goooboooogn
O 5110 1984 0 144-155

).—\
1o
e

A Portable Logic Simulation System

Kentaro Shimizu

Department of Information Science, University of Tokyo,
Bunkyoku, Tokyo, 113 Japan

SUMMARY

This paper describes a portable

logic

simulation system PLS,

which was used for development of FLATS -- a formula manipulation
machine consisting of more than 33,000 ECL and partly TTL MSI

chips. PLS

Description Language)

Register-transfer and/or gate
SCL describes
Both descriptions
are linked to execute the simulation.
Fortran was used for portability and

written in HDL.
simulation.

mented mainly in Fortran.
efficiency.
tions

thereby the execution time is considerably shortened.

supports two simulation
and SCL(Simulation Control
level

control
are translated into Fortran and

PLS checks for several types of
globally at compile time and executes one-pass simulation;

HDL (Hardware
Language).
design specifications are
information about the

languages,

The PLS system is imple~

illegal specifica-

The system

covers a wide area of application and its conciseness facilitates
expressing, organizing, and in general, dealing with large digi-

tal systems.

This paper also describes a preprocessor RATFOR-LS,

which is an extension of RATFOR in bit-manipulating operations to
facilitate describing and simulating computer hardware.

1l. INTRODUCTION

Many logic simulation systems have
been proposed and implemented([l,2,7].
Very elaborate systems seem to be used
in computer industry. However, such
systems are of proprietary nature and
are not in the public domain. There-
fore, we implemented our own system, PLS
to design a formula manipulation machine
FLATS (3], which consists of more than
33,000 ECL and partly TTL MSI chips.

Wide area of applications, concise-
ness, and high efficiency in running
simulations are basic requirements to be
met to develop 1large digital systems.

The PLS system takes in register-
transfer and/or gate level design
specifications, executes simulations,

checks out illegal connections, provides
special forms of documents, generates
test data, and performs a variety of
other tasks related to the hardware
design. In PLS two simulation
languages, HDL and SCL, are provided.
The design specifications of the com-
puter hardware are written in HDL. SCL
describes control information about the
simulation. Since the control informa-
tion is separated from the hardware
description, simulation conditions can
be changed without modifying and recom-
piling the hardware description. The
PLS design database maintains a descrip-
tion of hardware elements and linkage

information used to resolve intermodule
references. It provides modular and
systematic organization of large digital
systems. As for efficiency, by res-
tricting the object logic to a synchro-
nous system that has no loop structures
between flipflops, every hardware opera-
tion is executed only once in each clock
cycle, and the HDL compiler checks for
timing errors and several types:of ille-
gal connections (discusded later) at
compile time; thereby, the execution
time of simulation is considerably shor-
tened. By using the linkage information
in the design database, the compiler can
detect these errors globally in intermo-
dule communications. This facility also
helps the user to find errors in an
early stage of the design and improves
reliability of the design verification.

The FLATS project was developed by
three groups, University of Tokyo (UT),
the Institute of Physical and Chemical
Research(IPCR), and Mitsui Engineering
and Shipbuilding Co. Ltd.(MES), in col-
laboration. The hardware designers, the
users of PLS, were scattered among these

three groups, and each group had in-
house machines of different architec-
tures, as shown in Table I. The first

requirement imposed on the PLS system
was that it should be commonly available
to the designers on their own machines.
In other words, portability was the
internal requirement of the project.

Table I. Implementations of the PLS system
project Distance machine operating Number
group from UT (architecture) system of users
I. uT - HITAC 8740 0s7 6
(similar to IBM/3640)
11, IPCR 20km FACOM M380 0s 1V/F4 3
(IBM/370 compatible)
I1I. MES 600km VAX-11 7840 VAX/VMS 3
HDL/SCL Compiler Fortran Compiler
Fortran{M]
HDL/SCL I Intermediate — Fortran([#]
Object Code
1
Fortran{M]}
M stands for machine M.
Figure 1. Translation scheme of the PLS system
Fortran was the only programming IF, GO TO, CALL, and assignment state-

language that was commonly available on
the three machines. However, we found
it wvery difficult to describe and simu-
late such a large machine as FLATS by
Fortran code as discussed 1later. We
therefore designed new simulation
languages, HDL and SCL, and implemented
their compilers. Fortran was used as an
implementation language of the PLS sys-
tem and as an intermediate object
.language of HDL and SCL. Figure 1 shows
this translation scheme.

The first design of the compilers
was completed within a month. The

entire system was implemented in half a
year, and has Dbeen installed and used

successfully on the three machines.

2. CHOICE OF LANGUAGES

2.1.

Why Fortran for intermediate code?

In general, use of the intermediate
code increases portability of the com-
piler. It facilitates transportation of
the compiler to other machines. 1In PLS,
the compilers generate intermediate code
in Fortran. The translation of the
code, which 1is usually a machine-
dependent, final phase of compilation,
is made by conventional Fortran com-
pilers. Therefore, the need for writing
the translator for the intermediate code
is eliminated. The generated code uses
only primary Fortran facilities; logical

ments; arithmetic expressions and func-

tion calls. All the computations asso-
ciated with the hardware operations are
performed on values of integer
(INTEGER*4) data type except for logical
expressions in the «condition of IF
statements. The generated code indeed

has been run essentially without change
on all machines of the project groups.

bitwise
which

is the
operators,
execution. For-

The only exception
operation with logical
is used for speed up of
tran logical operators .AND., .OR., and
.NOT. can be wused for 32-bit bitwise
operations in all the systems available.
In system II, however, since the logical
operators can not be applied to operands
of integer data type, their operations
are translated into function references.
Bit manipulations have not been defined
in- the Fortran standards due to their
dependency on the implemented machine,
and now depends on Fortran dialects. 1In
PLS, the switch of this code generation
can be specified with the compiler
option.

