§1. \(D = R^{n_1}_+ \times R^{n_2}_+\), \(R^{n_i}_+ = R^{n_i} \times (0, \infty), i=1, 2\), とする。\(n_1 = n_2 = 1\), または bi-disk における重調和関数に対する nontangential maximal function と面積積分の \(L^p\) 同値性は \(Gundy - Stein[7]\) で示された。ここでは一般の \(D\) における重調和関数 \(h\) に対する nontangential maximal function \(N(h)\) と面積積分 \(A(\Omega)\) の \(L^p\) 同値性を §4 の定理 (4.1) の形で述べ、それの一つの証明を与える。

次の記号を用いる。\(R^{n_1}_+ \times R^{n_2}_+\) の元を \((x^{(1)}_i, y^{(1)}_i)\), \((x^{(2)}_i, y^{(2)}_i)\) と \((x^{(1)}, y^{(1)}, x^{(2)}, y^{(2)})\) を \(R^{n_1}_+ \times R^{n_2}_+\) の元とし、\(x = (x^{(1)}, x^{(2)})\) \(\in R^n\), \(y = (y^{(1)}, y^{(2)})\) \(\in R^n\), \(i = 1, 2\), とおく。また \((x^{(1)}_i, y^{(1)}_i, x^{(2)}_i, y^{(2)}_i) = (x, y)_i\) とおき、\(x = (x^{(1)}, x^{(2)})\) \(\in R^n\), \(y = (y^{(1)}, y^{(2)})\) とおき、\(C_{\Omega}^{n_1}_+ = \{ (x^{(1)}_i, y^{(1)}_i) \in R^{n_1}_+; y^{(1)}_i > 0 \}\), \(C_{\Omega}^{n_1}_- = \{ (x^{(1)}_i, y^{(1)}_i) \in R^{n_1}_+; y^{(1)}_i < 0 \}\), \(i = 1, 2\), とする。
§2. Montangential maximal function と面積積分の定義.

\(U(x, y) \) を \(\mathbb{D} \) 上の重調和関数とする。すなわち、\(U \) は2回連続微分可能で、\(\sum_{i=1}^{n} \left(\frac{\partial^2}{\partial x_i^2} U + \frac{\partial^2}{\partial y_i^2} U \right) = 0 \), \(i=1, 2 \).

\(U \) に対して montangential maximal function \(N(U) \) と面積積分を定義する。すなわち、\(a = (a_1, a_2) \), \(a_1 > 0 \), \(a_2 > 0 \), \(x \in \mathbb{R}^n \) に対して product cone \(P_a(x) \) を

\[
P_a(x) = \{ (z, y) \in \mathbb{D} : |x_1^0 - z_1| < a_1 y_1, |x_2^0 - z_2| < a_2 y_2 \} \]

で定義する。ここで \(x = (x_1^0, x_2^0) \), \(z = (z_1, z_2) \), \(y = (y_1, y_2) \) である。\(P(t, 1)x) = P(x) \) とおく。ここで nontangential maximal function \(N(U) \) を

\[
N(U)(x) = \sup \{ |U(z, y)| : (z, y) \in P(x) \} \]

で定義する。また面積積分 \(A_a(U)(x) \) を

\[
A_a(U)(x) = \left(\int_{P_a(x)} \frac{|\nabla \nabla_2 u|}{|y_1^{-1} - n_1 y_2^{-1} - n_2|} \, dx \, dy \right)^{1/2}
\]

で定義する。ここで \(|\nabla \nabla_2 u| = \sum_{i=1}^{n_1} \sum_{k=0}^{n_2} \left| \frac{\partial^2 u}{\partial x_i \partial x_k} \right| \)

