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Introduction

Some connections between A-calculus and category theory have been
known. Among them, it has been known by Lambek that cartesian closed
categories (ccc in short) can be identified with extensional typed A-calculus (cf.
Lambek [5], Lambek & Scott [6]). In this note , we introduce the notion of
adjunction of semifunctors (for simplicity , we refer this as "semi adjunction")
and ,by the aid of this notion, we define the notion of semi cartesian closed
category (semi ccc in short). Some categorical and algebraic systems 1ntroduced
incorporating with A-calculus will turn special cases of semi ccc.

Another interesting connection between ccc and A-calculus is Scott's
embedding of A-theory into a ccc (cf. Scott [9]). (This will be referred as Scott
embedding.) We will show that any semiadjunction is embedded in an adjunc-
tion (of functors) and Scott embedding is its special case.

1. Adjunction of semifunctors.

In this section, the notions of semifunctors. and adjuhction of them are
introduced, and some basic facts are shown.

1.1. Definition. Let A and B be categories. A semifunctor from A to B is a
pair of object function from Obj(A) to Obj(B), where Obj(A) is the set of
objects of A, and morphism functions Fy ' A(X,Y)—>B(X,Y) preserving composi-
tions ,i.e. F(feg)=F(f)°F(g). Note that semifunctors may not preserve iden-
tity morphisms. Let & be a semifunctor from A to B and let F be a semifunc-
tor from B to A..A quadruple pair (F, G.{ay iy v, {8y ylx y) IS an adjunction
of semifunctors F and G (or semiadjunction of F and G) ,if and only if, four
squares in the following diagram are commutative:

Ay v

A(F(Y), X) B(Y;G(X))

 Bxy

¢ Y
Ay y

_—

A(F(Y'). X")

B(Y', G(X"))

) ' ﬁx',y'

-1 -



Ju

where feB(Y'.Y), geA(X. X'), ¢=A(F(f).g) and y=B(f,G(g)). Namely,
the following equations hold: '

Vooy y=Qy y .0 Byx y=Bx y V. 0=By ypVoy y¥=ay yp By y
Note that the first and second equations mean the naturality of a and . (For
simplicity, we will denote §a y yf,  and {4 yiy y by @ and B ,respectively.)

Let F and G be functors and let (F, G,a,B8) be an adjunction of semifunc-
tors Fand G. Set f be id, and g be ud,. Then ¢ and ¥ are identical functions,
for F(idy) and G(idy) are identical morphisms. So « and B are inverse func-
tions each other and (F,G,a,8) gives an adjunction of functors F and G in the
usual sense. This justifies the terminology "adjunction of semifunctors". But

this terminology is sometimes confusing, so we will often say semiadjunction
instead of "adjunction of semifunctors".

The notions of semifunctor and . semiadjunction are very similar to the
notions of functors and adjunctions. So the notions such as covariant or con-
travariant semifunctors, right or left semiadjoints etc. are defined as the
corresponding notions on functors and adjunctions. We will use such notions
without any explicit definitions. (Consult MacLane [7] for the terminologies on
functors and adjunctions.) Adjoint of a functor is unique up to isomorphism.
Opposite to this, a semiadjoint of a semifunctor is not unique up to isomor-
phism. This means semiadjunction is not extensional in a sense.

1.2. Completion of semiadjunction

In this section, we embed adjunctions of semifunctors into adjunction of
functors. For this aim, we will use the notion of Karoubi envelope.

1.2.1. Definition (Karoubi envelope). Let A be a category. Then its Karoubi
envelope A is the category defined as follows:

Obj(A) = { f| f of = f}
A morphism f such that dom(f)=codom(f) and fef=f will be called idem-

ponent, and the object dom( f) is denoted by 8 f. Let f and g be objects of A
Then hom-sets are defined by :

A(X,Y)={heA(Bf.0g)|gehof=nh}.
The canonical embedding functor eA:A%A is defined by
e (X)=1dy (Xe€ 0bj(A)),
ealf)=f (feAa(Xx. 7))

This was first introduced by M. Kroubi [4] for an entirely different purpose.
Scott [9] used the same idea (independently from Karoubi) to embed A-theory
into a ccc, and Lambek and Scott [9] pointed out Scott's construction’ can be
regarded as a Karoubi envelope.

1.2.2. Definition. For clarity, we will denole morphism function and object
function of a functor G by G,, and G,, respectively. Assume that feA(X,Y).,



Set

F(X)=F,_(X) (XeO0bj(A)),
F(f)=F,(f) (feA(X.Y)).

