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Introduction

Some connections between A-calculus and category theory have been
known. Among them, it has been known by Lambek that cartesian closed
categories (ccc in short) can be identified with extensional typed $\lambda$ -calculus (cf.
Lambek [5], Lambek & Scott [6]). In this note , we introduce the notion of
$ad_{J}$ unction of semifunctors (for simplicity we refer this as “semi adjunction“)
and ,by the aid of this notion, we define the notion of semi cartesian closed
category (semi ccc in short). Some categorical and algebraic systems introduced
incorporating with A-calculus will turn, special cases of semi ccc.

Another interesting connection between ccc and A-calculus is Scott $s$

embedding of $\}_{\backslash }$ -theory into a ccc (cf. Scott [9]). (This will be referred as Scott
embedding.) We will show that any semiadjunction is embedded in an adjunc-
tion (of functors) and Scott embedding is its special case.

1. Adjunction of semifunctors.

In this section, the notions of semifunctors and adjunction of them are
introduced, and some basic facts are shown.

1.1. Definition. Let A and $B$ be categories. A semifunctor from A to $B$ is a
pair of object funchon from $Obj(A)$ to $Obj(B)$ , where $Obj(A)$ is the set of
objects of $A$ , and $morph_{l}m$ functtons $F_{X,Y}.A(X, Y)arrow B(X, Y)$ preserving $c$ omposi-
tions $ie$ . $F(f^{\circ}g)=F(f)\circ F(g)$ . Note that semifunctors may not preserve iden-
tity morphisms. Let $G$ be a semifunctor from A to $B$ and let $F$ be a semifunc-
tor from $B$ to A. A quadruple pair $(F, G\cdot, \{\alpha_{X,Y}\}_{X.Y}, \{\beta_{X,Y}\}_{X.Y})$ is an $ad_{J}unct\iota on$

of semifunct$orsF$ and $G$ (or $seml\alpha djunct\iota$on of $F$ and $G$) ,if and only if, four
squares in the following diagram are commutative.

$\alpha_{X.Y}$

A$(F ( Y), X)=B(Y, G(X))$
$\beta_{X.Y}$

$\phi$ $\psi$

$\alpha_{X’.Y}$,

A $(F( Y^{l}), X’)=B(Y’, G(X’))$

$\beta_{X’,Y’}$
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where $f\in B(Y’, Y),$ $g\in A(X, X’),$ $\phi=A(F(f), g)$ and $\psi=B(f, G(g))$ . Namely,
the following equations hold:

$\psi\circ\alpha_{X,Y}=\alpha_{X’.Y’}\circ\phi\phi\circ\beta_{X,Y}=\beta_{X^{l},Y’}\circ\psi,$ $\phi=\beta_{X’.Y’}\circ\psi^{o}\alpha_{X.Y},\psi=\alpha_{X’.Y},$ $\circ\phi^{o}\beta_{X.Y}$

Note that the first and second equations mean the $natu\tau at_{l}ty$ of $\alpha$ and $\beta$ . (For
simplicity, we will denote $\{\alpha_{X.Y}\}_{X,Y}$ and ] $\beta_{X.Y}\}_{X.Y}$ by $\alpha$ and $\beta$ ,respectively.)

Let $F$ and $G$ be functors and let $(F, G,\alpha,\beta)$ be an adjunction of semijunc-
tors $F$ and $G$ . Set $f$ be $zd_{X}$ and $g$ be $\tau d_{Y}$ . Then $\phi$ and $\psi$ are identical functions,

for $F(\tau d_{X})$ and $G(?d_{Y})$ are identical morphisms. So $\alpha$ and $\beta$ are inverse func-
tions each other and $(F, G, \alpha, \beta)$ gives an adjunction of functors $F$ and $G$ in the
usual sense. This justifies the terminology “adjunction of semifunctors”. But
this terminology is sometimes confusing, so we will often say $semiad_{J}unc\hslash on$

instead of “adjunction of semifunctors”.