ただし \(x_1^0 = y_1 \), \(x_2^0 = y_2 \). \(A(t, 1)(U) = A(U) \) とおく。

§3. 共役な重調和関数からなる \(H^p \) 空間。\(U_{s,t}(x, y) \), \(s = 0, 1, \ldots, n_1 \); \(t = 0, 1, \ldots, n_2 \) を \((n_1+1)(n_2+1) \) こ
の \(\mathbb{D} \) 上の重調和関数とする。\(U_{s,t} \) は次の一般化された Cauchy–Riemann の方程式を満足するとする。
(3.1) \(\sum_{i=0}^{n_1} \frac{\partial u_{i,t}}{\partial x_i} = 0, \quad \frac{\partial u_{i,t}}{\partial x_i} = \frac{\partial u_{i,t}}{\partial x_{i+1}} ; \quad 0 \leq i, j \leq n_1, \)

\(t = 0, 1, \ldots, n_2 \), で \(s \) に

\(\sum_{k=0}^{n_2} \frac{\partial u_{s,k}}{\partial x_k} = 0, \quad \frac{\partial u_{s,k}}{\partial x_k} = \frac{\partial u_{s,k}}{\partial x_{k+1}} ; \quad 0 \leq r, l \leq n_2, \)

\(s = 0, 1, \ldots, n_1 \), たとえば \(x_0 = y_1, \quad x_1 = y_2 \).

\(F(x,y) \) を \((j, k)-\)成分 \((1 \leq j \leq n_{t+1}, 1 \leq k \leq n_{s+1})\)

が \(u_{j-1,k-1}(x,y) \) である \((n_{t+1}) \times (n_{s+1})\) 行列とする,

\(F(x,y) = (u_{j-1,k-1}(x,y)) \). \(F \) を共役な重調和関数のシステムと呼ぶ。 \(|F| = (\sum_{s=0}^{n_1} \sum_{t=0}^{n_2} |u_{s,t}|^2) \frac{1}{2}, \quad p_0 = \max\left(\frac{n_{t-1}}{n_{t}}, \frac{n_{s-1}}{n_{s}}\right) \) とすると。

\(H_{A,p}^p(D) \) の定義。 \(F \) を共役な重調和関数のシステムとする。

\(p_0 < p < \infty \) に対し、\(F \in H_{A,p}^p(D) \) とし

\[\sup_{y_1 > 0, y_2 > 0} \left(\int_{\mathbb{R}^n} |F(x,y)|^p \, dx \right)^{\frac{1}{p}} = \| F \|_{p,D} < \infty \]

であることをとする。

さらに、\(D_+ = \mathbb{R}^{n_{t+1}} \times \mathbb{R}^{n_{s+1}}, \quad D_- = \mathbb{R}^{n_{t+1}} \times \mathbb{R}^{n_{s+1}}, \)

\(D_+ = \mathbb{R}^{n_{t+1}} \times \mathbb{R}^{n_{s+1}} \) とし \(H_{A,p}^p(D_+), H_{A,p}^p(D_-), H_{A,p}^p(D) \)

を \(H_{A,p}^p(D) \) に類似して定義する。

§4. 定理。

(4.1) 定理。 \(u(x,y) \) を \(D \) 上の重調和関数とする。

\(u(x,y) \) を \((j,k)-\)成分が \(u(x,y) \) で、その他の成分がすべて
て 0 である $(m_1+1) \times (m_2+1)$ 行列値関数とする。このとき
$0 < p < \infty$ に対して次の3つの性質は同値である。

1. $\mathbf{N}(u) \in L^p(\mathbb{R}^n)$
2. $u(x,y) \to 0$, $\infty y_1 + y_2 \to \infty$ かつ $\mathbf{A}(u) \in L^p(\mathbb{R}^n)$
3. 4つの行列値関数 $F_{++} \in H^p_A(D^+)$, $F_{+-} \in H^p_A(D^-$),
 $F_{-+} \in H^p_A(D^-)$, $F_{--} \in H^p_A(D^-)$ が存在して

 \[
 u(x,y) = F_{++}(x,y) + F_{+-}(x,y_1,-y_2) + F_{-+}(x,-y_1,y_2) + F_{--}(x,-y_1,-y_2) , \quad (x,y) \in D
 \]