Another intention to wuse Fortran
efficiency. Fortran was the most
efficient language (particularly for
programs requiring much coaputations)
among those that were available on each
machine. Its compilers produce highly
optimized object codes.

was

2. Why Fortran for system implementa-

tion language?

The fundamental reason Fortran was

used for the system implementation
language was that because it was the
only programming language commonly

available to the hardware designers on

their own machines; as we have men-.
tioned, portability was the internal
requirement of our project. A second

major factor is efficiency of Fortran in
record level input/output, arithmetic
operations, and string processing. The
PLS system includes a variety of appli-
cation domains such as language transla-
tion, database manipulation, numerical
computation and so on. We had to con-
sider how well the facilities in a
language match those that we feel are

important in each domain. The system
could be written in other programming
languages, such as Lisp, C and PL/I,
which provide more convenient control
and data structures than Fortran for
programming and describing programs.
However, they would be too slow to run

the entire system in our environment.
Fortran, because of its flexibility and
lack of restrictions, was enough avail-
able in our applications without degra-
dations and loss of portability.

During the system development, in
order to reduce additional re-coding and
maintenance efforts required for its
transportation, we did not use any spe-
cial features that were provided only by
some particular compilers. However,
some machine dependent coding was needed
due to the difference of byte addressing

scheme between IBM (I and I1I) and DEC
(III) architectures.
Besides Fortran assembly languages

were used for efficiency in some basic
routines. In our original design on
system I, the design database was imple-
mented using indexed sequential i/o, and
its interfacing routines were described
by some 2,000 lines of the assembly
code. But, in systems II and III, sim-
ple sequential i/o was used, and the
routines were written in Fortran for
portability reasons. The run-time rou-
tines which perform bitwise operations
were written in the assembly languages
on the three machines., However, they
consist of about 166 1lines and was
easily implemented on all the machines.

2.3. Why not Fgrtran for the simulation
language?

At the outset, some parts of FLATS
machine were described and simulated by
Fortran code. However, we realized and
encountered many difficulties which were
caused by Fortran deficiencies. It was
‘necessary to develop a new simulation
language suited for hardware descrip=-

tion. For this reason, we designed
simulation languages, HDL and SCL, and
implemented their compilers. The HDL
and SCL provide features that were
required for describing and simulating a
large digital system. The difficulties
in using Fortran and the features pro-
vided by the HDL and SCL are discussed
below.

First, FLATS consists of more than
33,000 MSI chips. It was almost impos-
sible to maintain these hardware com-
ponents by using Fortran variables for
the following reasons:

(a) The limit of six character names of
Fortran was insufficient for iden-
tifying the hardware components
with sufficient names. Some sym-
bolic name dictionary was required
to manage their names.

which were
beyond the subroutine
level, were declared as COMMON
variables. However, in Fortran the
COMMON variables ‘are accessed by
their position relative to the
beginning of the COMMON block in
which they lie. The resulting pro-
grams were unreliable, unless the
programmers exercised great care.

(b) External variables,

referred

In PLS, the compilers-automatically
generate a unigue Fortran name for the
PLS identifier, the first twelve charac-
ters of which are significant. The ori-
ginal name and. the associated Fortran
name are stored in the design database.
It also contains 1linkage information
used to resolve external references.

Second, in manipulating hytes and
words in computer hardware, it was often
necessary to access a field of bits in a
byte or a word. In Fortran, however,
there are mno facilities provided for
inserting and extracting a value to a
bit field. The routines that perform
these operations had to be written in
the assembly language, and the resulting
code therefore was particularly diffi-
cult to read and understand. Several
bitwise operations were also described
as function references.

As for bit processing in Fortran,
another internal form of binary data (@
or 1) might be used; to unpack contigu-
ous bits into a Fortran integer array of
so many elements, each containing the
binary data. This method however
requires excessive storage and computa-
tion time. The special dedicated rou-
tines would have to be written for
arithmetic and relational operations on
the unpacked data as well as for bitwise
operations. The PLS compilers provide
facilities for bit-field specifications

3

and bitwise operations. The Dbitwise
operations can be specified by infix
operators. These features increase rea-
dability and understandability of the
resulting code together with structured
control flow statements.

Third, the propagation delay in the
network had to be considered when
describing and simulating the hardware
system at the gate level. The HDL com-
piler checks several types of 1illegal
connections at compile time for speed up
of execution. Detailed descriptions of
these facilities are discussed later.