The notions of semifunctor and semiadjunction are very similar to the
notions of functors and adjunctions. So the notions such as covariant or con-
travariant semifunctors, right or left semiadjoints etc. are defined as the
corresponding notions on functors and adjunctions. We will use such notions
without any explicit definitions. (Consult MacLane [7] for the terminologies on
functors and adjunctions.) Adjoint of a functor is unique up to isomorphism.
Opposite to this, a semiadjoint of a semifunctor is not unique up to isomor-
phism. Thts means semladjunchon $\tau s$ not extensional in a sense.

1.2. Completion of semiadjunction

In this section, we embed adjunctions of semifunctors into adjunction of

functors. For this aim, we will use the notion of Karoubi envelope.

1.2.1. Definition (Karoubi envelope). Let A be a category. Then its Karoubi
envelope A is the category defined as follows:

$Obj(\tilde{A})=\{f|f\circ f=f\}$

A morphism $f$ such that $dom(f)=codom(f)$ and $f^{\circ}f=f$ will be called tdem-
ponent, and the object $dom(f)$ is denoted by $\partial f$ . Let $f$ and $g$ be objects of A.
Then hom-sets are defined by

A (X, $Y$ ) $=\{h\in A(\partial f , \partial g)|g\circ h\circ f=h\}$ .

The canonical embedding functor $\in:AAarrow\tilde{A}$ is defined by

$\in A(X)=zd_{\chi}$ $(X\in Obj(A))$ ,

$\in A(f)=f$ $(f\in A(X, Y))$

This was first introduced by M. Kroubi [4] for an entirely different purpose.
Scott [9] used the same idea (independently from Karoubi) to embed A-theory
into a ccc, and Lambek and Scott [9] pointed out Scott’s construction’can be
regarded as a Karoubi envelope.

1.2.2. Definition. For clarity, we will denote morphism function and object
function of a functor $G$ by $G_{m}$ and $G_{o}$ , respectively. Assume that $f\in\tilde{A}(X,\underline{Y)}_{\wedge}$
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Set

$F_{0}(X)=F_{m}(X)$ $(X\in Obj(\tilde{A}))$ ,

$\tilde{F}_{m}(f)=F_{m}(f)$ $(f\in\tilde{A}(X, Y))$ .

Obviously, $\tilde{F}$ is a semifunctor. For each object $X$ of $\tilde{A}$ , its identity morphism
$id_{X}$ is $X$ itself. So

$F_{m}(\tau d_{X})=F_{m}(X)=id_{P_{o}(x)}$ .

Hence $\tilde{F}$ is a functor. This functor $\tilde{F}$ is called the completion of $F$.

1.2.3. Proposition. If $G?s$ a func$tor$ from A to $\tilde{B}$

, then there is a umque func$tor$

$Fsuch$ that $\tilde{F}=G$ .

Proof. Trivial. Left for readers.

1.2.4. Definition. Let $f$ be an idemponent of a category and let $A$ be the
object $\partial f$ . An object $X$ is called a quotient of $A$ by $f$ if\ddagger there are two mor-
phisms $e$ and $m$ such that

$m$

$X=A\supset f$

$e$

satisfying $m\circ e=f,$ $e\circ m=\tau d_{X}$ and $e\circ f^{\circ}m=\dot{\tau}d_{X}$ . The morphisms $e$ and $m$ are
called the $retract_{l}on$ and $c$ oretrachon of the quotient, respectively. It is easy to
check that two quotient of $A$ by $f$ are isomorphic. Each object $X$ of A is a quo-
tient of $\in A(A)$ by $\in_{A}(f)$ , where $f$ is an idemponent of $A$ and $A=\partial f$ . Thus
every idemponent in a Karoubi envelope A splits. (Cf. Lambek & Scott [6],
Adachi [1])

1.2.5. Proposition. Let $F$ be a semifunctor from A to B. Then the fouowing
$hold$.

(1) $\tilde{F}\circ\in A(X)\tau s$ a $quot\iota entof\in B^{\circ}F(X)by\in B^{\circ}F(id_{\chi})$ .

