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The Temporal Semantics of Logic Programming
HIK (I) XISE#® (Naoki Yonezaki)
ABSTRACT

Temporal semantics of Horn logic programming and how it can be
applied to reasning about a logic program are presented. In the
computational model, the concept of 'world' or 'state' corresponds to
computational states of a program i.e. a set of substitutions and
execution points. Temporal logic used in this paper is precisely
defined and fundamental semantics for execution is given by a set of
schemas of the logic. A general proof procedure for total correctness
is also presented. Finally several extension to Horn logic

programming are considered in our framework.

g81. Introduction

Programming languages, represented by Prolog, based on first
order predicate logic provides simple declarative semantics. First
order logical deduction is‘used for verifying, synthesizing and
translating programs, since the model theortic semantics of Horn
sentences of first order predicate logic is straightforward.[1]~[3]
On the other hand, the theory of logic programming and their
computations could be formalized in terms of the theory of resolution

proof procedure., There exists various problems about executions of



logic programs, such as termination problem and total
correctness.[4],[5]

To characterize such properties, model theoritic semantics of a
logic program execution is desired. Temporal logic has been shown to
be adequate for expressing a wide variety of properties of execution
sequence of programs.[6]~[13]

In this paper we presents a temporal semantics of Horn logi;
programming., This paper is organized as follows. In section 2, we
define a modal logic, a version of temporal logic used in this
formalism, In section 3, we define semantics of Horn logic
programming., Section 4 presents a general verificaton method for
logic programming. Section 5 discusses semantics of special
constructs such as cut operator and pseudo-parallel execution,

Section 6 gives conculuding remarks.

g2, Modal logic
The logic employed in this paper is a version of Modal logic(ML)
which uses temporal operators such as [] (necessity operator), O (next

time operator) and until (until operator).

2.1. Syntax
Types: Let e and b be any two objects. The set T of types of ML is
defined as follows,
(i) e, b, (b) €T,
(ii) ag=esaj=ess.esap-1=e imply (agsajsesesap-1)€T,
(iii) ag=esaj=es«sssap=e imply [ags ajse.ses apleT,
As will emerge, objects of type e will be possible entities on
individuals and objects of type b will be labels, which will be used

for indicating program locations. Objects of type (b) will be
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predicates of labels. Objects of type (apsajsesesan-1) will be
predicates of n arguments which are objects of type e. Objects of
type [ags a]sesesapl] will be functions of n arguments which are

objects of type e and whose value is also object of type e.

Primjtive Symbols: For each a € T we have a denumerable list of
variables and non-logical constants together with the improper symbols

(s )s =s 25 ~s ¥, [0, O and until.

Terms: We characterize the set of Tm, of terms of ML of type a, as
follows,

(1) Every variable of type a € T belongs to Tm, respectively,

(ii)  Every constant of type a € T belongs to Tm, respectively,

(iii) A € Tm[ag,a1s%say] BOETmaO, Bl € Tmays©**s Bn'leTman_l

imply A(BO,Bl,... Bn-1) ¢ Tman,

Atomic formula: An atomic formula of ML is an expression of one of the
form

A(BO0, Bl,..., Bn-1)
swhere A is of type a=(a0, aj1s***s an-l) and Bk is a term of type ag
for k<n: or the form

A=B

where A, B are terms of type e.

Formulas: Formulas of ML are generated from the atomic formulas by the
connectives ~,2, the quantifier Vﬁa, where x5, is an arbitrary
variable, and modal operators [0, O, until.

It is important to note that the sequence ¥ belongs to T, so that
a symbol A of type @ standing alone is an atomic formula. The

sentential connectives A, V, +> and the quantifier 3 are defined as



usual.

2.2. Semantics
For an arbitrary set X, we denote the power set, or a set of all
subsets of X by P(X). For sets X(gs .. sXp-1s We let Xg X .o X X1

denote their Cartesian product.

