Holomorphic martingaleからなるHardy空間について。

早大理工 新井 仁之 (Hitoshi Arai)

本講演では、古典的Hardy空間とmartingaleからなるHardy空間との関連性について得た結果を述べる。
まず、§2では、§3の準備として、Varopoulos[14]で定義されたHilbert変換を多変数化し、K-ノルムと$\|X\|_L^2+\sum_{j=1}^d \|H_j X\|_L^2$ノルムの同値性を示す。つきに、§3では、主要定理の一つとして、\mathbb{T}^2上のHardy空間$H^p(\mathbb{T}^2)$とBMO(\mathbb{T}^2)が、各々、完備直積Brown空間上のK^p、BMOのあるclosed complemented subspaceに同型であることを、Varopoulos[13]、[15]で導入された作用素M、Nを使って示す。また、このことの系として、H.Satoの定理、Gundy-Steinの定理等の別証をする。
ところで、完備Brown空間上の1径数holomorphic martingaleからなるH^pと、$H^p(\mathbb{T})$とは、関数環としてみると相違点があることが、K.Carne[3]、新井・和田[16]で示された。すなわち、[3]では、H^pが解析構造をもたないことが証明され、
§1. 定義・記号。

§1 では、martingale についてのよく知られた事柄を、あと
の議論に必要な範囲で、まとめておく。

\((\Omega, \mathcal{F}, P)\) を完備確率空間で、その上に、２つの互いに独立
な１次元 Brown 運動

\((x_t)_{t \geq 0}, (y_t)_{t \geq 0}, \ x_0 = y_0 = 0 \ a.s. \ dp.\)

が定義されているものとする。

\(\{x_s, y_s : 0 \leq s \leq t\} \) と P 集合で生成される集合体を \(\mathcal{F}_t\)
とおく (t \geq 0)。そして、\(\mathcal{U}_{t \geq 0}\) で生成される集合体が \(\mathcal{F}_t\) な
っているものと仮定する。

このとき、組 \((\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t \geq 0}, (x_t)_{t \geq 0}, (y_t)_{t \geq 0})\)
を完備 (2次
元) Brown 空間といい、\(\mathcal{B}_2\) で表わす。よく知られているように、
(\(\mathcal{F}_t)_{t \geq 0}\) は、右連続である。すなわち、

\[s \leq t \Rightarrow \mathcal{F}_s = \mathcal{F}_t \quad (t \geq 0) \] をみたしている ([8] P. 286 参照)。

\((\Omega_j, \mathcal{F}_j, P_j, (\mathcal{F}_{t_j})_{t \geq 0}, (x_{t_j})_{t \geq 0}, (y_{t_j})_{t \geq 0}) \) \((j = 1, 2)\) を 2
の完備 (2次元) Brown 空間とする。\((\Omega, \mathcal{F}, P)\) を直積測度空間
\((\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, P' \otimes P')\) の完備化とし、\(\mathcal{F}_0 \otimes \mathcal{F}_t\) と P 集合で
生成される集合体を \(\mathcal{F}_{st} \) とおく。このとき、
組 \((\Omega, \mathcal{F}, P, (\mathcal{F}_{st})_{s,t\geq 0}, (x^i_{t_j})_{t_j\geq 0}, (y^i_{t_j})_{t_j\geq 0} \quad (j=1,2) \) \) を完備直積 Brown 空間といい、\(B_2 \times B_2 \) で表わすことになる。

以下、§1から§3までは、上記の \(B_2 \times B_2 \) の上で、議論をすすめていく。

\[
Z^2_{t_j} = x^2_{t_j} + \sqrt{t_j} y^2_{t_j}, \quad Z^2_{t_j} = x^2_{t_j} - \sqrt{t_j} y^2_{t_j} \quad (t_j \geq 0; \quad j=1,2) \quad \text{とおく。}
\]

\(E[\cdot] \) で、\((\Omega, \mathcal{F}, P \) 上の期待値を表わし、\(R_+ \times R_+ \times \Omega \) 上の 2 番
数複素数値可測過程 \(\mathcal{F} \) 対し、

\[
\| \phi \|_{L^p} \equiv E \left[\left(\int_0^\infty \int_{\mathcal{F}_{st}} |\phi|^2 ds dt \right)^{p/2} \right]^{1/p} \quad (0 < p < \infty)
\]

