
$l’.\dot{\mathfrak{i}}.\sim$

The Temporal Semantics of Logic Programming

東工大 (工) 米崎直樹 (Naoki Yonezaki)

ABSTRACT

Temporal semantics of Horn logic programming and how it can be

applied to reasning about a logic program are presented. In the

computational model, the concept of ’world’ or ’state’ correspond s to

computational states of a program i.e. a set of substitutions and

execution points. Temporal logic used in this paper is precisely

defined and fundamental semantics for execution is given by a set of

schemas of the logic. A general proof procedure for total correctness

is also presented. Finally several extension to. Horn logic

programming are considered in our framework.

$g1$. Introduction

Programming languages, represented by Prolog, based on $f\cdot irst$

order predicate logic provides simple declarative semantics. First

order logical deduction is used for verifying, synthesizing and

translating programs, since the model theortic semantics of Horn

sentences of first order predicate logic is straightforward. $[1]\sim[3]$

On the other hand, the theory of logic programming and their

computations could be formalized in terms of the theory of resolution

proof procedure. There exists various problems about executions of

数理解析研究所講究録
第 511巻 1984年 242-258

logic programs, such as termination problem and total 243

correctness. [4] , [5]

To characterize such properties, model theoritic semantics of a

logic program execution is desired. Temporal logic has been shown to

be adequate for expressing a wide variety of properties of execution

sequence of programs.$[6]\sim[13]$

In this paper we presents a temporal semantics of Horn logic

programming. This paper is organized as follows. In section 2, we

define a modal logic, a version of temporal logic used in this

formalism. In section 3, we define semantics of Horn logic

programming. Section 4 presents a general verificaton method for

logic programming. Section 5 discusses semantics of special

constructs such as cut operator and $pseudo-parallel$ execution.

Section 6 gives conculuding remarks.

$\Xi 2$. Modal logic

The logic employed in this paper is a version of Modal logic(ML)

which uses temporal operators such as \square (necessity operator), 0 (next

time operator) and until (until operator).

2.1. Synt ax

$ZXB=s$: Let e and b be any two objects. The set T of types of ML is

defined as follows,

(i) $e_{*}b$, (b) ϵT ,

(ii) $a=ea=e_{*\cdots*}a_{n-1}=e$ imply $(a,a, \ldots, a_{n-1})\epsilon T$,

(iii) $a=e,$ $a=e,$ $\ldots a_{n^{=}}e$ imply $[a0’ a1’\cdots,$ $a_{n}1\epsilon T$,

As w ill em $erge_{*}$ object s of type ew ill be po ss ible entities on

individuals and objects of type b will be labels, which will be used

for indicating program locations. Objects of type (b) will be

2 $\zeta_{\dot{\iota}}$

predicates of labels. Objects of type (a, a, \ldots,a_{n-1}) will be

predicates of n arguments which are objects of type e . Objects of

type $[a0’ a1’\ldots,a_{n}]$ will be functions of n arguments which are

objects of type e and whose value is also object of type e .

Ex.-m itive Svmbols: For each a ϵT we have a denumerable list of

variables and $non-Iogical$ constants together with the improper symbols

$(,)$, $=$ \supset . \sim , V, $\square ,$ O and until.

$X\underline{er}g\underline{s}$: We characterize the set of Tm_{a} of terms of ML of type a , as

f ollows,

(i) Every variable of type a ϵT belongs to Tm a respectively,

(ii) Every constant of type a ϵT belongs to Tm_{a} respectively,

(iii) A ϵ Tm $[aa, \cdots.a_{n}]’ B^{0}\epsilon Tm_{a}0^{*}B^{1}\in Tm_{a}1$ $B^{n-1}\epsilon Tm_{a_{n-1}}$

imply $A(B^{0},B^{1}, \ldots,B^{n-1})$
ϵ Tm

$a_{n^{*}}$

form

A $(B^{0}, B^{1_{*}}\cdots, B^{n-1})$

,where A is of type $a^{=}(a_{0}, a1’ *a_{n-1})$ and B^{k} is a term of type ak

for kく n: $\circ r$ the form

A $=B$

where $A,$ B are terms of type e .

connectives \sim,\supset . the quantifier Vx_{a*} where x_{a} is an arbitrary

variable, and modal operators $\square ,$ $O,$ $L^{n}L\mapsto 1$.
It is important to note that the sequence 95 belongs to T , so that

a symbol A of type Φ standing alone is an atomic formula. The

sentential connectives A. $v,$ $rightarrow and$ the quantifier 3 are defined as

usual.
2 $tarrow 5$

2.2. Semant ics

For an arbitrary s et X, we denote the power set, or a s et of all

sub sets of X by $P(X)$. For sets x_{0} , ... x_{n-1} , we let $x_{0}x$... $xX_{narrow 1}$

denote their Cartesian product.