Frame: Let D, and Dy be non-empty sets. By a frame for ML based on D,

and Dps we understand an indexed family (Ma) a€eT of sets, where
(i) Ma=De » Mp=Dp
(ii)  For each type a = (b(seeesbp-1) »

Mg = P(Mpy X e X Mp__;)

n-1
(iii) For each type a = [bgsbjseecesbpl »

Mg = Mp Mbg X eee X Mby_g

Model: A model of ML based on Dy, Dy, and I is a system
M= (M, , m) aeT, where
(i) M, a€T is a frame based on Dy and Dps
(ii) m (the meaning function) is a mapping which assigns to each
constant C, a function from I into M,, where I be the linearly

ordered set of denumerable states.

We denote by As(M) the set of all assignments over the model M,
i.e. all functions on the set of variables such that a(x,)eM, for each
variable x,. We define the value ViM; (A;) € M, of the term A, with
respect to the state i and the assignment a by the following recursion

on the term AaeTma:

(i) Vi%a(xa) a(xy)

(ii) viMa(c,a) = m(cy) (i)

(iii)Vil4,a(Aa(BaO’Bal’.."Ban—l))

L
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= ViMa(Aa)(Villa(Bap)seeesVila(Ba 1))
swhere a=[agsa]seecesap]

We define the notion

M,i,a sat A
by recursion on the formula A of ML as follows:
(i) Msi,a sat A(AQsecesAp-1)
if and only if
(ViMa(A0)sVMa(A1)s wee sV iMa(An-1))eViM ()
(ii) M,i,a sat [A=B] if and only if
VM (4)=v;M,(B)
swhere A and B are terms of type e.
(iii) Usual satisfaction clauses for ~, 2>, V¥x,
(iv) M,i.a sat[JA if and only if ¥j j2i, M,j.a sat A
(v) Msi,a sat Ay until Ao if and only if
¥j j2i, M,jsa sat A} or
V}j jzi, (M,jsa sat Ag A ¥k(i<k<j » M,k,a sat A}))
(vi) M,i,a sat OA if and only if
vj((i<j A ¥k(i<k = j<k)) - M,jsa sat A).

Notice the until operator we have defined does not have an
eventuality component, and A} and Ay can be satisfied simultaniously,
in contrast with the one defined in [10]. This involves no difference
of expressive power since until operator in [10] can be expressed in
our system using our until operator, and vice versa. This is just for
the convenience of having compact logical expressions in our
application.

A is true in M, if M,i,a sat A for every state i and assingment
a. A set F of formulas is satisfied in M by i and a, and we write
M,i.a sat F, if M,i,a sat A for every A € F. A formula A is a
semantical consequence in ML of a set S of formulas, if M,i,a sat A

whenever M,i,a sat S. We introduce (temporal) macro operators derived



from these primitives defined above to enhance the understandability
of formulas in the specifications,

g ~0~a

[A==>B] Hc ¢ A > (C until B)

[A==>B] éC & A > ~(~C until B)

[A==>B] B(co¢D) & [A==>B] B ([C==>B] ¢D)

Intuitively speaking, [A==>B] HIC means that C holds throughout
the interval starting at the first state in which A holds and
extending to the first state in which B holds. [A==>B] €C requires
that, if A holds in a future, and if the subsequent state in which B
holds is found, this interval must sometime satisfy C. So that
[A==>B] M(C>€D) requires that, for the interval beginning with the
state in which A holds and ending with the state in which B holds, if
the state in which C holds is found then the state in which D holds
should be found in the sub interval beginning with the state in which
C holds and ending with the state in which B holds.

Now we present an axiomatic systembin which proofs of the

properties of program can be carried out.

Axioms of ML

Al: [0(A=B) = ([A-(B)

A2: [A > A

A3: O(~A) = ~(0A)

A4: O(A>B) = (OA~OB)

A5: [A > OA ‘

A6: [A o o[A

A7: [(A>0A) o (A=[R)

A8: (A until B) = ((AAB)V(AAO(A until B)))

A9: (A o (A until B)

Al0: ¥x A(x) o A(t) ,where t is free for x in A
All: ¥x [A o [vx A

Al2: ¥x OA D> O¥x A

Al13: ¥x(A until B) o (¥xA until B), provided B does not contain free

occurrence of x.