3 METHODOLOGY OF HARDWARE DESCRIPTION

3.
AND SIMULATION

[

.1l. simulation model

In PLS, the object hardware system
must operate in synchronism with a sin-
gle phase clock, and satisfy a topologi-
cal requirement that every signal path

from the output to input of the clocked
elements (say, flipflops) pass through
loopless combinational networks. All

the illegal 1loops are detected at com-
pile time so that the network operations
are executed only once in each clock
cycle, and thus the execution time of
simulation 1is considerably shortened.
When the loop structure is allowed, the
operations must be executed more than
once in each clock cycle, until the out-
puts of the network are all stabilized
at their final values. In this case,
excessive computation time and memory
space are required.

TIME BLOCK 1

*—.x
[P
-.\}

Timing and concurrency are taken
into account in the register-transfer or
gate level simulation. In PLS, a
hardware system 1is described as a list
of HDL statements (for example, Boolean
equations at the gate level) represent-
ing hardware actions. The actions that

-are assumed to be performed in parallel

taking a certain period of time T to

complete are grouped into a Dblock
(called a time block), and sequential

actions are described as a list of time
blocks. The hardware designer first
defines a value of interval T (every
time block has the same interval) and
then describes the actions in appropri-
ate time blocks using the time dimen-
sion, based on the number of gate levels
and the switching time of each gate.
Time blocks are given serial numbers
starting with one, each of which
represents the time when hardware opera-
tions in the time block are activated
(measured as a multiple of T). 1If every
gate has the same delay, the time block

number represents the number of gate
levels. Figure 2 illustrates an example
of this time-block model, and its

equivalent HDL description.

In the simulation, execution starts
with the first time block every cycle.
Time blocks are executed only once and
in the order in which they are written.
Let N be the number of time blocks.
Each~ HDL module is invoked N times dur-
ing a clock; for the i-th ~“invocation,
only time block i of the module is exe-
cuted. The execution of time block i+l
begins after the execution of time block

TIME BLOCK 2

TIME BLOCK - 3

Figure 2.

#1:

G:=A &B | C&D;
#2:

H := G & E;
#3:

I :=H@TF;

Example of the time-block model

'_-.\
e
<D

i of all the modules in the system.
This mechanism is especially useful for
simulating the asynchronous behavior of
intermodule communications.

In an event-driven simulation(5],
each hardware operation is executed only
when at least one of its operands has
changed value. Hence, the number of
evaluations is much reduced, but a large

amount of time and space is required for

the queue or stack management. The PLS
system restricts the object system to a
synchronous system that has no feedback
loops, and the HDL compiler performs a
compile-time verification to force a
consistent initial network state.
Therefore, we use.a two-value simulation
model instead of a three-value simula-
tion model([5], in which extra memory
space is required and bit-wise opera-
tions cannot be executed efficiently
unlike in the two-value model.

3.2. structural description

A description of the above simula-
tion model 1is given by the structural
description of the HDL. In this
description, the structure of the
modeled system is described in terms of
the real hardware components and their
interconnections; timing and concurrency
are specified in terms of the time
block. The HDL description in Figure 2
is an example of this description. An
HDL module described by wusing this
description 1is called the Structural
Module (SM). 1In this section, we dis-
cuss the basic structure of this module.

As an example of the SM module,
Figure 3-(a) shows a part of the FLATS
I (Instruction) unit. The SM module con-
sists of two parts: a declaration part
and an executable part. A module name,
the. number of time blocks, and usage of
all variables are declared in this part.
A variable declaration consists of a
list of identifiers and their attributes
such as data types and size in bits, An
external variable, which is defined in
another module, is also declared for
purposes of verification discussed
later. The executable section describes
the operation of the hardware subsystem.
It is a sequence of one or more time
blocks. Time blocks are described as a
list of HDL statements representing the
hardware actions. In the gate level
description, each HDL statement is
either an input equation (assignment
statement) for the system flipflops
(register variables) or an input equa-
tion for the intermediate signals (wire
variables); values of the register vari-
ables <change only at the end of each
clock cycle while values of the wire
variables immediately change. 1In Figure
2 and Figure 3-(a), an integer enclosed
with a number sign (#) and a colon (:)

represents the number of a time block.
Each time block is headed by this string
of characters, and terminated by a
corresponding semicolon character (;).
The HDL statements in each time block
can also include conditional statements
(FOR, WHILE, IF-THEN-ELSE etc.) for sim-
plicity in the higher-level descrip-
tions.

+3.3. high-level description

Hierarchical and multilevel
description of modular structures of
hardware is the basic capability
required for describing a hardware sys-
tem in the structured design. In PLS,
the system is described as a collection
of HDL modules. The SM module describes
each hardware subsystem, which may be an
arbitrary complex hardware component or
unit, at the register-transfer or gate
level. Besides the SM module, the PLS
supports two types of HDL modules: the
Functional Module (FM) and the Pseudo
Module (PM).

FM simply defines a behavior or
function of the subsystem. Its descrip-
tion can use high abstraction; variables
and operators do not necessarily have
physical counterparts, and timing may be
ignored. The FM module is called only
by the SM module. It can be wused for
the following:

(1) Describing a subsystem in place of
its SM description.

(2) Describing commonly-used standard
networks such as decoders, multi-
plexers, adders, and so on.

As for (1), the designer can describe a
subsystem both in the structural
description and in the higher-level
description. For example, in a top-down
design, some FM descriptions are
replaced with equivalent SM descriptions
as finer details are designed. As a
method contrary to this, the FM descrip-
tion can be used to abstract the func-
tion of an SM module for speed up of
simulation, at any stage of logic
design. Figure 3-(b) =shows an FM
description of one half of ECL 10K
MC10166, a five-bit magnitude compara-
tor.