$EgRe$: Let D_{a} and D_{b} be $non-empty$ sets. By a fram e for ML based on D_{a}

and $D_{b^{s}}$ we understand an indexed fam ily $(M_{a})a\epsilon T$ of sets, where

(i) $M_{e^{=}}D_{e},$ $M_{b}=D_{b}$

(ii) For each type a $=(b_{0},\ldots,b_{n-1})*$

$M_{a}=p(M_{b_{0}}x ... xM_{b_{n-1}})$

(iii) For each type a $=[b_{0},b_{1}, \ldots,b_{n}]$,

$M_{a}=M_{b_{n^{M}}}b_{0}x$. . . $xM_{b_{n-1}}$

$EL^{d_{41:}}$ A model of ML based on $D_{a},$ D_{b} and I is a system

$M=$ (M_{a} , m) $a\epsilon T$, where

(i) $M_{a}a\epsilon T$ is a frame based on D_{a} and D_{b},

(ii) m (the meaning function) is a mapping which assigns to each

constant c_{a} a function from I into $M_{a}*$ where I be the linearly

ordered set of denumerable states.

We denote by As (M) the set of all as s ignment s over the model M.

i.e. all functions on the set of variables such that $a(x_{a})\epsilon M_{a}$ for each

variable x_{a} . We define the value $V_{i^{M}}$, a $(A_{a})\in M_{a}$ of the term A_{a} with

respect to the state i and the assignment a by the following recursion

on the term $A_{a}\epsilon T_{m_{a}}$:

(i) V i^{M} a $(x_{a})=$ a (x_{a})

(ii) V $i^{M}a^{(C_{a})}=m(C_{a})(i)$

$(iii)V_{i^{M}}$ a (A $a^{(B}$ a $0’ 1n-1B_{a},\ldots,B_{a}$))

2 $q\mathfrak{g}$

$=$ V i^{M} a (A_{a}) ($v_{i^{M}}$, a $(B_{a_{0}}),\ldots,V_{i^{M}}$, a $(B_{a_{narrow 1}})$)

,where $a=[aa, . . ,a_{n}]$

We define the notion

$M_{*}i,a$ sat A

by recursion on the formula A of ML as follows:

(i) M, i,a sat $A(A_{0},\ldots,A_{narrow 1})$

if and only if

($v_{i^{M}}$,a $(A_{0}),V_{i^{M}a}(A_{1})_{*}$. $*V_{i^{M}}$ a $(A_{narrow 1})$) $\epsilon V_{i^{M}}$ a (A)

(ii) $M_{*}i,a$ sat $[A=B]$ if and only if

V i^{M}, a $(A)=V_{i_{*}^{M}a}(B)$

$*where$ A and B are tems of type e .
(iii) Usual satisfaction clauses for \sim , \supset , Vx_{a}

(iv) $M_{*}i,$ a sat $\square A$ if and only if Vj $j\geq i,$ $M,$ $j,$ a sat A

(v) $M,$ i_{*} a sat $A_{1}\underline{until}A_{2}$ if and only if

Vj $j\geq i,$ $M,$ j,a sat A_{1} or

$3jj\geq i_{*}$ (M. $j,$ a sat $A_{2}\wedge Vk(i\leq k\leq j+M,k,$ a sat $A_{1})$)

(vi) $M,$ $i,$ a sat OA if and only if

Vj ((i く j \wedge Vk ($i<k$ $+$ $j\leq k$)) $+$ $M,$ j , a sat A)

Notice the until operator we h ave defined does not have an

eventuality component, and A_{1} and A_{2} can be satisfied simultaniously,

in contrast with the one defined in [10]. This involves no difference

of expressive power since until operator in [10] can be expressed in

our system using our until operator. and vice versa. This is just for

the convenience of having compact logical expressions in our

application.