 これが、さらに $\|\mathbf{N}(u)\|_p \approx \|\mathbf{A}(u)\|_p$。

注意。上の定理は H^p_A の定義を適当にすることにより $0 < p < \infty$ で説明する。特に $\|\mathbf{N}(u)\|_p \approx \|\mathbf{A}(u)\|_p$, $0 < p < \infty$, 以下で (1) = (2) は $0 < p < 2$ について示す。

§5. (1) = (2) の証明。$P_y(x) = P_1(x^0, y_1) P_2(x^0, y_2)$ とする。ここで $P_i(x^0, y_1) = c_n_i \frac{y_i}{(x^0 + y_1)^{\frac{m_i+1}{2}}}$

は \mathbb{R}^{n+1}_+ に従いした Poisson 核である。$f \in L^2(\mathbb{R}^n)$ に対して $P(t)(x, y) = P_y \ast f(x) = \int_{\mathbb{R}^n} f(x-z) P_y(z) \, dz$
とする. 0 < p < 2 に対して (1) = (2) は次の定理からわかる. P ≥ 2 については省略する.

(5.1) 定理. \(u(x, y) = p_y \ast f(x) \) \(f \in L^2(\mathbb{R}^N) \) とする.
このとき

(5.2) \[\left\{ x \in \mathbb{R}^N : A(u)(x) > \alpha \right\} \leq c \left\{ x \in \mathbb{R}^N : N(u)(x) > \alpha \right\} + \frac{1}{\alpha^2} \int_{N(u) \leq \alpha} N^2(u)(x) \ d(x), \forall \alpha > 0 \]

が成り立つ.

注意. \(m_1 = m_2 = 1 \), または bidisk の時は [7] で示された. 以下では [7] よりかんたんな証明を与える.

定理 (5.1) の証明. \(u(x, y) = p_y \ast f(x) \), \(f \) は実数値としてよい. \(E = \left\{ x \in \mathbb{R}^N : N(u)(x) \leq \alpha \right\} \) (\(\alpha > 0 \)) とする. 0 < \(\delta < \frac{1}{2} \) とするとき次が成り立つ (cf. [7]).

(5.3) Lemma. \(E \) の部分集合 \(E^* \) が存在して

\[\inf_{z \in E^*} \inf_{(x, y) \in f}(z) \left(p(x) \right) \geq 1 - \delta \]

\[|E^*| \leq c |E| \]

が成り立つ. ここで \(cE^* \) は \(E^* \) の補集合である.

\(\phi \in C^\infty(\mathbb{R}) \) で \(\phi(t) = 1 \), \(t \geq 1 - \delta \); \(\phi(t) = 0 \),
1-2δ ≥ t ; \|φ(t)\|_1 ≤ c \forall t \in \mathbb{R}, j=1, 2,
をみたすものをとする（cf. [8]）．Lemma (5.3) により
(5.4) \int_{E*} A^2(u)(x) dx \leq c \int y_1 y_2 \varphi(u) N_1 N_2 u_j^2 dx dy
= c I,
ここで \(u = P(x_E) \), 次に
(5.5) I_E = \int y_1 y_2 \varphi(u_E) N_1 N_2 u_E^2 dx dy
とおく．ここで \(u_E(x, y) = P(x_E)(x, y_1 + \varepsilon, y_2 + \varepsilon) \), \(u_E(x, y) = u(x, y_1 + \varepsilon, y_2 + \varepsilon) \).

グリーンの定理により（部分積分により）
(5.6) \int y_1 y_2 \Delta_1(\varphi(u_E)|N_2 u_E|^2) dx dy = \int y_1 \varphi(u_E)|N_2 u_E|^2 dx dy \approx \int_{E*} \frac{dx dy}{y_2}