PM describes the interface to the
object system, or environment of the
simulation. Its description need not be
related to the real hardware subsystem.
It is close to conventional programs in
most programming languages. The PM
description was used with SCL for
describing the following simulation
interface in the FLATS design:

(1) Some parts of system programs such
as a loader or -an interrupt

uNIT ¢
PHASE 9:

REGISTER
tQ_, 10t 1,
IWAIT , IWAIT :
1pesIG , LPESIG : L,
CPPSIG, CPESIG : 1,
CTRAPSIG_, CTRAPSIG : L,

BRNT_, BRWT : 1,

/* INSTROCTION BUFFER (IBR}
1BR9_, IBRJ, I[.IBRE WE
[8:1”, IBR1, I.IBR1TWE
IBR2], [BR2, I.IBR2IWE
t8R3_, IBR3, I.I1BRIWE
IBR4Z, IBR4, I[.IBR4TVWE
1825_, IBRS, [.IBRS_WE

sescscesscscans

/* 1-UNIT PIPELINE Q-STATUS FfF ¢/

/® [-UNIT PIPELINE WAIT-STATUS rF v/
/* I=-ONIT PIPELINE PP-STATUS FP */
/* C=STACK PF INTERRUPT REQUEST FF ¢/
/* RETURN TRAP REQUEST fr */

/® CONDITIONAL TEST OQELAY FLAG */

QUEUE *+/

32, /® INSTRUCTION BUPPER ¢ */
32, /* INSTROCTION BURPER 1 */
12, /% INSTRUCTION BUFFER 1 */
2, /* INSTRUCTION BUFFER 1 */
a2, /* INSTRUCTION BUFFER 4 */
32, /° INSTRUCTION BUFPER 5 */

LocIc
(25
I.IPCBRI _PL := 'ADD24 (IPCBRI, 1. @),
1.1Q v I1Q &
CPEEN := cvnq ; LIWAIT & !IPESIG
CPERQ & CWT,
CTRAREM := GTRAP & !IWAIT & !IPFSIG;
2: !
IVA_PL :w ‘ADD2¢ (IVA, 1, d),
IVA_P1 := 'ADO2¢(IVA, 1, 1),
I.A STATE := [.IQ & [VWAIT & !IPPSIG & !VPFSIG, // HK1g1*1l/3
I.BTSTATE := !1.1Q & VQ & IDWALT & (IPFSIG,- // HELEL*1/3
1.PTMODE :» !BR & IWAIT & I.IPFL & IVWAIT & !(BRWT,// HK1d1*1/3
CPFMOOE i+ IBR & CWAIT & CPPEN & !VWAIT & !DRWT, // HK1dl*l/)
CTRAPMODEZ :+ (BR & CTRAPEN & !VWALT & !BRWT, // HK1@1°1/3
1.5US := IVQ | OWAIT, // HK1d2°1/%
1.NBPCODE(9] := 3R s 12.9T
| 18R & I.NBE(2]
[1.1] s I.WT & I.NBZ(d]
HI.WT & [.NBEP(1]
[Z.WT & 1T.80K & I.XBE(8], // ¥K118
I.NBTCOOE{1] := II.WT & [I.3CLK & BR & !YIMAINT
IBR & I.NBF(2] & !YIMAINT
IZ.WT & !I.8CK & [.NBF(L] & !YIMAINT
1BR & !I.WT & I.NBP{G] & [.NBE(1] & !YIMAINT
YI.CSIA(3] & TIMAINT, // HK118
L.NBPCOOEZ(2] := !BR & !I.WT & [.NBF(2]
| IBR & II.NT & (I.BLK & L.NBE(@] & I.NBE(1],
// HK1l8
1.NBFCODE(3] :~ !BR & {I.WT & {I.BLK % [.NBF(2], // HK1ldl*1l/3
T.PCH_CS := [.FCH & II.IVASEL & IYIMAINT,
I.SPECL := I1 ov(s 3 u oe;] s u ”I ' // HK111°1/3,
1.5PEC2 := 1270P(5] & . 77 HK1l7+1/3,
1.SPECI := [370P(S] & 1: “ar (6} & u oe(71, // HK117er/3,
1.SPECIM :w IJSPECL & INT,
I.SPECIM :v [.SPEC2 & nzxmuu-r.
I.SPECIM := [.SPECI & IYIMAINT,
1.GOTOL = [1: QP(2] & II1_OP(3] & II1 OP(4} & I.SPECLM,
- - - // HK181*1/3
1.GOTO2 := I2_OP12] & 1I2_0P(3] & 1I2_0P(4) & [.SPECM
- - 77 HR191#1/3
1.COTO3 := 13_0P(2] & (13 _0P(3] & 113 0P(4] & I.SPECHM
/7 4K101%1/3
1.CALL2 :w (22 OP(2] & 12 OP(3) & 112 OP(4] & I.SPECM,
// HK181°1/3
I.COTO4 := (I3 0P(2] & I3 QP(3] & 1] OP(4]
& [.SPreM & :.ui‘rcno:nl // HR191°1/3
ceceacean sesens

(a)

handler, that
simulation.