なる (quasi-) norm を定める。

\(\mathcal{P} \) を、2 番数複素数値可予測 (predictable) 過程 \(\mathcal{F} \) 対し、

\(\| \phi \|_{L^p} \leq \infty \) なるものの全体とする (0 < p < \infty)。

\(\mathcal{P} \) に対しても、2 番数確率積分

\[
\int \mu dx'dx^2, \quad \int \nu dx'dy^2, \quad \int \omega dy'dx^2, \quad \int \rho dy'dy^2
\]

が定義される。（Brossard-Chevalier [2] 参照。）

各 \(\Omega_j \) 上で、\(\mathcal{P} \) と同様の class が定義できるが、それを \(\mathcal{P}_j \) と

表わす。\(\mathcal{P}_j \) に対しても、1 番数確率積分

\[
\int \mu dx^i, \quad \int \nu dy^i \quad (j=1,2)
\]

が定義される。（[8] 参照。）

ここで、Brossard-Chevalier [2] による Hardy 空間 \(K^p \) を導入する。[2] では、\(K^p \) という記号は使われていないが、ここ

3
では、[1, [4, [1,2]]に習って、K^pという記号を使う。K^pは、つぎのように定義される。

\[K^p = \{ x = (x_{st}) : x \text{は、つぎの(1.1)の形で表わされる。} \} \]

\[x_{00} \in C \]

(1.1) ある $\phi_1, \phi_2 \in \Lambda_1^p$, $\phi_3, \phi_4 \in \Lambda_2^p$, $\tau_1, \ldots, \tau_4 \in \Lambda^p$ が存在して、

\[x_{st} = x_{00} + \int_0^s \phi_1 \, dx' + \int_0^t \phi_3 \, dy' + \int_0^s \phi_2 \, dx' + \int_0^t \phi_4 \, dy' \]

\[+ \int_0^s \int_0^t (\phi_3 dx'dx' + \phi_4 dx'dy' + \phi_2 dy'dx' + \phi_1 dy'dy') \]

\[x \in K^p \text{が(1.1)の形で表わされているとき、} \]

\[\langle x, x \rangle = \sum_{j=1}^{2} \int_0^s \int_0^t |\phi_j|^2 \, ds \, dt + \sum_{j=1}^{2} \int_0^s \int_0^t |\phi_j|^2 \, dt \, ds \]

\[\| x \|_{K^p} = \langle x, x \rangle^{1/2} \| x \|_p + \| x_{00} \| \]

とし、\(\langle x, x \rangle \)\(K^p \)は、1 \(\leq p < \infty \) のとき、Banach 空間になる。

また、\(x = (x_{st}) \in K^2 \) と、\(x \) の最終変数 \(x_{\infty} \in L^2 = L^2(\Omega, \mu, P) \) とを同一視することによって、\(K^2 = L^2 \) とみなせる ([2] P. 100)。

[2] で、つぎの定理が証明された。

Brossard-Chevalier の定理 ([2])

(B.C) \(\| x \|_{K^p} \approx \| x^* \|_{L^p} \quad (x \in K^p, 0 < p < \infty) \)

ただし、\(x^* = \sup_{s, t} \, |x_{st}| \) とする。

最後に、BMO について述べる。2 種数 BMO - martingale は、

$r \text{égion-aleatoire}$ とは、T が Ω から $(R_+ \setminus \{0\})^2$ の巾集合の中への写像で、かつ

$$\{ (s, t, \omega) \in (R_+ \setminus \{0\})^2 \times \Omega : (s, t) \in T(\omega) \}$$

が可予測集合となるものである。可予測集合とは、

$$\{ J_s, t \} \times J_s, t \} \times A : 0 \leq s \leq t, A \in \mathcal{F}_s, t \} \} (i=1, 2)$$