Obviously, ¥ is a semifunctor. For each object X of A, its identity morphism
udy is X itself. So

P (i) = Fp(X)=idy .
Hence F is a functor. This functor ¥ is called the complelion of F.

1.2.3. Proposition. If G 1s a funclor from[& to B, then there is a unique functor
F such that F=GC. ’

Proof. Trivial. Left for readers.

1.2.4. Definition. Let f be an idemponent of a category and let A be the
object 8 f. An object X is called a quotient of A by f iff there are two mor-
phisms e and m such that

m
X~ _"A)f
' e

satisfying mcce=f, e°m=1id, and ec°f°m=1id,. The morphisms e and m are
called the retraction and corelraction of the quotient, respectively. It is easy to
check that two quotient of A4 by f are isomorphic. Each object X of A is a quo-
tient of €,(A) by €,(f), where f is an idemponent of A and A=df. Thus
every idemponent in a Karoubi envelope A splits. (Cf. Lambek & Scott [6],
Adachi [1].) .

1.2.5. Proposition. Let F be. a semifunctor from A to B. Then the following
hold: )

(1) Foe,(X) is a quotient of egoF (X) by egoF (idy). "

(2) Forany feA(X.,Y), the following diagram is commutative:

€g °F(X) e F(f)——egoF(Y)
e e
Foe,(X) Feey Foe,(Y)

where e and e' are the relractions of the quotients assured in (1).

(3) F is uniquely determined from F (up to isomorphism) by these two condi-
tions. _

(4) F is a functor, yff egoF= G %, holds

1.2.6. Remark. It is possible to characterize A by an uﬁiversal property as ,



Karoubi [4, 6.10]. Thus A and F determines a functor from the category of
categories and semifunctors to the categories of categories, in which idem-
ponents split, and funclors. See Adachi [1] for a detailed description of the
essentially same functor.

1.2.7. Definition. Let F and & be semifunctors and let a be a natural
transformation (of semifunctors) as follows:
A(F(B),4) —2— B(B.,G(4)).
Set
a(f)=alf)
for feA(F(Y),X). This & is called the completion of a.
By the naturality of a and the assumption fe A(F(Y),X),
C(X)a(f)eY = G(X)eax(f)Y
= a(Xef oF(Y))
=o(f)
=a(f).
Hence, &(f) belongs to B(Y,G(X)). So & is a natural transformation from
A(F(Y), X)to B(Y,C(X)).

1.2.8. Theorem (generalized Scott embedding). Let (F,C,a,B8) be an adjunc-
tion of semifunctors. Then (F', C,&,f) is an adjunction of funclors. This adjunction is
called the completion of (F, G,x,B).

Proof. Obvious from the definitions of F and a.

1.2.9. Proposition (the inverse of 1.2.8). Let § be a natural transformation
from A(F(X),Y) to B(X,CG(Y)). Then there is a natural transformation a from
A(F(X),Y) toB(X,G(Y)) such thata=g.

Proof. Trivial. Left for readers.
1.2.10. Proposition. The completion & 1s the unique natural transformation com-
muling the following diagram.
A(F(eg(B)).ea(4)) & B(cg(B). Clea(4)))
¢ ¥
A(F(B),A) ot B(B,G(A4))

where ¢=A(m,id) % ,, v=B(id, e') €y, m 1is the corelraction of the quotient
Foey(B) of ex°F(B) and e' is the retraction of the quolient GCoec,(A) of
€ep°CG(A).
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Proof. Easy. Left for readers.

1.2.11. Remark. If the natural transformation a of 1.2.7 salisfies
C(idy) al(f)=a(f), | (1)
then not only the commutativity in 1.2.10 but also the following equation holds:
B(id, m') & p=¢€g ,

where ¢ is the same as in 1.2.10 and m' is the coretraction of the quotient of
Goe,(A) of egeG(A). This means that « is determined by &. The equation (1)
means that « is natural with respect to A (not with respect to 4 and B). Such
an « will be said normal. Let a be a natural transformation as in 1.2.7. Set

a'=a( feF(idg)).

Then «' is a normal natural transformation, and its completion is identical to &.
Let (F,G,a,f) be a semiadjunction. Then it is easy to see that (F,C,a',8) ,
(F,G,a,8') and (F,G,a',8') are semiadjunctions and their completions are
identical to (F,G,&,B) In this sense, we may assume that the two natural
transformations in a semiadjunction are normal without loss of generality.