最後の積分で "積分は \(\mathbb{R}^n \times \mathbb{R}^{n+1}_+ \) で" なされる．以後，上記のようなる書き方をする．一方
(5.7) \Delta_1(\varphi(u_E)|N_2 u_E|^2) = \varphi''(u_E)|N_1 u_E|^2 |N_2 u_E|^2
+ 2 \varphi'(u_E) N_1 N_2 u_E^2 + O(1 \varphi'(u_E)|N_1 u_E||N_1 N_2 u_E||N_2 u_E|),
ここで \(u_E(x, y) = P(x_E)(x, y_1 + \varepsilon, y_2 + \varepsilon) \), また
(5.6), (5.7) で一般に \(D \) 上の重調和関数 \(u \) に対して \(|N_2 u|^2 = \sum_{j=1}^{n+1} \frac{\partial^2 u}{\partial x_j^2} \) \(+ \frac{\partial^2 u}{\partial y_2} \) である．

次に \(\delta '< \delta \) より大きい正の数として，\(\psi \in C^\infty(\mathbb{R}) \) を \(\psi(t) = 0, \ C_1 \leq 1-2\delta ' \); \(\psi(t) > 0, \ \tau > 1-2\delta ' \);
$|\phi_j(t)|^2 \leq C \phi_j(t), \quad t \in \mathbb{R}, \quad j=1,2; \quad \phi_j \leq 1,$ すようにとる。この時

$|\phi_j(t)| > 0 \iff \psi_j(t) \geq C (\geq 0) \quad (j=1,2)\n$となるような $C > 0$ が存在する。この事実を以後用いる。

$K_\varepsilon = \int_\Omega |\mathbf{u}_\varepsilon|^2 \left| \nabla \mathbf{w}_\varepsilon \right|^2 \, dx \, dy$ とおく。

(5.6) と (5.7) により Schwarz の不等式を用いると

(5.8) $I_\varepsilon \leq C \left(J_\varepsilon + K_\varepsilon + I_{\varepsilon \frac{1}{2}} + I_{\varepsilon \frac{1}{2}} \right)$

を得る。次の 2 つの Lemma を仮定する。

(5.9) Lemma

$J_\varepsilon \leq C (\int \phi(u_\varepsilon) u_\varepsilon^2 \, dx + \alpha^2 \int w_\varepsilon(x, 0)^2 \, dx)$

(5.10) Lemma

$K_\varepsilon \leq C \alpha^2 \int w_\varepsilon(x, 0)^2 \, dx.$

(5.8) と Lemma (5.9), (5.10) により

(5.11) $I_\varepsilon \leq C \left(\int \phi(u_\varepsilon) u_\varepsilon^2 \, dx + \alpha^2 \int w_\varepsilon(x, 0)^2 \, dx \right)$

を得る。ϕ が単調に、$\varepsilon \to 0$ のとき

$\int \phi(u_\varepsilon) u_\varepsilon^2 \, dx \to \int_E f^2(x) \, dx, \quad \int w_\varepsilon(x, 0)^2 \, dx \to 1 |\mathcal{E}|$

がゆるまる。よって (5.11) において $\varepsilon \to 0$ として

(5.12) $I \leq C \left(\int_E N^2(u)(x) \, dx + \alpha^2 |\mathcal{E}| \right)$

を得る。 (5.2) は (5.12) と Lemma (5.3) からわかる

よって

次に Lemma (5.9) と (5.10) を証明する。
Lemma (5.7)の証明. グリーンの定理により

\[(5.13) \quad \int y_2 \Delta_2 \left(\phi(v_\varepsilon) u_\varepsilon^2 \right) \, dx \, dy = \int \phi''(v_\varepsilon) u_\varepsilon^2 \, dx \]

一方

\[(5.14) \quad \Delta_2 \left(\phi(v_\varepsilon) u_\varepsilon^2 \right) = \phi''(v_\varepsilon) \nabla^2 u_\varepsilon^1 u_\varepsilon^2 + 2 \phi'(v_\varepsilon) \nabla u_\varepsilon^1 u_\varepsilon^2 + 0 \left(\phi'(v_\varepsilon) \right) \nabla \nabla u_\varepsilon \left| u_\varepsilon \right| \nabla u_\varepsilon (1) \right) \]

\[L_\varepsilon = \int y_2 \phi''(v_\varepsilon) u_\varepsilon^2 \nabla^2 u_\varepsilon^1 \, dx \, dy \] とおき. (5.13), (5.14) と Schwarz の不等式から

\[(5.15) \quad J_\varepsilon \leq C \left(\int \phi'(v_\varepsilon) u_\varepsilon^2 \, dx + L_\varepsilon + \int \frac{1}{2} L_\varepsilon \right) \]