A is true in M , if $M,$ i_{*} a sat A f or every state i and a s singment

a . A set F of formulas is satisfied in M by i and as and we write

$M_{*}i,$ a sat F , if $M,$ i_{*} a sat A for every A ϵ F. A formula A is a

s em antical cons equence in ML of a set S of f ormulas , if $M,$ i_{*} a sat A

whenever M,i,a sat S. We introduce (temporal) macro operators derived

2 $c_{arrow}7$

from these primitives defined above to enhance the understandability

of formulas in the specifications,

$\alpha\underline{d}\sim\coprod\sim A$

$[A==>B]$ SC $arrow d$ A \supset (C until B)

$[A==>B]$ OC $arrow d$

A $\supset\sim$($\sim C$ until B)

$[A==>B]E(C\supset\phi D)arrow d[A==>B]E([C==>B]\otimes)$

Intuitively $speaking_{*}$ $[A==>B]$ EC means that C holds throughout

the interval starting at the first state in which A holds and

extending to the first state in which B holds. $[A==>B]$ OC requires

that, if A holds in a futur e_{*} and if the subsequent state in which B

holds is found, this interval must sometime satisfy C. So that

$[A==>B]$ $E(C\supset\Re))$ requires that, for the interval beginning with the

state in which A holds and ending with the state in which B holds, if

the state in which C holds is found then the state in which D holds

should be found in the sub interv $a1$ beginning with the state in which

C holds and ending with the state in which B holds.

Now we present an axiomatic system in which proofs of the

properties of program can be carried out.

$\infty xims\Omega LE$

Al: $\square (A\supset B)\supset(\mathbb{B}\supset B)$

A2: [A \supset A
A3: $O(\sim A)=\sim(OA)$

A4: $o(A\supset B)=(oA\supset OB)$

A5: OA \supset OA
A6: OA $\supset 0[h$

A7: $\square (A\supset OA)\supset(A\supset[h)$

A8: (A $L^{nL\llcorner 1}B$) $=$ ($(A\wedge B)v(A\wedge O$ (A until B) $)$)

A9: OA \supset (A until B)

A10: Vx A(x) $\supset A(t)$ where t is free for x in A
All: Vx OA $\supset\square Vx$ A
A12: Vx OA \supset OVx A
A13: Vx(A until B) $\supset(VxAR^{nLi\perp}B)_{*}$ provided B does not contain f ree

occurrence of x .
Inference Rules
Rl: IF A is an instance of a tautology, then $\vdash A$.

$\zeta\ell A_{O}^{\backslash }-$

,

R2: If $\vdash A$ and $\vdash A\supset B$, then $\vdash B$.
R3: If $\vdash A$, then $\vdash R$.
R4: If $\vdash A\supset B$, then $\vdash A\supset VxB$, provided A does not contain free

occurrence of x .
This system is certainly $sound_{*}$ and completeness of the system

should be proved, however, it is beyond the scope of this paper.

\S 3 Semantics for logic programming in ML

$A\ovalbox{\tt\small REJECT} rg$ is a set of clauses. A $\ovalbox{\tt\small REJECT} cls$ is a pair of sets of

atomic formulas written as

$A_{1},$ \ldots,A_{m} $\prec-$

$B_{1},$ \ldots,B_{n} $m\geq 0,$ $n\geq 0$.

The set $\{A_{1*}\ldots,A_{m}\}$ is the conclusion of the clause; $\{B_{1},\ldots,B_{n}\}$ is

the $gr\epsilon g\underline{i}$se of the clause.

$n>0$.
is one where $m=1,$ $n=0$.
k-place predicate symbol, t_{1},\ldots,t_{k} are terms. A \underline{term} is a variable or

$f(t_{1}\ldots., t_{q})$ where f is a $qarrow place$ function symbol, $t_{1*}\ldots,$ t_{q} are

terms, and $q\geq 0$. A 0 -place function symbol is a gggSSanSi.

a variable throughout expression e by a term. The result is denoted

by $e^{\circ e}$. If there exists for expressions $e1’\ldots,$ e_{n} a substitution θ

such that $e\Theta=e\circ e=\ldots=e_{n}\circ e$, then 8 is to be a unifier of $e1’\ldots,e_{n}$.
A logic program can be seen as a set of clauses in first order

predicate and hence it has a model theoretic semantics as usual. On

the other hand, it has an operational s em antics as process of

resolution.