(2) For any $f\in A(X, Y)$ , the folloUtng dlagram $?s$ commutahve:

$\in B^{o}F(X)-\epsilon_{B}\circ F(f)-\in B^{o}F(Y)$

$e$ $e’$

$\tilde{F}^{o}\in A(X)-\tilde{F}^{c}\epsilon_{\overline{A}}\tilde{F}\circ\epsilon_{A}(Y)$

where $e$ and $e’$ are the $\tau etract\tau ons$ of the $quo$ hents assured in (1).
(3) $\tilde{F}$ ts umquely detemmed from $F$ (up to $xsomo$rphtsm) by these two $condl^{arrow}$

hons.
(4) $F’\iota s$ a functo$r,$ $iff\in F=G\circ\in B^{\circ}A$ holds.

1.2.6. Remark. It is possible to characterize A by an universal property $\underline{as}$
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Karoubi [4, 6.10]. Thus A and $\tilde{F}$ determines a functor from the category of
categories and semifunctors to the categories of categories, in which idem-
ponents split, and functors. See Adachi [1] for a detailed description of the
essentially same functor.

1.2.7. Definition. Let $F$ and $G$ be semifunctors and let $a$ be a natural
transformation (of semifunctors) as follows:

A $(F(B), A)\underline{a}B(B , G(A))$ .

Set

$\alpha(f)=\alpha(f)$

for $f\in\tilde{A}(\tilde{F}(Y), X)$ This a is called the completion of a

By the naturality of $\alpha$ and the assumption $f\in\tilde{A}(\tilde{F}(Y))X))$

$\tilde{G}(x)\circ\alpha(f)\circ Y=G(X)\circ\alpha(f)\circ Y$

$=\alpha(X^{\circ}f^{\circ}F(Y))$

$=a(f)$

$=$ a $(f)$

Hence, $a(f)$ belongs to $\tilde{B}(Y,\tilde{G}(X))$ So $\alpha$ is a natural transformation from
$\tilde{A}(\tilde{F}(Y), X)$ to $\tilde{B}(Y,\tilde{G}(X))$

1.2.8. Theorem (generalized Scott embedding). Let $(F, C, a, \beta)$ be an $ad_{J}unc-$

$hon$ of semlfunctors Then ( $\tilde{F}$ , $\tilde{G}$

, a , $\tilde{\beta}$ ) $\tau s$ an adjunchon of funct$ors$ Thts adjunclxon is

called the complehon of $(F, G, \alpha)\beta)$ .

Pro of. Obvious from the definitions of $\tilde{F}$ and $\delta$ .

1.2.9. Proposition (the inverse of 1.2.8). Let $\beta$ be a natural transformahon
ff$om\tilde{A}$ $(\tilde{F}(X) , Y)$ to $\tilde{B}(X,\tilde{G}(Y))$ Then there $’\iota s$ a natural transf$om\iota ahon$ $a$ from
A $(F(X) , Y)$ to $B(X, G(Y))$ snch that $\alpha=\beta$

Proof Trivial. Left for readers

1.2.10. Proposition. The complehon $a$ ts the umque natural transformatton com-
mulrng the $fo$ llomng dtagram:

A $(\tilde{F}(\in B(B)), \in_{A}(A))\underline{\tilde{\alpha}}\tilde{B}(\in B(B) , \tilde{G}(\in_{A}(A)))$

$\phi($ $(\psi$

A $(F(B), A)\underline{\alpha}B(B, G(A))$

where $\phi=\tilde{A}(m, ul)\circ\in A\psi=\tilde{B}(\tau d, e^{l})\circ\in B$ $m$ $’\iota s$ the $coretract\iota on$ of the quolxent
$\tilde{p}^{\urcorner}\circ\in I!(B)$ of $\in_{A^{\circ}}F(B)$ and $e’$ is the retractton of the $quo$ hent $\tilde{G}\circ\in_{A}(A)$ of
$\in 1\}^{\circ}G(A)$
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Pro of. Easy. Left for readers.