を得る. ここで \(C \) を十分小さくとること

\[\sup \left\{ u_\varepsilon(x,y) : \phi'(v_\varepsilon(x,y)) = 0 \right\} \leq \alpha \]

がいえる. (たとえば)

\[(5.16) \quad L_\varepsilon \leq \alpha^2 \int y_2 \nabla^2 u_\varepsilon \, dx \, dy = C \alpha^2 \int w_\varepsilon(x,0)^2 \, dx \]

(5.15) と (5.16) により Lemma の証明がおられる. q.e.d.

Lemma (5.10)の証明. グリーンの定理により

\[(5.17) \quad \int y_1 y_2 \Delta_2 \left(\phi(v_\varepsilon) \nabla^2 u_\varepsilon^1 u_\varepsilon^2 \right) \, dx \, dy \]

\[\leq \alpha^2 \int y_1 \phi'(v_\varepsilon) \nabla^2 u_\varepsilon^1 \, dx \, dy \]

\[\leq C \alpha^2 \int w_\varepsilon^1(x,0)^2 \, dx \]

\[\xi = 3 \] で一方

\[(5.18) \quad \Delta_2 \left(\phi(v_\varepsilon) \nabla^2 u_\varepsilon \right) = \phi''(v_\varepsilon) \nabla^2 u_\varepsilon^1 \nabla w_\varepsilon^1 \nabla u_\varepsilon + 2 \phi'(v_\varepsilon) \nabla w_\varepsilon \nabla^2 u_\varepsilon^1 u_\varepsilon^2 + 2 \phi'(v_\varepsilon) \nabla w_\varepsilon \nabla^2 u_\varepsilon^1 u_\varepsilon^2 + \]
\[0 \leq \psi \leq 1 \quad \text{and} \quad \| \nabla \psi \|_2^2 + \| \nabla^2 \psi \|_2 \leq 1 \psi \|_2 \| \nabla^2 \psi \|_2 \leq 1 \].

\[c \in \mathbb{C} \quad M_\varepsilon = \int_{\Omega_\varepsilon} |\nabla \psi|^2 |\nabla^2 \psi|^2 \, dx \, dy,
\]

\[N_\varepsilon = \int_{\Omega_\varepsilon} |\nabla^2 \psi|^2 \, dx \, dy.\]

とする。 （5.17）と（5.18）により Schwarz の不等式を用いて

\[(5.19) \quad K_\varepsilon \leq c \left(a^2 \int w_\varepsilon (x,0)^2 \, dx + a^2 M_\varepsilon + a^2 N_\varepsilon + a^2 M_\varepsilon^{1/2} N_\varepsilon^{1/2} + a K_\varepsilon M_\varepsilon^{1/2} + a K_\varepsilon N_\varepsilon^{1/2} \right).\]

このような

\[N_\varepsilon = c \int w_\varepsilon (x,0)^2 \, dx, \quad M_\varepsilon \leq c \int w_\varepsilon (x,0)^2 \, dx\]

がわかるので （5.19）により

\[K_\varepsilon \leq c a^2 \int w_\varepsilon (x,0)^2 \, dx \quad 	ext{がしてあう。} \quad \therefore \quad \text{rd}.\]

§6. (3) ⇒ (1)。

（6.1）Lemma. \(F \in H_0^p (\Omega) \quad (p_0 < p < \infty) \) とする。

\[N |F|_p (x) = \sup \{ |F(x,y)| : (x,y) \in \Omega (x) \} \quad \text{とする} \quad \| N |F|_p \|_p \sim \| F \|_p .\]

