each \mathbb{R}^{∞} -manifold has a unique p.l. \mathbb{R}^{∞} -structure.

Let K be a combinatorial ∞ -manifold. For each vertex v of K, there is a homeomorphism $f_V: |St(v,K)| \to \mathbb{R}^\infty = |R^\infty|$ which is a simplicial isomorphism with respect to subdivisions of St(v,K) and R^∞ . Put $U_V = \text{int } |St(v,K)|$ and $\phi_V = f_V |U_V$. Then $\{(U_V,\phi_V) \mid v \in K^0\}$ is clearly a p.l. \mathbb{R}^∞ -structure of |K|. Thus any combinatorial ∞ -manifold has the natu-

ral p.1. \mathbb{R}^{∞} -structure. Conversely, any p.1. \mathbb{R}^{∞} -manifold is \mathbb{R}^{∞} -p.1. isomorphic to a combinatorial ∞ -manifold with the natural p.1. \mathbb{R}^{∞} -structure because it is \mathbb{R}^{∞} -p.1. isomorphic to an open subset of \mathbb{R}^{∞} by the Open Embedding Theorem and the above \mathbb{R}^{∞} -p.1. Hauptvermutung. Let $f: |K| \to |L|$ be a homeomorphism (or a map) between combinatorial ∞ -manifolds. Then it follows that f is an \mathbb{R}^{∞} -p.1. isomorphism (or an \mathbb{R}^{∞} -p.1. map) with respect to the natural p.1. \mathbb{R}^{∞} -structures if and only if it is p.1. on each finite subcomplex. Especially if f is simplicial with respect to subdivisions then f is \mathbb{R}^{∞} -p.1. However even if f is an \mathbb{R}^{∞} -p.1. isomorphism with respect to the natural p.1. \mathbb{R}^{∞} -structures, f need not be simplicial with respect to any subdivisions of the wholes.

References

- [1] Edwards, R.D.: The double suspension of certain homology 3-sphere is S^5 , Notices Amer. Math. Soc. <u>22</u> (1975) A 335, Abstract # 75 T G 33.
- [2] Heisey, R.E.: Manifolds modelled on the direct limit of lines, Pacific J. Math. 102 (1982) 47-54.
- [3] _____: Embedding piecewise linear \mathbb{R}^{∞} -manifolds into \mathbb{R}^{∞} , Topology Proc. <u>6</u> (1981) 317-326.
- [4] ____ and Toruńczyk, H.: On the topology of direct limits of ANR's, Pacific J. Math. 93 (1981) 307-312.
- [5] Sakai, K.: On \mathbb{R}^{∞} -manifolds and \mathbb{Q}^{∞} -manifolds, Topology Appl. (to appear).

[6] ____: On R[∞]-manifolds and Q[∞]-manifolds, II: infinite deficiency, Tsukuba J. Math. (to appear).
[7] ___: Each R[∞]-manifolds has a unique piecewise linear R[∞]-structure, Proc. Amer. Math. Soc. (to appear).
[8] __: Combinatorial infinite dimensional manifolds and R[∞]-manifolds, preprint.
[9] Zeeman, E.C.: Seminar on Combinatorial Topology, mimeo-

graphed notes, (Inst. des Hautes Etudes Sci., Paris, 1963).