で生成されるの集合体に属する集合のことである。

$r \text{égion-aleatoire}$ の全体を \mathcal{R} とおく。

(1.1) で表わされている $X \in K^0$ と $T \in \mathcal{R}$ に対して、

$$\Delta X_{st} = X_{st} - X_{so} - X_{ot} + X_{oo} \quad (s, t \geq 0)$$

とおき、

$$\Delta T = \int_0^1 d \int_0^1 X \{ (s, t) \in T \} \} (d u \frac{dz}{dx} + d v \frac{dx}{dy} + d w \frac{dy}{dz} + d x \frac{dy}{dz} \frac{dx}{dz})$$

とおく。

$X \in K^2$ とする。X がもっとな (1.2), (1.3) をみたすとき、X を

BMO-martingale という。

(1.2) に

$$\| X_{oo} \|_m \equiv (\sup_s \| E[| X_{oo} - X_{so} |^2 \| \mathcal{F}_s \} \| \mathcal{L}^2 \})^{1/2} < \infty$$

$$\| X_{oo} \|_m \equiv (\sup_t \| E[| X_{oo} - X_{ot} |^2 \| \mathcal{F}_t \} \| \mathcal{L}^2 \})^{1/2} < \infty$$

で定義され、
(1.3) $\|X\|_* \equiv \sup \{ \|X_T\|_{L^\infty} / \sqrt{\text{P}(T+\Phi)} : T \in \mathbb{R} \} < \infty$

(ただし、$0/0 = 0$ となります。)

そして、

$\|X\|_*^* \equiv \|X_{\infty}\|_* + \|X_{\infty}\|_* + \|\Delta X\|_* + \|X_{\infty}\|$

とおく。BMO-martingale の全体を BMO で表わす。

Fefferman の不等式と K-BMO 双対性 (Sato [12] ; cf. [11], [43])

(1.4) $\exists C > 0, \forall x \in \mathbb{R}^2, \forall y \in \text{BMO} : \|x \|_{\infty} \leq C \|x \|_\text{K} \|y\|_*$

(1.5) $(\text{K} \ast)^* = \text{BMO}$

この系の最後に、上記の定理の系として、つきが成り立つことを注意しておく。

系1.1 $\text{P} \in \text{K}, \text{K}^\ast$ 及び BMO 上の有界射影線型作用素とする。また、P は $\text{K} = L^\infty$ で自己共役とする。このとき、$
\text{P}(\text{K}^\ast)^* = \text{P}(\text{BMO})$ となる。ただし、ここで、$
\text{P}(\text{K}^\ast)^* \equiv \{ \psi \in (\text{K})^* : \psi((1-P)(\text{K})) = 0 \}$ (I は恒等作用素)とする。
§2. Hilbert 変換の多変数化とその応用

Varopoulos [14] が導入した Hilbert 変換を、ここで、多変数化しておく。

\(X \in K^p \) が、(1.1) の形で表されているとき、

\[
H_1 X = - \int \varphi_1 \, dx' + \int \varphi_1 \, dx^1 + \int \varphi_2 \, dy^1
\]

\[
+ \int \left(- \varphi_3 \, dx' \, dx^2 - \varphi_4 \, dx' \, dy^2 + \varphi_5 \, dy' \, dx^1 + \varphi_6 \, dy' \, dy^2 \right)
\]

\[
H_2 X = \int \varphi_1 \, dx^1 + \int \varphi_2 \, dy^2 - \int \varphi_3 \, dx^2 + \int \varphi_4 \, dy^2
\]

\[
+ \int \left(- \varphi_5 \, dx^1 \, dx^2 + \varphi_6 \, dx^1 \, dy^2 - \varphi_7 \, dy' \, dx^1 + \varphi_8 \, dy' \, dy^2 \right)
\]

\[
H_3 X = H_1 (H_2 X)
\]

とおく。容易にわかるように、\(H_3 \) は、\(K^p \) 及び BMO 上の有界線型作用素である。 \(0 \leq p < \infty \)。

\[
K_{10}^p = \{ X \in K^p : X_{st} = X_{s0} \ (\forall s, t \geq 0) \ \& \ X_{oo} = 0 \}
\]

\[
K_{01}^p = \{ X \in K^p : X_{st} = X_{ot} \ (\forall s, t \geq 0) \ \& \ X_{oo} = 0 \}
\]

\[
K_{11}^p = \{ X \in K^p : X_{st} = \Delta X_{st} \ (\forall s, t \geq 0) \}
\]