このLemmaは \(|F|_{p_0} \) が subharmonic であることがわかれる。

（3）⇒（1）は Lemma (6.1) からわかります。

§7. (2) ⇒ (3). \(u(x,y) = F_y \ast f(x), f \in L^2 (R^N) \).
とする。この形の \(u \) に対してただけ（2） \(\Rightarrow \) （3）を示す。

\(R^u_s \) を \(\mathbb{R}^{n_1} \) 上の \(s \)-th Riesz 変換， \(R^u_t \) を \(\mathbb{R}^{n_2} \) 上の \(t \)-th Riesz 変換（\(s = 1, 2, \ldots, n_1 \); \(t = 1, 2, \ldots, n_2 \)）とする。

\[u_{s,t}(x,y) = P_y \ast R^u_s R^u_t f(x), \quad u_{s,0}(x,y) = P_y \ast R^u_s f(x), \]
\[u_{0,t}(x,y) = P_y \ast R^u_t f(x), \quad u_{0,0}(x,y) = u(x,y) \]
\(s = 1, 2, \ldots, n_1 \); \(t = 1, 2, \ldots, n_2 \) とする。

\(F \in \mathcal{F}(\mathbb{K}) \)-成分の \(u_{j-1,k-1}(x,y) \) （\(j = 1, \ldots, n_1+1 \); \(k = 1, \ldots, n_2+1 \)）である \((n_1+1) \times (n_2+1) \) 行列値関数とする。\(F \in H^p_A(\mathbb{K}) \) を示す。\(F \) の定義から、\(F \) は共役な重調和関数のシステムであることは明らかである。

次の Lemma を必要とする。

（7.1）Lemma. \(u(x,y) = P_y \ast g(x), \quad g \in L^p(\mathbb{R}^n) \) とする。
この時 \(0 < p < \infty \) に対して

\[\sup_{y_1, y_2 > 0} \int_{\mathbb{R}^n} u(x,y_1)^p dx \leq c \| A_{(\frac{1}{2}, \frac{1}{2})}(0) \|_p^p. \]

（7.2）Lemma. \(A_{(\frac{1}{2}, \frac{1}{2})}(u_{s,t}(x)) \leq c A(u)(x), \)
\(s = 0, \ldots, n_1, \quad t = 0, \ldots, n_2. \)

Lemma（7.1）は [10, P.213]，Lemma（7.2）は [7, Lemma 1] と略され、同様に示すことができた。
Lemma (7.1), (7.2) により，F \in H^p_A (D) であり，\|F\|_p \leq c \|A\|_\omega \|f\|_p ．次にF_{++} ，F_{+-} ，F_{-+} ，F_{--} を定義する．
そのためにFをブロック形に書く．

\[
F = \begin{pmatrix}
F_1 & F_2 \\
F_3 & F_4
\end{pmatrix}
\]

ここでF_1 , F_2 , F_3 , F_4 はすべて1×1, 1×n_2 , n_1×1, n_2×n_2 行列である．ここでF_{++}(x,y) = \frac{1}{4}F(x,y)

\[
F_{+-}(x,y) = \frac{1}{4} \begin{pmatrix}
F_1(x,y_1,y_2) & -F_2(x,y_1,y_2) \\
F_3(x,y_1,y_2) & -F_4(x,y_1,y_2)
\end{pmatrix}
\]

\[
F_{-+}(x,y) = \frac{1}{4} \begin{pmatrix}
F_1(x,-y_1,y_2) & F_2(x,-y_1,y_2) \\
-F_3(x,-y_1,y_2) & -F_4(x,-y_1,y_2)
\end{pmatrix}
\]

\[
F_{--}(x,y) = \frac{1}{4} \begin{pmatrix}
F_1(x,-y_1,-y_2) & -F_2(x,-y_1,-y_2) \\
-F_3(x,-y_1,-y_2) & F_4(x,-y_1,-y_2)
\end{pmatrix}
\]

とおくと，F_{++} , F_{+-} , F_{-+} , F_{--} は条件をみたす．

文献

1. A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution,
Advances in Math. 16 (1975), 1–64.

8. M. P. Malliavin and P. Malliavin, Intégrales de Lusin–Calderón pour les fonctions...