SM description

P
r=
3

FUNCTION MCl66(X, Y, E)
IF "E{@] = 1 THEN RETURN B°'9g¢°*
ELSEIF X(4:9] = Y(4:d] THEN
RETURN B°'Q@"
ELSEIF X([4:9] > Y([4:9] THEN
RETURN B*‘91°
ELSE
RETURN B8°'13°
FI
END;

(b) FM description

INCLUDE (HC&LIB, PSEUNC)

PSEUDO ?UNCTION CAR(A)
OT := 'DRD(A),
CASE DT(31:39] OF
#LINEAR, CDRNIL, NORMAL :
RETURN DT(29:4]:
$INVISIBLE :
DT := 'DRD(DT{23:4]},
RETURN 0T (29:4]
ESAC
END,

PSEUDO FUNCTION COR(A)
EXTERNAL
0DS0.NILR;
OT := 'ORD(A),
CASE OT(31:34] oF
4LINEAR : DT := A + 1,
RETURN PAIR
4CDRNIL : RETURN ID ||
¢NORMAL : OT := ‘DROD(A+l),
RETURN 0T(29:4];
#INVISIBLE :
DT := 'DRD(DT(23:41),
DT := 'DRO(DT{23:4]+1},
RETURN DT(29:4d]
ESAC
END;

(c) PM description

Figure 3. Examples of the HDL descriptions

are used only for the

which

represents a cdr-coding algorithm

of CAR and CDR that was used in

FLATS
structures.

(2) Behavior of peripheral systems
which communicate with the object
system.

3.4.

simulation for

printing

the HDL domgiler and linker

oT{23:49};
+NILR(23:4];

(3)

Fortran subroutines and
also used

(c)

Tools to construct user interfaces
allowing interactive communication
and debugging.

functions were
for this purpose. Figure 3-

is an example of the PM module,

Each HDL module is separately com=-
piled into an intermediate ., object
module, a Fortran subroutine or function
subprogram. Then, the resulting object
modules are linked by the HDL linker for
the simulation of the entire system.
The HDL linker resolves intermodule

150

references in the object modules. It
generates complete Fortran subprograms,
in which all the system variables are
declared COMMON, so that they can be
referred to from other HDL modules and
the SCL program.

The HDL compiler collects the
information about the hardware elements
and stored it into the design database
at the end of compilation.
tion collected about each hardware ele-
ment includes:

(1) HDL name (the character
which it is denoted)

string by

(2) corresponding Fortran name

(3) data type

(4) size in bits

(5) array bound (only for the memory)
allocated for

(6) position in storage
the HDL name

In addition, the design database records
the variable references (whether the
variable is read or written) for each
time block. The design database is used
for (1) resolving external references,
(2) checking illegal connections (at
compile time), (3) generating various
forms of documents (by the compiler and
some application programs), and so on.

Once all the HDL modules are linked
by the HDL linker, the HDL compiler can
resolve intermodule references by
accessing the design database. 1In this
case, if the declaration part of the HDL
module is not modified, no other linking
operations are required. The HDL com-
piler also performs intermodule verifi-
cation according to the information in
the design database.

3.5. SCL

The simulation 1is controlled by

another simulation language, SCL. Its
description is distinguished from the
hardware description in HDL. This

mechanism made the simulation very flex-
ible. Simulation conditions can be
changed without affecting the hardware
description; only the SCL description
must be recompiled. Figure 4 shows an
example of the SCL program. The MODEL
declares names of the HDL modules to be
simulated. The LOGOUT specifies genera-
tion of the LOGOUT file, in which simu-
lation results are captured in a
compressed form. The execution can be
traced by means of the TRACE command.
The INPUT block (headed by INPUT and
terminated by END) describes actions to
be executed at the beginning of each
clock cycle; the OUTPUT block specifies

The informa-.

sCL
LOGOUT;
SIMULATE
MODEL I, Icc, v, €, DD, DE, DS, DT,
ICH, VCH, DCH, A, F, G, H, J,
M, P, R, S, U, W3
INIT
PHASE 9,
TRACESET 1 TO lad,
CALL 'PRLOAD,
Is1ecC := 4@,
cscsp := @,
DDSLPR := X°*1SFF’
END
INPUT
IF 'NCLK = 1@
THEN OTSCPU.RESET := 1 FI
END
ouTeUT
IF ISICS1 CS(d] = 1
THEN CALL ‘ITRACE(ISI.CS1A) FI,
IF ISI.PC_WE(@] = 1
THEN DUMP(ISIPC) PI
END
TRACE I(S,V)., V(R,S,V), C(R);
END
ENDSCL

Figure 4. Example of the SCL program

actions at the end of each clock cycle,
The INIT block collects several initiat-
ing operations. Interactive simulation
is possible by describing the interface
in SCL and HDL (PM description). The
syntax of the SCL statements and expres-
sions is almost the same as that of the
HDL. statements and expressions, so that
the user can control the simulation in a
syntax similar to that of the hardware
description. Bit-vector specifications
and bit-manipulating operators can be
used in the SCL program. The HDL-like
assignment statements are used for set-
ting values of the simulator variables.
The loop and conditional statements
(FOR, WHILE, IF-THEN-ELSE etc.) allows a
sequence of SCL statements to be exe-
cuted when a specific network condition
or transition occurs.