Inference Rules

Rl: IF A is an instance of a tautology, then FA.



R2: 1If +A and FADB, then kB,

R3: 1If A, then HA.

R4: If FADB, then FAD¥xB, provided A does not contain free
occurrence of x,
This system is certainly sound, and completeness of the system

should be proved, however, it is beyond the scope of this paper.

83, Semantics for logic programming in ML

A program is a set of clauses. A clause is a pair of sets of

_atomic formulas written as

Al’o..,Am < Bl,.'.’Bn m?-O’ nZOQ

The set {A]see.sAp} is the conclusion of the clause; {B]se..sBp} is
the premise of the clause., A conditional clause is one where m=1,
n>0. A pegative clause is one where m=0 and n>0. A positive clauge
is one where m=l, n=0. An atomic formula is P(tj,....ty) where P is a
k-place predicate symbol, tjse.sty are terms. A term is a variable or
£(t]1seeestq) where f is a q-place function symbol, tj]se..stq are
terms, and q20. A O-place function symbol is a constant.
Substitution is an operation, say 6, which replaces all occurrences of
a variable throughout expression e by a term. The result is denoted
by e°®. If there exists for expressions ejs...se a substitution 6
such that ej°8=e9°6=...=e;°0, then 8 is to be a unifier of e]seeesepe.

A logic program can be seen as a set of clauses in first order
predicate and hence it has a model theoretic semantics as usual. On
the other hand, it has an operational semantics as process of
resolution.

To formalize such a process, we use ML. Semantics of a program
is defined by the set of formulas of ML generated for the program by
rules associtated with each clause of Horn logic. We call those rules
semantics of 1ogic programming.

Before we explain the semantics, we have to introduce three



primitive predicates 'at', 'after' and 'end' of type (b) referring to
the execution points of atomic formulas.
at(L) : This formula is true when the matching of an atomic
formula whose label is L begins.
after(L): This formula is true when an atomic formula whose label

is L is refuted.

end(L) ¢ This formula is true from the success of refutation of

an atomic formula whose label is L until the atomic
formula is backtracked.

Provided an atomic formula Q is of the form P(tjseeestpn)s term(Q)
denotes (t]seeestpn)s tuple of terms which are arguments of P, and Q
denotes the predicate symbol P as a label of atomic formula Q. jQ
denotes jP, where j is an index introduced for distinguishing
occurrences of identical predicate symbols in conclusions, and is
assigned in order of appearance (top to down) in the program. Index j
may take values from 1 to mp ,where mp is the number of such clauses
with predicate symbol P in conclusion. For a predicate symbol P
occurring in premise of some clause but not in conclusion of any
clause, we assume mp=0. We also assume that the every occurrence of
identical predicate symbol P in a premise is distinguished by being
attached with suffix k as PK,

For each type of clause (e.g. conditional, negative, positive
clauses), we can now define Horn logic programming semantics, which

are schemes for derivating ML formulas.,

(i) Negative Clause <+ Q1s...sQp
semantics:
Initial call rule:

initoat(;Q; ) Au=@gAv=term(Qq)
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Left to right rule:

For lsi<n,Vq(after(qﬁi)aat(1Qi+1)kv=term(Qi+1))

Termination rule:
v¥q(after(yQy)=Oend)

at(pq1+1Q1)>0fail

Backtracking rule:
For all atomic formula X, for 1<isn,
¥q¥p1¥po((at(qX)Ap1=unpy=vAOat(1Q;))>

O(Elt(mqi*'lai)Do(at(q+lx)/\p1=uAp2:V) ) )

u is a constant of type e holding a current set of substitutions.
(The semantic value of u is a function from states to sets of
substitutions at each state, so that a set of substitutions depends on
states.) A constant v holds a record of terms which are going to be
unified. For a record of terms T=(t]s...stp)s and a set of
substitution p, Tep denotes a new record of resulting terms
(t1°Psseestn®p)s where tj°p is a resulting term obtained by applying
every substitutions in p to term tj.