To fo rm alize such a $process_{*}$ we use ML. Semantics of a program

is defined by the set of formulas of ML generated for the program by

rules associtated with each clause of Horn logic. We call those rules

semantics of logic programming.

Before we explain the semantics, we have to introduce three

2 a9

primitive predicates at, ’after’ and ’end’ of type (b) referring to

the execution points of atomic formulas.

at(L) : This formula is true when the matching of an atomic

formula whose label is L begins.

after(L): This formula is true when an atomic formula whose 1abel

is L is refuted.

end(L) : This formula is true from the success of refutation of

an atomic formula whose label is L until the atomic

formula is backtracked.

Provided an atomic formula Q is of the form $p(t_{1},\ldots,t_{n})$, term(Q)

denotes (t_{1}, \ldots, t_{n}) , tuple of terms which are arguments of P , and \overline{Q}

deno tes the predicate symbol P as a label of atomic f ormula Q. $j^{\vec{Q}}$

denotes j^{P} , where j is an index introduced for distinguishing

occurrences of identical predicate symbols in $conclusions_{*}$ and is

assigned in order of appearance (top to down) in the program. Index j

may take values from 1 to mp ,where mp is the number of such clauses

with predicate symbol P in conclusion. For a predicate symbol P

occurring in premise of some clause but not in conclusion of any

clause, we assume $mp=0$. We also assume that the every occurrence of

identical predicate symbol P in a pr emise is distinguished by being

attached with suffix k as pk

For each type of clause (e.g. conditional, negative, positive

clauses), we can now define Horn logic programming semantics, which

are schemes for derivating ML formulas.

(i) Negative Clause $+Q_{1},$ \ldots,Q_{n}

semant ics:

Initial call rule:

$\overline{1}nit\supset at(1\vec{Q}1)Au=\phi Av=t$ erm (Q_{1})

$25C$

Left to right rule:

For $1\leq i$ く$n,v_{q}(after(q\vec{Q}i^{)\supset at(1i+1i+1}\vec{Q})A_{V}=term(Q))$

Termination rule:

Vq (aft er $(_{q}\vec{Q}_{n})\supset\square end$)

at $(_{mq1+1}\overline{Q}_{1})\supset\square fai1$

Backtracking rule:

For all atomic formula X, for $1<i\leq n$,

$Vq\forall pl^{Vp}2^{(}$ (at $(q\vec{x})\wedge p=uApvat(_{1}\overline{Q}_{i})$) \supset

0(at $(_{mqi+1i}\vec{Q})\supset o(at(q\overline{x})\wedge p=uAp)$)

u is a constant of type e holding a current set of substitutions.

(The semantic value of u is a function from states to sets of

substitutions at each $state_{*}$ so that a set of substitutions depends on

states.) A constant v holds a record of terms which are going to be

unified. For a record of terms $T=(t_{1}, \ldots, t_{n})$, and a set of

substitution p , $T\circ p$ denotes a new record of resulting terms

$(t_{1^{\circ}}p, \ldots, t_{n^{\circ}}p)$, where $t_{i^{\circ}}P$ is a resulting term obtained by applying

every substitutions in p to term t_{i} .
Initial call rule describes that unifiability of atomic formulas

Q_{1} and $IQ1$ is checked initially. Left to right rule shows that if Q_{i}

is refuted then unifiability of Q_{i+1} and lQi+l is checked.

If Q_{n} is refuted, then the negative clause succeeds in its

refutation. The second formula in the termination rule describes the

finite failure.

Backtracking rule shows that if refutation of some atomic formula

is finitely failed then unification of the previously succeeded atomic

formula and its next matching alternative formula is checked.