The SCL program is translated into
Fortran subprograms including a main
routine of the simulator, which '~ invokes
all the HDL (SM) modules. These rou-
tines, the linked HDL modules, and sys-
tem run-time routines are bound together
by a conventional linker and the result-
ing binary image is executed.

4. MAIN FEATURES OF HDL

In this section we discuss main
features of the HDL language and its
compiler operations which were particu-
larly useful for describing and simulat-
ing the FLATS machine. Many of the
translation techniques described in this
section are also applied to the SCL
language.

4.1. compile-time verification

The HDL compiler performs a number
of verifications for each SM module at
compile time. The verifications are
performed globally; that 1is, the com-

piler checks HDL sources in intermodule
communication as well as in individual
modules. During compilation HDL com-
piler produces intermodule error diag-
nostics, symbol tables and cross refer-
ence tables. The verifications are
intended to detect design errors in an
early stage of the design and execute
the simulation efficiently.

The compiler checks for the follow-
ing 1illegal specifications at compile
time:

(1) Recursive assignments (Illegal
feedback 1loops) =- The compiler
checks for recursive assignments to
find out 1loop structures in the
network. By restricting the object
logic . to synchronous systems that
have no 1loop structures, every
hardware operation is executed only
once in each clock cycle. This
restriction also makes the follow-
ing verifications ((2) and (3))
possible.

(2) Timing errors -- Compliance with
timing bounds are checked in terms
of the time block. The compiler
checks that each wire variable that
is referenced in a certain time
block 1is defined in one of the
preceding time blocks. At present,
the user assigns the register-
transfer or gate level actions to
each time block by using the time
dimension, based on switching times
of gates and the number of gate
levels. However, this operation
could be performed automatically,
for example, by software pre-
processing; a complete time-blocked
description is generated from a
sequence of Boolean equations that
represents the logic to be simu-
lated. 1In this case, the user must
explicitly specify the switching
time of each gate and the signal
propagation delay in each wire (or
the length of each connection)
within the hardware description or
the design database.

(3) Bit-vector subscript out of range
-~ The HDL compiler only accepts
integer constants for the bit-
vector subscripts in the SM
description so that it can perform
a complete range checking for the
subscripts at compile time (instead
of at run time). This restriction
seems to be severe compared with
other programming languages, but
because repetitive structures can
be described using the macro facil-
ity, no inconvenience appeared in
the _FLATS design. Many design
errors were detected by virtue of
this restriction.

R

1535

(4) Undefined and unused variables --
The compiler detects the use of
undefined variables and the defini-
tion of variables that are never
referenced. These error detections
are performed for the variable that
is to be referenced in other
modules - (external reference), and
.the variable that is to be defined
in another module (external defini-
tion). The user must declare both
kinds of variables explicitly.

(5) Type errors and size errors of
variables -- The compiler checks
inconsistencies between the
declaration and the use of the
simulator variables. ’

These intermodule verifications are per-
formed by using the linkage information
in the design database. The HDL com-
piler generates correct Fortran programs
so that no error messages are issued by
the Fortran compilers.

4.2. symbolic reference to external
variables

In HDL and SCL, an external vari-
able can be accessed via a simple form:

unit_name S variable_name.

This facility. increases readability and
reliability of the resulting program.
The need for checking errors in inter-
subprogram communication through COMMON
is eliminated. The HDL compiler puts
the variables of one data type in a COM-
MON block. Since the COMMON block name
is uniquely determined by the module
name and the data type, the variables
defined in one module can be referred in
another module using a COMMON statement:
COMMON /XYZ /XYZ(E)

where XYZ is the wunique COMMON block
name and n is the size of the COMMON
block in which it lies. The external
variable is converted into:

XYZ (i)

where i stands for the variable's posi-
tion relative to the beginning of the
COMMON block. The compilers and the
linker carry out the above transforma-
tion by using the linkage information in
the design database.

4.3. twelve character name

Fortran identifiers tend to be
strained because of its 1limit of six
character names. In PLS, the first
twelve characters of the name are signi-
ficant although more may be used. The
HDL compiler automatically generates one
or more Fortran variables for the HDL

1

[
T3

identifier, ‘unless the identifier |is
used as a program unit name. The gen-
erated variable has a unique name with a
format:

Fnnnnn
where nnnnn is a unique serial number
starting with @¢¢0¢1. The PLS name can
include letters, digits, periods,
tildes, and- underscores; however, the
first character in name must be a letter
or tilde. For example,

“DIV.RCO.1

is a wire name in the divider unit
(named DIV) of the FLATS machine. In
our naming conventions, the tilde (7)
denotes negative logic, and .1l indicates
that this terminal is a 'driver output
numbered 1. At least twelve characters
were necessary for identifying a large
number of hardware elements with signi-
ficant names (each hardware element was
given a unique name for debugging and
maintenance of the packaged hardware).
The PLS name and the associated Fortran
name are stored in the design database.