1.2.11. Remark. If the natural transformation $\alpha$ of 1.2.7 satisfies

$G(\tau d_{A})\circ\alpha(f)=\alpha(f)$ , (1)

then not only the commutativity in 1.2.10 but also the following equation holds:

$\tilde{B}(ul, m’)\circ a\circ\phi=\epsilon_{B^{o}}\alpha$ ,

where $\phi$ is the same as in 1.2.10 and $m’$ is the coretraction of the quotient of
$\tilde{G}\circ\in A(A)$ of $\in GB^{\circ}(A)$ . This means that $\alpha$ is determined by $a$ . The equation (1)
means that $\alpha$ is natural with respect to $A$ (not with respect to $A$ and $B$ ). Such
an $\alpha$ will be said normal. Let $\alpha$ be a natural transformation as in 1.2.7. Set

a $’=\alpha(f\circ F(\tau d_{B}))$ .

Then $\alpha^{l}$ is a normal natural transformation, and its completion is identical to $a$ .

Let (F. $G,$ $\alpha,$ $\beta$ ) be a semiadjunction. Then it is easy to see that (F. $G,$ $\alpha’,$ $\beta$ )
$(F, G_{1}\alpha, \beta’)$ and $(F, G, \alpha’, \beta^{l})$ are semiadjunctions and their completions are
identical to $(F, G,\tilde{\alpha},\tilde{\beta})$ In this sense, we may assume that the two natural
transformations in a semiadjunction are normal without loss of generality.

2. Semi cartesian closed category.
A ccc is a category A equipped with the following three adjunctions (cf.

MacLane [7, IV, 6]) :

$0-|1_{(-)}$ ,

$\Delta(-)-|-\cross-$ ,

$-\cross b\dashv(-)^{b}$ .

A semi cartesian closed category is defined through replacing these adjunctions
by semi adjunctions.

2.1. Definition. A $semicartes’\iota an$ closed categ $ory$ ($semi$ ccc) category equipped
with the following three semiadjunctions:

$1=A(X, 1)$
$A^{2}$ $(\triangle(X) , (Y, Z))=A(X, Y\cross Z)$ ,

A $(X\cross Y, Z)=A(X, Z^{Y})$ .

Such adjunctions will be called a $sem’\iota cccstr\iota\iota c$ ture on $bold$ $A$ Note that there
may be many difTerent semi ccc structures on a category. (Contrary to this, ccc
structure on a category is unique up to isomorphism.) A morphtsm from a semi
ccc A to a semi ccc $B$ is a semifunctor from A to $B$ which is a map of the each
of the above three semiadjunctions. (See MacLane [7] for the definition of a
map of adjunctions.)

2.1.1. Remark. The second semiadjunction in the definition of semi ccc is a
$sem’|.adjunc\ell\iota onw\iota th$ a parameter $Y$ (Cf. MacLane [7] for adjunction with a
parameter) By a semiadjunction version of MacLane[7, IV, 7, Theorem 3], a
canonical $semiad_{j}$unction with a parameter $Y$ exists, if there is a $semiadjunction_{\wedge}$,
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for each $Y$ .

2.2. Algebraic description of a semi ccc.
How to describe a ccc algebraically by the aid of pairing operators and

evaluation morphisms is well-known. An algebraic description is also given by
the following theorem.

2.2. 1. Theorem. A categ $0\eta$ A $\tau s$ $a$ $sem’\iota$ ccc $lf$ and $onlylf$ there $’\iota s$ an algebratc
structure on $B$

$(<*, *>, *\cross* p, q, 1,1_{(*))}*^{e} \Lambda(*)\prime ev)$

$sat\iota sp_{\beta n}9$ the $foll$ owmg $c$ ondth$ons$ .

(1) For morphtSms $a.xarrow y$ and $bxarrow z,$ $<a,$ $b>$ $?s$ a morphism ffom $x$ to
$y\cross z$

(2) $F$or $ob_{J}eclsy$ and $z$ , there are $m$ orphaLsms

$p:y\cross zarrow y,$ $q:y\cross zarrow z$

such that

$p\circ<a,$ $b>=a,$ $q\circ<a,$ $b>=b$ .