とおく。すると、

\[
K^p = C \oplus K_{10}^p \oplus K_{01}^p \oplus K_{11}^p
\]

である。

\(T_1, T_2, T_3, T_4 \) を各々、\(C, K_{10}^p, K_{01}^p, K_{11}^p \) 上の作用素とする。このとき、\(X \in K^p \) に対して、

\[
T_1 \oplus T_2 \oplus T_3 \oplus T_4 (X) \equiv T_1 (X_{oo}) + T_2 ((X_{s0} - X_{oo})) + T_3 ((X_{ot} - X_{oo}))
\]
と定義することにする。

\[T_j = (I + \mathbb{H}_j) / 2, \quad S_j = (I - \mathbb{H}_j) / 2 \quad (j=1,2) \]

\[
K^{aa} = I \otimes T_1 \otimes T_2 \otimes T_1 \otimes T_2 \quad (I \text{ は 恒等作用素})
\]

\[
K^{ab} = 0 \otimes 0 \otimes 0 \otimes T_1 \otimes S_2 \quad (0 \text{ は 零作用素})
\]

\[
K^{ba} = 0 \otimes 0 \otimes 0 \otimes S_1 \otimes T_2
\]

\[
K^{bb} = 0 \otimes S_1 \otimes S_2 \otimes S_1 \otimes S_2
\]

とおく。\(K^p \) は \(K^p (0 < p < \infty) \) 上、\(BMO \) で有界である \((\varepsilon = aa, ab, ba, bb) \)。

\(x \in K^p \) に対し、\(x^\varepsilon = K^\varepsilon (x) \) \((\varepsilon = aa, ab, ba, bb) \) とする。

\((K^p)^\varepsilon = \{ x^\varepsilon : x \in K^p \} \) とし、特に、\(H^p = (K^p)^{aa} \) \((0 < p < \infty) \) とする。

\(BMO^\varepsilon = \{ x^\varepsilon : x \in BMO \} \) とし、\(BMOA = BMO^aa \) とする。また、\(H^p = H^p_{\infty} \)

とおく。\(1 \leq p < \infty \) に対して、\((K^p)^\varepsilon \) は、\(K^p \) で、\(L^\varepsilon \) である。\(0 < p < \infty \) で、\(\varepsilon \) の \(p \) ノルムを表す。

\(B_{\varepsilon} \) 上の Varopoulos の定理 ([14] Theorem 3.2) の \(B_{\varepsilon} \) 上への拡張として、つきが証明できる。
この定理と、(1.5) 及び 通常の duality argument により、つ
ざの定理が得られる。

定理 2.2. 以下の条件 (a), (b), (c) は同値である。

(a) \(X \in \text{BMO} \)

(b) ある \(A_j \in L^\infty (1 \leq j \leq 4) \) が存在して、

\[X = A_1^{aa} + A_2^{ab} + A_3^{ba} + A_4^{bb} \]
かつ \(\|X\| \approx \sum_{j=1}^{4} \|A_j\|_{L^\infty} \) をみたす。

(c) ある \(B_j \in L^\infty (1 \leq j \leq 4) \) が存在して、

\[X = B_1 + H_1 B_2 + H_2 B_3 + H_3 B_4 \]
かつ \(\|X\| \approx \sum_{j=1}^{4} \|B_j\|_{L^\infty} \) をみたす。

§3. \(\mathbb{T}^2 \) 上の関数論への応用

\(D_j = \{ z \in \mathbb{C} : |z| < 1 \} \), \(\Gamma_j = \{ z \in \mathbb{C} : |z| = 1 \} (j = 1, 2) \) とし、

\(D = D_1 \times D_2 \), \(\Gamma = \Gamma_1 \times \Gamma_2 \) とおく。 \(dm_j \) を \(\Gamma_j \) 上の正規化された
Lebesgue 测度とし、\(dm = dm_1 \otimes dm_2 \) とおく。