4.4. Dbit-vector specifications

For register-transfer or gate level
description of computer hardware, it is
often necessary to manipulate bytes and
words in a computer. In HDL and SCL, a
field of bits in a byte or word can be
accessed via the form:

name{i:j}

where name denotes an identifier or an
array element, and i and are numbers
that specify the leftmost and the right-
most bit positions respectively. If i =

py
name [i]

can be used for. simplicity. The bit-
vector specifier is allowed to appear in
expressions and on either side of an
assignment statement; that 1is, both
bit-field extraction and assignment are
possible. The bit-vector specifier is
translated into functions or masking
operators.

4.5. translation of bit-manipulating
operators

The HDL and SCL provide a set of
bit-manipulating functions that are
Fortran-callable. In addition, it
allows the user to specify these opera-
tions with binary operators. The bit-
manipulating operators accepted by the
PLS and the precedence of them are:

1 Concatenation (||)
2 Extension (|¥)

3 Complementation (!)

4 AND (&) and NAND (!&)
5 OR (]) and NOR (1)

6 EXOR (@) and EXNOR (!@)

The symbols enclosed with parentheses is
the actual notation of the language.

These operators may be directly
translated into a’ prefix notation,
namely, Fortran-callable functions. In

Systems I and 1III, the logic AND, OR,
and complementation are translated into
the Fortran logical operators for speed

up of execution. This infix-to-prefix
conversion depends on Fortran dialects.
Since bit-manipulating operations or

Boolean operations are essential for
describing computer hardware, these
translations contribute to the readabil-
ity of the text, and thus to its under-
standability as documents.

4.6. other features

based integer representations

In PLS, integers may be represented
with a base other than ten. These
representations are allowed by placing a
suffix at the head of a digit string
enclosed with single guotation charac-
ters. Letters 'B', '0', and 'X' are
used as the prefices to represent
binary, octal, and hexadecimal numbers,
respectively.

translation of arithmetic and relational

operators

The arithmetic and relational
operators may be used in a high-level
logic specification. Symbols like
'3' (mod), '<<'(logical shift left), and
'>>'(logical shift right) are translated
in the same manner as the bit-
manipulating operators. Other operator

symbols such as '>', '>=', and '&&' are
translated straightforward 1like RAT-
FOR[4].

structured programming

The PLS supports well-known control
structures (IF-THEN-ELSE, WHILE, REPEAT,
and SWITCH), and escape mechanisms
(BREAK and NEXT). These structures are
used for abstraction of the hardware
operations; they select and repeat
hardware actions under a condition gen-
erated by a certain test network.

macro expansion and file inclusion

Macro expansion is essentially use-
ful for hardware description because the
hardware often has repetitive struc-
tures. It can also serve as a black
box, for example, in an initial-stage of
a top-down design.

5. HARDWARE TEST UTILITIES

The FLATS machine uses more than
33,000 MSI chips. It is a rather large
scale computer; therefore, hardware
testing and maintenance were important
subjects from the first. It would be
impossible to detect hardware failures
of such a large machine with logic
analyzers or oscilloscopes. For this
reason a scan-in/scan-out method was
used in the FLATS design. All the
25,000 signals in the back panel are
connected to special multiplexers so
that their logical values can be read
out (scan-out) through the front-end and
maintenance processor, PDP-11/34, and
all the flipflops (some 32 Kbits) and
RAMs (some 640 Kbits) are equipped with
special circuits so that they can be
written in (scan-in). More than one
sixth of the gate resources of FLATS are
used for this scan-in/scan-out purposes.
In most cases a bad chip, one of more
than 33,000 chips, can be located

HDL SCL Test
Modules Program Program

Hardware
Cost

Evaluator
HDL Verifier

: Syntax
Compiler Checker

LN

Since the scan-
topological

detect
mismatch

through +this facility.
out testing is performed in
order of a network, one can
failures at the time the first
occurs.

The PLS system generates test data
(called a test vector) for the scan-in
and scan-out testing. In the test vec-
tor simulation results are captured in a
compressed form of binary records. The
test vector makes it possible to compare
the simulation results with the status
of the actual hardware system. At
test-time the scan-in and
carried out in each machine cycle or in
any machine cycle desired. This testing
mechanism was very useful for debugging
and is now used for maintenance of the
FLATS machine.

6. OVERVIEW OF THE PLS SYSTEM

Figure 5 shows a basic structure of
the PLS system. The design specifica-

Y Lisp
Assembler
General-
HDL SCL
> purpose
Linker Compiler Microcode
DATABASE Assembler
Fortran Fortran
Compiler Compiler Loader
Linkage
Editor :
SIMULATOR

Wiring

~<——{ Run-time

Routines

<____.
=

Diagram
l;/
Test data Time
Chart
Generator Generator
etc.

—~/

Figure 5. Overview of the PLS system

___10._

scan-out are .

P>
(@B 4}
[

tions written in HDL, and the design
database are used as inputs of applica-
tion programs such as the Hardware Cost
Evaluator, the PLS Verifier, and the HDL
Syntax Checker. The Hardware Cost
Evaluator calculates the amount of gates
and flipflops used in the HDL descrip-
tions. Fan-in and fan-out restrictions
are checked for individual gates. The
HDL Syntax checker checks that indivi-
dual HDL modules are syntactically
correct. . The PLS Verifier provides
intermodule verification analysis that
the HDL compiler performs during compi-
lation. :

The results from simulation are
displayed and stored in a variety of
formats. By using SCL, any designated
simulator variables can be output to the
terminal or disk files at any simulation
cycles. In the Logout File, simulation
results are captured in a compressed
form of binary records. It is used by
application programs such as the Time
Chart Generator and other formatting
postprocessors. In the FLATS design,
the Logout File was applied to the input
of the Test Data Generator, .which gen-
erates a test vector (another form of
binary records) for testing the packaged
hardware by scan-in/scan-out method as
discussed in the previous section.