(3) For a $mo\varphi h\alpha^{\wedge}mhx\cross yarrow z$ , $\Lambda(h)\tau s$ a $mo\tau ph\infty m$ from $x$ to $z^{y}$

(4) $F$ or $ob_{J}ectsy$ and $z_{J}$ there $\tau s$ a $morph\tau sm$

$evz^{y}\cross yarrow z$

sllch that

$ev^{\circ}<\Lambda(h)\circ u,$ $v>=h\circ<u,$ $v>$ .
$\Lambda(h)\circ u=\Lambda(h\circ<u^{\circ}p, q>)$ ,

where

$u$ . $aarrow x,$ $v$ . $aarrow y,$ $pa\cross yarrow a,$ $q$ . $a\cross yarrow y$

(5) For each object $a$ , $1_{a}$ ts a morphism from $a$ to 1 snch that
$f^{0}1_{codom(f)^{=}}1_{dom(f)}holds$

(6) $ev\circ<p,$ $q>=ev$ holds

Pro of Assume $h$ is a $m$ orphism from $x\cross y$ to $z$ . Then $\Lambda(h)$ is the image
of $h\eta d\cross ut$ by the natural transformation A $(x\cross y, z)arrow A(x, z^{y})$ The definitions
of the others and the details of proof is left for readers. (The proofs of 6.5 and
66 of Koymans [3] serve as good references.)

2.2.2. Definition A category A equipped with such an algebraic structure is
callcd an a $lgebra\dot{\tau}_{\backslash }c$ semi $ccc$

2.2.3. Rcmark The conditions (5) and (6) of the algebraic semi ccc are
superfl uous in a sense. In fact, they are not necessary to prove “if part“ of
Theorem 22.1 If A has an $ob_{j}ectA_{0}$ and satisfies (1) $arrow(4)$ , then set $1=A_{0}$ and
set 1 $B^{=\wedge}(q)$ , where $q:B\cross A_{0}arrow A_{0}$ . Then they satisfy the condition (5) Let
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$S_{0}=$ $(<*, *>, . , ev)$ be an algebraic structure on A satisfying (1) $arrow(5)$ . Set
$ev_{1}=ev^{\circ}<p,$ $q>$ . Then $s_{1}=$ $(<*, *>r. , et_{1}^{J})$ satisfies the conditions (1) $-(6)$

and $S_{0}$ and $S_{1}$ give the same ccc. Furthermore, the same equations on X-terms
hold in $S_{0}$ and $S_{1}$ in the sense of the semantics of section 3.

2.3. Theorem Let A be $a$ $seml$ ccc. Then A is $a$ ccc$-A$$\frac{\eta\circ.h\triangleleft-\wedge}{tureo^{\vee}n\tilde{A^{I}}t!J’dlbeca’lled--\prime\prime\vee,-\vee/}.NamelyA\tau sembeddedmtoaccc\tilde{A}by\in thecomplet\iota onofthesemicccstructureonA^{A}$
The ccc struc-

2.4. Theorem Let A be a category whose Karoubi envelope A is a $ccc$. Then there
$’\iota s$ a canomcal semi ccc structure on A such that the ccc $\tilde{A}\tau s$ its complehon

Pro of This is a direct consequence of 1.2.8.

2.5. Examples of semi ccc.

In this subsection, we will examine some categorical or algebraic systems
introduced to characterize type free $\lambda$ -calculus.

2.5.1. CCM, weak cartesian closed monoid and C-domain.

Koymans [3], Lambek &Scott [6] and Yokouchi [10] introduced a sort of
monoid which corresponds to $\lambda\beta$ -calculus. Their definitions are different but
they are essentially the same.

Koyman’s CCM is an algebraic semi ccc with just one object which may
not satisfy the condition (5). But the condition is superfiuous as was noted in
223. His version of Scott embedding ( $if$ part“ of Koymans [3,Theorem 6.6])
is a direct consequence of Theorem 2.2.1 and Theorem 2.3. He also proved the
inverse of Scott embedding (‘only if“ part of Koymans [3, Theorem 6.6]).
Theorem 24 generalizes it. If a CCM is regarded as a semi ccc, then the
natural transformation corresponding to A-abstraction is normal. Hence the
interpretation of A-terms in a CCM can be achieved through its Karoubi
envelope as was remarked in 1.2.11 (See Scott [9] and Koymans [3].)