2. Semi cartesian closed category.

A ccc is a calegory A equipped with the following three adjunctions (cf.
MacLane [7, IV,6]) :

01
A=) —x—,
—xb6—(=)".

A semi cartesian closed category is defined through replacing these adjunctions
by semi adjunctions.

2.1. Definition. A semi carlesian closed categery (semi cce) category equipped
with the following three semiadjunctions:
1—_—A(X,1)

AF(AM(X) (Y. Z))—A(X.Yx Z),
A(XxY, Z)TA(X,ZY).

Such adjunctions will be called a semi ccc structure on bold A Note that there
may be many different semi ccc structures on a category. (Contrary to this, ccc
structure on a category is unique up to isomorphism.) A morphism from a semi
ccc A to a semi ccc B is a semifunctor from A to B which is a map of the each
of the above three semiadjunctions. (See MacLane [7] for the definition of a
map of adjunctions.) '

2.1.1. Remark. The second semiadjunction in the definition of semi cce is a
semiadjunction with a parameter Y. (Cf. MacLane [7] for adjunction with a
parameter.) By a semiadjunction version of MacLane[7, IV, 7, Theorem 3], a
canonical semiadjunction with a parameter Y exists, if there is a semiadjunction |
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for each Y.

2.2. Algebraic description of a semi ccc.

How to describe a ccc algebraiwcally by the aid of pairing operators and
evaluation morphisms is well-known. An algebraic description is also given by
the following theorem.

2.2.1. Theorem. A category A 1s a semu ccc if and only if there is an algebraic
structure on B
(<*,*>, «X*, p, q, 1, 1('), ** A(*)' ey)_

satisfying the follounng condifions:
(1) For morphisms a:x—7vy and b:x—z, <a,b> 1is a morphism from z to
YX z.
(2) For objects y and z, there are morphisms
pyxz—y, giyxz—>z
such that
pe<a, b>=a, ge<<a,b>=0b

(3) For a morphism h:zxy—>z , A(h) is a morphism from z to zY.
(4) For objects y and z, there is a morphism

eviz¥Yxy—z
such that
evo< A(h)ow, v>=ho<u,v>,
A(h)ou=A(ho<ucp,g>),
where
wa—>IT, via—y, paxy—a, g:axy->y

(5) For each object a, 1, 1s a morphism from a to 1 such that

fel cudum(f)::ldom(f) holds.

(6) eve<p,g>=ev holds

Proof Assume h is a morphism from zxy to z. Then A(h) is the image
of heidx1id by the natural transformation A(zxy,z)—A(z,2¥). The definitions
of the others and the details of proof is left for readers. (The proofs of 6.5 and
6.6 of Koymans [3] serve as good references.)

2.2.2. Definition A category A equipped with such an algebraic structure is
called an algebraic sema ccc.

2.2.3. Remark The conditions (5) and (6) of the algebraic semi ccc are
superfluous in a sense. In fact, they are not necessary to prove "if part" of
Theorem 2.2.1. If A has an object A, and satisfies (1)-(4), then set 1=4, and
set 1,=A(g), where ¢q:BxA,—~> A, Then they satisfy the condition (5). Let
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=(<**>,...,ev) be an algebraic structure on A satisfying (1)-(5). Set
ev,=eve<p,q>. Then S =(<++*>,..., ev,) satisfies the conditions (1)-(6)
and S, and S, give the same ccc. Furthermore, the same equations on A-terms
hold in §; and S, in the sense of the semantics of section 3.

2.3. Theorem LeltA be a semi ccc. Then A is a ccc %d—the—-eﬂ%bed-d'mgfanctm-eA
Wnenpm—ef—sem%—eee Namely A 1is embedded into a ccc A by €a- The ccc struc-

ture on A will be called the completion of the semi ccc structure on A.

2.4. Theorem Lel A be a category whose Karoubi envelope A is a ccc. Then there
is a canonical semi ccc structure on A such that the ccc A is its completv.on.

Proof. This is a direct consequence of 1.2.8.

2.5. Examples of semi ccc.

In this subsection, we will examine some categorical or algebraic systems
introduced to characterize type free A-calculus. ’

2.5.1. CCM, weak cartesian closed monoid and C-domain.

Koymans [3], Lambek & Scott [6] and Yokouchi [10] introduced a sort of
monoid which corresponds to Af-calculus. Their definitions are different but
they are essentially the same.