Initial call rule describes that unifiability of atomic formulas
Q1 and 1Qj is checked initially. Left to right rule shows that if Q;
is refuted then unifiability of Qj4+1 and jQj+] is checked.

If Q, is refuted, then the negative clause succeeds in its
refutation. The second formula in the termination rule describes the
finite failure.

Backtracking rule shows that if refutation of some atomic formula
is finitely failed then unification cf the previously succeeded atomic

formula and its next matching alternative formula is checked.



(ii) Conditional Clause jP * RlseeesRy

Semantics:

Unification rule:
Vplvpz((at(jﬁ)Ap1=uAp2=vAmatch(v°u,term(jP)))

20(u=pjumgu(pzopysterm(;P))Aat (1R Av=term(R])))

Left to right rule: For 1<i<n,

vq(after(gR;j)>(at(1Rj+1)Av=term(Ri+1)))

Top to down rule:

(at(jf)A~match(v°u,term(jp)))Dat(j+1§)

Success rule:

¥q(after(gRp)=after(;P))

Backtracking rule:
For all atomic formulas X, for 1<is<n,
Vqu1¥p2((at(qi)Ap1=uAp2=vA0at(1§i)3

Mat(nqi+1Ri)=0(at(g+1X)Ap1=uApr=v)))

All the rules for conditional clauses are similar to the rules
for negative clauses.

'match' is a predicate constant which is true if its arguments
(tuples of terms) have the most general unifier. 'mgu' is a function
constant which gives one of the most general unifier of its arguments.

Top to down rule describes that if the conclusion is not
unifiable with an atomic formula whose terms are indicatgd by v, then
the next alternative conditional or positive clause is selected.
Success rule means that if refutations of all the atomic formulas in a

premise succeeded then the conclusion succeeds in its refutation.
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Backtracking rule is the same as in the case of negative clauses.
Note that suffix k for distinguishing occurrences of the same
predicate symbols in premises is considered in the induction step of

proof procedure, as will emerge later,

(iii) Positive Clause jP *
Semantics:
Success rule:
¥p1¥p2(at(§B)Ap1=unpo=vAmatch(vou, term(P))

20(u=p1umgu(pgep)sterm(;P))Aafter(;P))

Top to down rule:

Same as the case of conditional clause.

Success rule describes that if iP matches with atomic formula
whose predicate symbol P, then the refutation of the atomic formula is

succeeded.

84, General proof procedure for total correctness

In the following, we present a general inductive proof procedure
for total correctness of Horn logic programming.

By using semantic rules previously mentioned, total correctness
is expressed by the formula

init>0(endAP((t]seeasty)ou))

where P is a n-place predicate which should be satisfied with the
results.,

The steps are as follows.
[Stepl]: Assignment of assertion.

For each conditional clause, assign an appropreate intermittent

assertion of the form A(m)>0B, where m is a variable on which

11



structural induction is performed.
[Step2]: Generation of verification conditions.

For each conditional clause, generate a verification condition as
follows:

For each occurrence of predicate symbols appearing in its
premise, make an assertion from the assertion assigned at step 1 to a
conditional clause whose conclusion has the predicate symbol, in which
non-logical constants of labels and non-logical constants
corresponding variables of atomic formulas are associated with suffix
attached to the predicate symbol in premise.

Provided that Q(P) is the conjunction of such rewritten
assertions for a conditional clause whose conclusion is an atomic
formula with predicate symbol P and S is the conjunction of formulas
generated from a program by rules in section 3 , if R(m) is an
assertion A(m)>0B for the conditional clause, then the verification
conditions are SOR(0) and Q(P)ASSR(m) which works as inductive step,
and in which n of the assertion A(n)>0B' in Q(P) must be smaller than
m in structure,

[Step3]: Proof of verification condition.
Verify the verification conditions for all the conditional

clauses in the program and establish the assertionms.

(Example)
To prove the total correctness ¥n(init>QendA*weou=N!) for the
following simple factorial program,
<+ Fact(N, *w)
1Fact(0, 8(0)) <«
oFact(S(*x), *y) < Mul(s(*x), *z, *y), Fact(*x, *z)
we can assign the following assertion to the third clause.