$25_{\dot{\dot{A}}^{=}}$

(ii) Conditional Clause $j^{p}+R_{1’\cdots*}R_{n}$

S emant ics:

Unification rule:

$vpl^{\forall p}2^{(}$ (at $()\wedge p1^{=u\wedge p}2^{\Leftrightarrow v\wedge match(v^{\circ}u,term(p}$)))

$\supset o(u=pumgu(p\circ p, term(p))\wedge at(1^{\overline{R}}1)A_{V}=term(R_{1})))$

Left tO right rule: For $1\leq i$ くn ,

Vq (after $(_{q^{\overline{R}}i})\supset(at(\vec{R})\wedge v=term(R_{i+1}))$)

Top to down rule:

(at $(\vec{p})\wedge\sim match(v^{\circ}u_{*}term())$) $\supset at(j+1\vec{P})$

Success rule:

Vq (af t er $(_{q}\overline{R}_{n})\supset aft$ er $(j\overline{P})$)

Backtracking rule:

For all atomic formulas X, for $1<i\leq n$,

$\forall q\forall p1^{\forall p}2^{((at(}12^{=v\wedge Oat(\overline{R})\supset}$

0(at $(_{mqi+1^{\vec{R}}i})\supset O$ (at $(q\vec{x})Ap=uAp2^{=v)})$)

All the rul es f or condi tion $a1$ clauses are s im ilar to the rules

for negative clauses.

’match’ is a predicate constant which is true if its argum ents

(tuples of terms) have the most general unifier. ’mgu’ is a function

constant which gives one of the most general unifier of its arguments.

Top to down rule describes that if the conclusion is not

unifiable with an atomic formula whose terms are indicated by Vg then

the next alternative conditional or positive clause is selected.

Success rule means that if refutations of all the atomic formulas in a

premise succeeded then the conclusion succeeds in its refutation.

10

25_{\sim}^{Ω}

Backtracking rule is the sam e as in the case of negative clauses.

Note that suffix k for distinguishing occurrences of the same

predicate symbols in premises is considered in the induction step of

proof procedur e_{*} as will emerge later.

(iii) Positive Clause $j^{P}\star$

S emant ics:

Success rule:

$\forall p\forall(at(\vec{p})Ap1^{=uAp2^{=v^{\wedge}match(v^{\circ}u,te(p}}))$

$\supset o(u=pumgu(p\circ p.term(p))Aafter(j\vec{P}))$

Top to down rule:

Same as the case of conditional clause.

Success rule describes that if j^{P} matches with atomic formula

whose pr edicate symbol P_{*} then the refutation of the atomic formula is

succeeded.

$S4$. General proof procedure for total correctness

In the following, we present a general inductive proof procedure

for total correctness of Horn logic programming.

By using semantic rules previous ly mentioned, total correctness

is expressed by the formula

$init\supset O(end\wedge P((t_{1}, \ldots,t_{n})\circ u))$

where P is a $narrow place$ predicate which should be satisfied with the

re sult s .
The steps are as follows.

[Stepl]: Assignment of assertion.

For each conditional clause, assign an appropreate intermittent

assertion of the form $A(m)\supset OB$, where m is a variable on which

1 ι

253
structural induction is performed.

[Step2]: Generation of verification conditions.

For ea ch conditional $clause_{*}$ generate a verification condition as

f ollows:

For each occurrence of predicate symbols appearing in its

premise, m ake an assertion from the assertion assigned at step 1 to a

conditional clause whose conclusion has the predicate symbol, in which

$non-logical$ constants of labels and $non-logical$ constants

corresponding variables of atomic formulas are associated with suffix

attached to the predicate symbol in premise.

Provided that $Q(P)$ is the conjunction of such rewritten

assertions for a conditional clause whose conclusion is an atomic

formula with predicate symbol P and S is the conjunction of formulas

generated from a program by rules in section 3 $*$ if $R(m)$ is an

as ser tion $A(m)\supset OBf$ or the conditional claus e , then the verification

conditions are $S\supset R(O)$ and $Q(P)\wedge S\supset R(m)$ which works as inductive step,

and in which n of the as ser tion $A(n)\supset OB$ ‘ in $Q(p)$ mus t be smaller than

m in structure.

[Step3]: Proof of verification condition.

Verify the verification conditions for all the conditional

clauses in the program and establish the assertions.