\(\tilde{H}_j \) を \(\mathbb{T}^2 \) 上の関数の \(j \) 番目の変数に関する共役作用素とする
(\(j = 1, 2 \))。そして、\(\tilde{H}_j = \tilde{H}_1 \tilde{H}_2 \) とおく。

\[\mathcal{H}(\mathbb{T}^2) = \{ f \in L^1(\mathbb{T}^2) : \|f\|_{\mathcal{H}} = \|f\|_{L^1} + \sum_{j=1}^{2} \|\tilde{H}_j f\|_{L^1} < \infty \} \]
とし、

\[\mathcal{H}(\mathbb{T}^2) = \{ f \in L^1(\mathbb{T}^2) : \|f\|_{L^1} < \infty \} \]
（ただし、\(\|f\|_{L^1} = \|\tilde{n}(f)\|_{L^1} \) とし、
\(\tilde{n}(f) \) は \(f \) の radial maximal 関数）とする。
つぎの作用素 \(M, N \) が Varopoulos [13], [15] によって考えられた。

\[
\tau_j = \inf \{ t : |2^{1/2}t| = 1 \} \quad (j = 1, 2)
\]
に対して、

\[
Mf = f(z_{\tau_1}, z_{\tau_2})
\]
とする。 \(M \) は、\(L^p(\mathbb{T}^2) \) から \(L^p(\Omega, \mathbb{E}, \mathbb{P}) \) への等距離離線型作用素である。\((1 \leq p \leq \infty) \)

\[
X \in L^p(\Omega) \quad \text{に対して、} \quad NX(e^{i\theta}, e^{i\varphi}) = E[X \parallel z_{\tau_1} = e^{i\varphi}, z_{\tau_2} = e^{i\varphi}]
\]
とする。\(M \) は、\(L^p(\Omega) \) から \(L^p(\mathbb{T}^2) \) への縮小離線型作用素である。

\(\mathbb{T}^2 \) 上の BMO 関数とし、つぎのもので、H. Sato [12] によって導入された。

\[
BMO(\mathbb{T}^2) = \{ f \in L^2(\mathbb{T}^2) : Mf \in BMO \} , \quad \| f \|_* = \| Mf \|_*
\]

さて、\(H^p(D^2) \) を \(D^2 \) 上の解析関数からなる Hardy 空間とし、

\(H^p(\mathbb{T}^2) \) を \(H^p(D^2) \) に属する関数の境界関数からなる Hardy 空間とする（cf. Rudin [11]）。BMOA(\(\mathbb{T}^2 \)) = BMO(\(\mathbb{T}^2 \)) \cap H^2(\(\mathbb{T}^2 \)) とおく。

\(\mathbb{H}^p(\mathbb{T}^2), BMO(\mathbb{T}^2) \) と \(K^p, BMO \) との関連性に関する結果として、

つぎの定理が得られる。

定理 3.1. (主要定理) \(\mathbb{H}^p(\mathbb{T}^2) \) (resp. BMO(\(\mathbb{T}^2 \)) は、\(K^p \)
(resp. BMO) のある closed complemented subspace に同型である。実際、\(M \circ N \) が \(K^p \) (resp. BMO) 上の有界射影線型作用素で、

\[10\]
Mが、\(\mathcal{P}(\mathbb{T}^2) \) (resp. \(\text{BMO}(\mathbb{T}^2) \)) から、\(M_{-\mathbb{N}}(K^p) \) (resp. \(M_{-\mathbb{N}}(\text{BMO}) \)) の上への同型作用素になっている。

（証明の概略） \(\tilde{\mathbb{N}} = M_{-\mathbb{N}} \) とおく。まず \(\tilde{\mathbb{N}} \) の \(K^1 \) 界界性を示す。\(x \in K^1 \) に対して、\(\tilde{\mathbb{N}} H_j x = H_j \tilde{\mathbb{N}} x \) が成り立つことが、\(H_{-\mathbb{N}}(K^1, \mathcal{C}) \) の*弱 Dirichlet 性を使って証明できる。ゆえに、定理2.1より、\(x \in K^1 \) に対して、\(\tilde{\mathbb{N}} \) が成り立つ。

\[
\| \tilde{\mathbb{N}} x \|_{K^1} \approx \| \tilde{\mathbb{N}} x \|_{L^2} + \sum_{j=1}^{\infty} \| H_j \tilde{\mathbb{N}} x \|_{L^2} = \| x \|_{L^2} + \sum_{j=1}^{\infty} \| H_j x \|_{L^2}
\]