Koyman's CCM is an algebraic semi ccc with just one object which may
not satisfy the condition (5). But the condition is superfluous as was noted in
2.2.3. His version of Scett embedding ("if part” of Koymans [3 ,Theorem 6.6])
is a direct consequence of Theorem 2.2.1 and Theorem 2.3. He also proved the
inverse of Scott embedding ("only if" part of Koymans [3, Theorem 6.6]).
Theorem 2.4 generalizes it. If a CCM is regarded as a semi ccc, then the
natural transformation corresponding to A-abstraction is normal. Hence the
interpretation of A-terms in a CCM can be achieved through its Karoubi
envelope as was remarked in 1.2.11. (See Scott [9] and Koymans [3].)

Weak cartesian closed monoid of Lambek & Scott [6] can be defined as a
CCM may not satisfying the condition (6) of Theorem 2.2.1. But-the condition
is superfluous as was noted in 2.2.3. So the notion of weak cartesian closed
calegory is essentially equivalent to the notion of CCM.

" Yokouchi’'s C-domain is another description of weak cartesian closed
monoid with the condition (5) but without the condition (6). See Yokouchi
[10] for a discussion on the equivalence of C-domain-and CCM.

2.5.2. Semi ccat and Church algebraic theory.

A semi cartesian closed algebraic theory (semi ccat) is an algebraic theory
A in the sense of Lawvere with the following semiadjunction (with a parameter
n):

A(m+n,p) —___A(m,p")




satisfying

=P,
A, oA =\

o =
Em En €

No=1d,
=id

m+n’

m+n’ E0

Hence a semi ccat is a semi ccc. It is easy to check that the notion of semi ccat
is essentially equivalent to the notion of Church algebraic theory of Obtulowicz
& Wiweger [8]. A semi ccat or a Church algebraic theory is a categorical
description of a AB-theory (in the sense of Barentregt [2].)

Let (C,U,1,j7) be a categorical model of A-calculus in the sense of Koy-
mans [3, 3]. Then the full subcategory § U™|meNj} of C is an algebraic theory.
By the aid of the morphism 2 and j, the algebraic theory turns to be a semi
ccal, say T(C,U,%,7). A model of a semi ccat A in (C, U,1,j) is a semi ccc mor-
phism from A to T(C, U, 7). Then, by Theorem 2.3. and Proposition 1.2.10,
there is an identical model in A for any semi ccat A (completeness theorem of
semi ccat).

3. Typed Af-theory and semi ccc.

As was shown in the previous section semi ccc is a generalization of some
categorical or algebraic systems corresponding to non-extensional A-calculus.
We will introduce the notion of {yped AB-theory (with pairing) and relate it to
semi ccc. A similar but extensional typed A-theory can be found in Lambek &
Scott [6] and Yokouchi [10]. We will follow the way of Lambek & Scott[6].

3.1. Definition. A typed Af-theory is a typed equational theory equipped
with the following data:

(1) The set of types is closed under cartesian product A x B and exponen-
tial AZ. There is a special type 1.

(2) If ¢, and i, are terms of types A and B.respectively, then <{ ,t,> is a
term of the type Ax B. If t is a term of type Ax B then n({) and n'(t) are
terms of types 4 and B, respectively. There is a constant = of the type 1.

(3) If x is a variable of a type A4 and {is a term of a type B, then Az t(zx)
is a term of the type B4 . If t, and t, are terms of types AP and B, respec-
tively, then ¢ ¢, is a term of the type 4.

(4) Substitution ¢ [z:=t,] is defined as usual. Note that

<t . t,>[z=4] =< tl[IZ:tSi', tlz=t]>.
(5) The following equations are the postulates.
(<t t,>) =t
n(< b >) = b,

Azt (2))t, = t[z:=1t].



3.2. Interpretation of the typed AB-theory.

Koymans [3] gives an interpretation of AB-theory in a reflexive domain in
a-ccc. By a similar method, an interpretation of our typed AB-theory in a semi
ccc. The point is how to interpret a constant and a variable in an environment
(assignment). This problem is solved to fix a product of n objects in a sys-
tematic way. (See Koymans [3, 3:1-3.4, 7.3-7.5] and Yokouchi [10, 2.2] for the
type-free case.) By Lindenbaum-Tarski construction, a typed AB-theory has a
semi ccc with an identical interpretation. (See Barentregt [2, 5.3.13] for the
type-free case.) Hence the notion of typed AB-theory is essentially equivalént to
the notion of semi ccc. ‘
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