(Example)

To prove the total correctness $vn(init\supset Oend\wedge\star w^{\circ}u=N!)$ for the

following simple factorial program,

$+F$act $(N, \star w)$

1^{F} act $(0, S(0))+$

2^{F}act $(S(\star x), \star y)+Mu1(s(\star x), \star z, \star y)$, Fact $(\star x, \star z)$

we can assign the following assertion to the third clause.

vnvp (a $t(2Fact)\wedge u=p$ Av $\circ u=(N,$ $\star w)$) $\supset\alpha after(2Fact)Au=pu\{\star w/N\downarrow\})$,

12

25 !

where N stands for $s(\ldots(s(O))\ldots)$ and n is the number of a function s

in N , and Nl stands for $s(\ldots(s(O))\ldots)$ in which the number of a

function s is $n\downarrow$.

This general proof procedure reflects the structure of Horn logic

programming.

55 Senantics of extensions to Horn logic progrm

5.1. Cut operator

Prolog programming uses a special symbol 1 called cut operator.

$j^{P}\prec-R_{1},\ldots,R_{k-1}$! R_{k},\ldots,R_{n}

According to the semantics defined above, we can now define the

s emantics of cut operator by supplimenting following rules.

Semant ics:

Left to right rule:

Vq (af $ter(q^{\vec{R}}karrow 1)\supset at(\overline{R})Av=term(R_{k})$)

Cut rule:

at $(\vec{R})\supset at(\vec{p})$

If a cut operator is used in a negative clause, we simply have

at $(_{mrk+1}\vec{R}_{k})\supset\coprod fail$.
Left to right rule describes that if refutation of R_{k-1} is

succeeded then the matching of R_{k} and $1^{R}k$ is checked. Cut rule means

that if the refutation of $R_{k’\cdots*}R_{n}$ is finitely failed (that is all

the backtracking is failed) then the refutation of P is finitely

failed without backtracking to alternative check for R_{k-1} .

5.2. $Pseudo-para1lel$ execution

Parallelism condidered in this paper is so called $andarrow parallel$.

13

255
We now extend the Horn logic programming to allow to exp$ress$ parallel

execution by a special symbol //.

$j^{P}+R_{1}//\ldots//R_{n}$

The declarative reading of the clause is unchanged by the symbol

//. 0perationally, however, each atomic formula R_{i} is intended to

be executed pseudo-parallely. (i.e. all refutations der ived from the

refutations of $R_{i}s(1\leq i\leq n)$ ar e interleaved.) Provided that execution

is implemented on a single stack as in the case of $1Carrow Pro\log[14]$, the

s emantics of the $pseudo-paralle1$ execution is formalized by the

following rules.

Semantics:

Parallel rule:

$vpl^{V}P2((at(j^{\overline{p})A}Ap=uAp=vmatch(v\circ u,term(p)))$

$\supset o$ ($u=p1^{uu(\circ p,t}mgP21$ erm(jP)) $\wedge\forall i$ (\mathfrak{A} at $(_{1}\vec{R}_{i})\supset v=t$ erm(R_{i})))))

For $1\leq i\leq n_{*}init\supset\sim at(\overline{R})L^{nL1}\llcorner at(j\overline{P})$

Top to down rule:

Same as the usual case.

Backtracking rule:

For all atomic formulas X,Y $(X\#Y)_{*}$ for $1\leq i\leq n*$

$\forall q\vee r\forall p1^{\forall p}2$ [(at $(\overline{X})Aplup_{2^{=}}v^{\wedge}match(v^{\circ}u_{*}tq$ erm $(_{q}X))$) $==>$

(at $(\vec{R})\wedge o(at(\vec{x})Ap=u\wedge p$

$E((at(r\vec{Y})\wedge match(v^{\circ}u, term(rY)))\supset\theta at(_{r+1}\vec{Y}))$

Success rule:

For $1\leq i\leq n,$ $v_{q}(after(\overline{R}_{i}q)\supset(end(\overline{R})qi\underline{until}at(\overline{R}q+li)))$

\wedge (-tq end $(\vec{R})qi$) $\supset after(jp)$
$1\leq i\leq n$

14

$25^{t^{-}}\dot{.}$

Model assumption:

$init\supset\square (3x(at(x))vendvfail)$

$\wedge\square vxvy$ ($xty\supset\sim(at(x)$ Aat $(y))$)

Apparently, if the conclusion j^{P} matches with some atomic formula

in a pr emise of some other clause, then any refutation of R_{i} can be

proceeded. How ever, notice that one and only one possible atomic

formula can be selected at a time. This fact is described in model

assumption. Backtracking rule is rather complex than that of non-

parallel case. The rule describes that if refutation of some atomic

formula is finitely $failed_{*}$ then an alternative conclusion is

selected to be refuted for such atomic formula that matched with some

conclus i on, and f rom that time till the f init ef ailur e , ther e is no

other unification that was not canceled. (i.e. backtracked.)