The General Purpose Microcode
Assembler takes as the input a mnemonic
program, or bit pattern of ROMs, and
creates the equivalent object code. Its
major objective is to provide the abil-
ity to describe any microprogram
irrespectively of the hardware proces-
sor. The Lisp Assembler was implemented
especially for the simulation of the
FLATS - CPU. Test programs were written
in the assembly language. A special
loader gets its object code into the
simulator memory. During the simulation
the user can examine and set the simula-
tor variables (contents of registers,
memories, and so on) interactively via
the form of Lisp S-expressions, instead
of binary or hexadecimal bit patterns.
The symbolic representation 1like S~
expression of test patterns or simula-
tion results facilitated interactive
simulation and debugging. The Lisp
Assembler and loader were described in
HDL and Fortran.

7. RATFOR-LS

RATFOR[4] is one of the most popu-
lar preprocessor languages for Fortran.
- It supports structured flow of control,
macro substitution, file inclusion, and
some syntactic sugar. The HDL language
of course performs such functions and
more things, but it accepts sources
written in a completely new language
rather than an extension to Fortran.
The RATFOR-LS (RATinal FORtran for Logic

Simulation) is an extension to RATFOR
which makes it suitable for describing
and simulating computer hardware at the
instruction set level. We developed its
preprocessor with a simple modification
of the HDL compiler. The RATFOR-LS pro-
vides bit-field specifications, based
integer representations, bit manipulat-
ing operations, and all the facilities
supported in RATFOR. Although it has no
more power or functionality than the PLS
and other hardware description
languages, for those who already have a
knowledge of RATFOR or Fortran, the
additional effort required to learn the
extensions is much less than that
required to learn a completely new
language. Since it 1is easy to train
newcomers to the system, it can also
serve as a convenient pedagogical tool
for students.

8. CONCLUSIONS

The PLS system consists of about
20,008 lines of Fortran. The FLATS
machine, which uses more than 33,000 MSI
chips, is about 20,000 lines of the HDL
language at the gate level. In addi-
tion, about 16,000 lines of SCL programs
and about 40,000 lines of the wiring
diagram were used. It takes about a
year to describe and simulate the entire
logic of the machine. Under the FACOM
M-380 (20 MIPS machine) OS IV/F4 system,
when the 20,000 lines of gate-level
description is compiled and linked with
the simulator control and run time rou-
tines, the resulting program occupies 2M
bytes of storage, and the simulation
executes at a rate of 15 clock steps per
second of CPU time. This speed was
attained by suppressing all outputs; for
every debugging routine tried to date,
execution is output limited. High effi-
ciency and interactive simulation
environment of PLS were very effective
in increasing the user's efficiency in
debugging and simulating the hardware
system., At present, PLS is also used
for 1logic design of a data flow machine
Sigma-1{6] of Electrotechnical Labora-

tory.

ACKNOWLEDGEMENT

I would like to express my sincere gra-
titude to Professor Goto for sugges-
tions, advises, and continual encourage-
ment. I also would like to express my
thanks to members of the FLATS project,
Messrs. T. Soma and N. Inada of the
Institute of Physical and Chemical
Research and Messrs. M. Suzuki and K.
Hiraki of University of Tokyo, who have
contributed to valuable and helpful dis-
cussions from a viewpoint of wusers of
the PLS system. This research has been

partially supported by a Grant-in-Aid
for Science Research Project of the Min-
istry of Education, Science and Culture
of Japan.

[1]

[2]

(3]

[4]

[51

[6]

References

M. R. Barbacci, ‘'Instruction Set
Processor Specifications (ISPS):
The notation and Its Applications',
IEEE Transactions of Computers, C-
3¢, No.l, 24-4¢g, (1981).

J. R. Dulay and D. L. Dietmeyer, 'A
Digital System Design Language
(DDL) ', IEEE Transactions of Com-
puters, c-17, No.9, 850-861,
(1968).

E. Goto et al, 'Design of a Lisp
Machine - FLATS', Conference Record
of the 1982 ACM Symposium on Lisp
and Functional Programming, Pitts-
burgh, 288-215, (1982).

B. Kernighan, 'RATFOR - A Prepro-
cessor for a Rational Fortran',
Software - Practice and Experience,
5, No. 4, 395-406, (1975).

L. Shafer and B.H. Scheff, 'Effi-

cient Simulation Within a
Comprehensive Design Automation
System', Proceedings of Joint

Conference on Mathematical and Com-
puter Aids to Design, (1969).

T. Shimada, K. Hiraki and K.
Nishida, 'An Architecture of a Data
Frow Computer Sigma-1 for Scien-
tific Computation', Proceedings of
Symposium on Electronic Computer
EC83-2g, 83, No. 78, 47-53, (1983).

P. Wilcox, 'Digital Logic Simula-
tion of the Gate and Functional
Level', Proceedings of the 16th DA
Conference, 561-567, (1979).