¥n¥p(at(yFact)Au=pAvou=(N, *w))>Nafter(yFact)Au=puf*w/N!}),

12
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where N stands for s(...(s{(0))...) and n is the number of a function s

in N, and N! stands for s(...(s(0))...) in which the number of a

function s is n!.

This general proof procedure reflects the structure of Horn logic

programming.

§5. Semantics of extensions to Horn logic program
5.1. Cut operator
Prolog programming uses a special symbol '"!' called cut operator.
jP ¢ RpseeesRk-1 ! RgseeesRp
According to the semantics defined above, we can now define the

semantics of cut operator by supplimenting following rules.

Semantics:
Left to right rule:

¥q (after( gRy-1)>at(iRp)Av=term(Ry))

Cut rule:
at(prk+1RK)=at (np+1P)

If a cut operator is used in a negative clause, we simply have

at(prr+1Ry)>0fail,

Left to‘right rule describes that if refutation of Rg-j is
succeeded then the matching of Ry and jRy is checked. Cut rule means
that if the refutation of Ryse..sRp is finitely failed (that is all
the backtracking is failed) then the refutation of P is finitely

failed without backtracking to alternative check for Ry-j.

5.2. Pseudo-parallel execution

Parallelism condidered in this paper is so called 'and-parallel’.

13



We now extend the Horn logic programming to allow to express parallel

~execution by a special symbol '//'.
P« R1//eeo/ /Ry

The declarative reading of the clause is unchanged by the symbol
'//'. Operationally, however, each atomic formula R; is intended to
be executed pseudo-parallely. (i.e. all refutations derived from the
refutations of Rj's (1<i<n) are interleaved.) Provided that execution
is implemented on a single stack as in the case of IC-Prolog[l4], the
semantics of the pseudo-parallel execution is formalized by the
following rules.,
Semantics:
Parallel rule:

¥p1¥p2 ((at(j?)Ap1=uAp2=vAmatch(v°u,term(jP)))
20(u=pjumgu(pgepysterm( jp))A¥i(Hat(1Rj)>v=term(R;)))))

For 1<i<n, imit>~at(;R;) until at(;P)

Top to down rule:

Same as the usual case.

Backtracking rule:

For all atomic formulas X,Y (X#Y), for 1<i<n,

¥gv¥IVp1¥p 9 [(at(qX)Ap1=uAp2=vAmatch(v°u,term(qX)))==>
(at(pri+1Ri)r0(at(g+1X)Ap1=urpr=v))]

BH((at(,¥)Mmatch(veu, term(,Y)))>0at(,+1Y))

Success rule:
For 1sisn, ¥q(after(gqRj)=(end(yRj) until at(g+1R;)))

1sgséﬂq end(gRj))=after(;P)

14
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Model assumption:
init>[(3Ix(at(x))vendvEail)

Ad¥xvy(xzyo~(at(x)Aat(y)))

Apparently, if the conclusion jP matches with some atomic formula
in a premise of some other clause, then any refutation of Rj can be
proceeded. However, notice that one and only one possible atomic
formula can be selected at a time, This fact is described in model
assumption. Backtracking rule is rather complex than that of non-
parallel case. The rule describes that if refutation of some atomic
formula is finitely failed, then an alternative conclusion is
selected to be refuted for such atomic formula that matched with some
conclusion, and from that time till the finite failure, there is no
other unification that was not canceled. (i.e. backtracked.)

To describe this computation model we need until operator. This
operator is also used for success rule for describing that refutation
of conclusion succeeds when all the atomic formula in its premise have
been succeeded. This is because the execution of the refutation is

interleaved.

§6. Concluding remarks

There are several extensions to Horn logic programming, some of
which we have considered. The modal logic introduced here is so
powerful that such extension as shared variables can be formalized in
this logic. More expressive logic sobcalled intensional logic may be
useful for formalizing coroutine control and stream variable.[15],[16]
In general, branching time logic is used for formalizing non-
deterministic processes[17], however, in the case that -the order of

execution is concerned, this logic is not appropriate.
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