Weak cartesian closed monoid of Lambek &Scott [6] can be defined as a
CCM may not satisfying the condition (6) of Theorem 2.2.1. But the condition
is superfluous as was noted in 22.3 So the notion of weak cartesian closed
category is essentially equivalent to the notion of CCM.

Yokouchi’s C-domain is another description of weak cartesian closed
monoid with the condition (5) but without the condition (6). See Yokouchi
[10] for a discussion on the equivalence of C-domain and CCM.

2.5.2. Semi ccat and Church algebraic theory.

A semi cartesian closed algebraic theory (semi ccat) is an algebraic theory
A in the sense of Lawvere with the following semiadjunction (with a parameter
n)

$\lambda_{n}$

A $(m+n, p)=A(m,p^{n})$
$\in_{n}$
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satisfying

$p^{n}=p$ ,

$\}_{\backslash _{m^{0\}_{\backslash }}n}}=\lambda_{m+n’}\lambda_{0}=ul$ ,

$\in_{mnm+n’}\circ\in=\in\in 0^{=uL}$

Hence a semi ccat is a semi ccc It is easy to check that the notion of semi ccat
is essentially equivalent to the notion of Church algebraic theory of 0btulowicz
& Wiweger [8]. A semi ccat or a Church algebraic theory is a categorical
description of a $\lambda\beta$ -theory (in the sense of Barentregt [2].)

Let (C) $U,$ $x,$ $j$ ) be a categorical model of X-calculus in the sense of Koy-
mans $[3, 3]$ . Then the full subcategory $\{U^{m}|m\in N\}$ of $C$ is an algebraic theory.
By the aid of the morphism $x$ and $j$ , the algebraic theory turns to be a semi
ccat, say $T(C, U, \tau, j)$ A model of a semi ccat A in $(C, U, x, j)$ is a semi ccc mor-
phism from A to $T(C, U, \tau)j)$ Then, by Theorem 2.3. and Proposition 12.10,
there is an identical model in A for any semi ccat A (completeness theorem of
semi ccat)

3. Typed $\lambda\beta$ -theory and semi ccc.
As was shown in the previous section semi ccc is a generalization of some

categorical or algebraic systems corresponding to non-extensional X-calculus.
We will introduce the notion of typed $\lambda\beta$ -the $0\tau y$ (wrth $pal7^{\cdot}lg$) and relate it to
semi ccc. A similar but extensional typed $\lambda$ -theory can be found in Lambek &
Scott [6] and Yokouchi [10]. We will follow the way of Lambek &Scott[6].

3.1. Definition. A typed $\lambda\beta$ -theory is a typed equational theory equipped
with the following data:

(1) The set of types is closed under cartesian product $A\cross B$ and exponen-
tial A. There is a special type 1.

(2) If $t_{1}$ and $t_{2}$ are terms of types $A$ and B,respectively, then $<t_{1},$ $t_{2}>$ is a
term of the type $A\cross B$ . If $t$ is a term of type $A\cross B$ then $\tau r(t)$ and $\tau r’(t)$ are
terms of types $A$ and $B$ , respectively. There is a constant $*of$ the type 1

(3) If $x$ is a variable of a type $A$ and $t$ is a term of a type $B$ , then $\lambda xt(x)$

is a term of the type $B^{A}$ If $t_{1}$ and $t_{2}$ are terms of types $A^{B}$ and B. respec-
tively, then $t_{1}t_{2}$ is a term of the type $A$

(4) Substitution $t_{1}[x.=t_{2}]$ is defined as usual Note that

$<t_{1},$ $t_{2}>[x.=t_{3}]=<t_{1}[x.=t_{3}],$ $t_{2}[ x.=t_{3}]>$

(5) rI’he following equations are the postulates.

$7T(<t_{1}, t_{2}>)=t_{1}$

$7T^{l}(<t_{1}, t_{2}>)=t_{2}$ ,

(A $xt_{1}(x)$ ) $t_{2}=t_{1}[x.=t_{2}]$
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3.2. Interpretation of the typed $\lambda\beta$ -theory.
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