To describe this computation model we need L^{nLi1} operator. This

operator is also used for success rule for describing that refutation

of conclusion succeeds when all the atomic formula in its prem ise have

been succeeded. This is because the execution of the refutation is

interleaved.

\S 6. Concluding remarks

There are several extensions to Horn logic $programming_{*}$ some of

which we h ave considered. The modal logic introduced here is so

powerful that such extension as shared variables can be formalized in

this logic. More expressive logic so called intensional logic may be

useful for formalizing coroutine control and stream variable.[15],[16]

In general, branching time logic is used for formalizing non-

deterministic $processes[17]$, however, in the case that the order of

execution is concerned, this logic is not appropriate.

15

$2_{\overline{0}_{i}^{m}}$

Bef erences

[1] M.H.V.Emden, R.A.Kowalski : The S emantics of Predicate Logic as a

Programming Language, JACM 23(4). pp.733\sim 742, Oct. 1976.

[2] R.A.Kowalski: Logic of Probl em Solving, $Northarrow Holland$, Amsterdam.

1978.

[3] C.J.Hogger : Derivation of Logic Program, JACM 28 (2) , pp37 $2arrow 392$,

Apri11981.

[4] D.Harel : On the Total Correctness of Nondeterm inistic Program s ,

Theor. Comput. S ci. 13*1981.

[5] E.Y.Shappiro: Algorithmic Program Debugging, Research Report 237

Yale University, May 1982.

[6] S. Owicki: Axiomatic Proof Techniques for Parallel Programs, Ph.

D. Th., Cornell University, August 1975.

[7] A.Pnueli, The Temporal Logic of Programs. 18th Annual Symposium

on Foundations of Computer Science. Nov, $ppA6\sim 57$, 1977.

[8] Z.Mann a , $A.Pnueli:The$ Modal Logic of Program s , 6th International

Colloquim on Automata, Language and $Programming_{*}$ $Graz_{*}$ Austria,

Lecture Notes in Computer Science, Vol. 71, Springer Verlag,

pp.386\sim 408. July 1979.

[9] A.Pnueli: The Temporal Semantics of Concurrent Programs. In

Khan. Ed., Semantics of Concurrent Computation, Springer Lecture

Notes in Computer Science, $Springer-Verlog$, pp.1\sim 20, 1979.

[10] D.Gabbay, A.Pnueli, $S.Sheloh_{*}$ J.Stave :The T emporal Analysis of

Fairness :Seventh ACM Symposium on Principles of Programming

Languages. Las Vegas, NV, January 1980.

[11] Z.Manna: Logics of Programs: Information Processing 80, S.H.

Lavington(ed.) North-Holland Publishing Company, pp.41\sim 51,1980.

[12] D.Harel: First Order Dynamic Logic, Lectur e Notes in Computer

16

25 $-$

Science 68, Springer$arrow Verlag$, Berlin, 1979

[13] B.Hailpern : Verifying Concurrent Processes Using Temporal Logic.

Technical Report 195. Computer Systems $Laboratory_{*}$ Stanford

University, August 1980.

[14] K.L.Clark, F.G.McCabe and S.Gregory: $IC-PROL\mathfrak{X}$ Language Features,

Logic programming, Academic Press, $pp253-266$, 1982.

[15] N.Yonezaki and T.Katayama: Functional Specification of

Synchronized Processes based on Modal Logic, Proc. of 6th ICSE, pp208-

217, S ep. 1982.

[16] K.L.Clark, S.Gregory : A Relational Language for Parallel

Programming, Proc. of Conference on Functional Programming and

Computer Architectur e. pp.$171\sim 178$, Oct. 1981.

[17] L. Lamport: Sometime is Sometimes Not Never On the Temporal

Logic of Program s , Seventh ACM Symposium on Principles of Programming

Languages. Les Vegas, NV. $pp.174-185$, January 1980.

17