これより、\(\tilde{\mathbb{N}} \) の \(K^1 \) 界界性が得られる。[11] Theorem 2.1.3 (c) から、\(\mathcal{P}(\mathbb{T}^2) \) で \(C(\mathbb{T}^2) \) の稠密であることがわかる。すなわち、任意の \(f \in \mathcal{P}(\mathbb{T}^2) \) に対して、\(\| f_n - f \|_{\mathcal{P}(\mathbb{T}^2)} \to 0 \) （\(n \to \infty \)）なる \(f_n \in C(\mathbb{T}^2) \) が存在する。定理2.1より、\(\lim_{n,m \to \infty} \| M_{f_n} - M_{f_m} \|_{K^1} = 0 \) である。ゆえに、ある \(x \in K^1 \) が存在して、

\[
\lim_{n \to \infty} \| f_n - \tilde{\mathbb{N}} x \|_{L^2} \leq \lim_{n \to \infty} \| M_{f_n} - \tilde{\mathbb{N}} x \|_{K^1} = \lim_{n \to \infty} \| \tilde{\mathbb{N}} (M_{f_n} - x) \|_{K^1}
\]

となる。したがって、\(f = \mathbb{N} x, Mf = \tilde{\mathbb{N}} x \in K^1 \) かと

\[
\| f \|_{\mathcal{P}(\mathbb{T}^2)} = \lim_{n \to \infty} \| f_n \|_{\mathcal{P}(\mathbb{T}^2)} \leq \lim_{n \to \infty} \| M_{f_n} \|_{K^1} = \| Mf \|_{K^1}
\]

となり、\(\mathbb{N} \) が同型であることがわかる。

ついに、\(\tilde{\mathbb{N}} \) の BMO_∞ 界界性を示す。\(x \in \text{BMO} \) と任意の \(TE \mathbb{R} \) とすると、\(X = \Delta x \) の場合を除くは十分である。Fetteman の不等式から、
$\| \tilde{N}(\alpha T) \|^2 \leq \| \alpha T \|^2 \| \tilde{N}(\alpha T) \|$ が得られる。ゆえに、\tilde{N} の K' 有界性より，

$\| \tilde{N}(\alpha T) \|^2 \leq \| \alpha T \|^2 \| \tilde{N}(\alpha T) \|_{K'}$

$\leq \| \alpha T \|^2 \| \tilde{N}(\alpha T) \|^* X_{I(T')}^*$

$\leq \| \alpha T \|^2 \| \tilde{N}(\alpha T) \|^* P(T + \phi)$

$\leq \| \alpha T \|^2 \| \tilde{N}(\alpha T) \|^* P(T + \phi)$

よって、\tilde{N} は BMO 有界である。M の BMO-同型性は、$\text{BMO}(T^2)$ の定義から明らかである。

定理 3.1 により、$B(C)$, (1, 4), (1, 5), 定理 2.1 などの martingale に関する結果を、つきのように、T^2 上にうつすことができる。下記のように、H. Sato の定理、Gundy-Stein の定理の別証を与えることができる。

系 3.2 (H. Sato [12]) $\mathcal{M}(T^2)^* = \text{BMO}(T^2)$

（証明）\tilde{N} は、$K^2 = L^2$ で自己共役である。したがって、定理 3.1 と系 1.1 より、$\tilde{N}(K')^* = \tilde{N}^{*}(\text{BMO})$ である。ゆえに、定理 3.1 より系 3.2 が得られる。

系 3.3 (Gundy-Stein, [6]) $\mathcal{M}(T^2) \approx \mathcal{K}(T^2)$

（略証）Gundy [6]: p. 905 より、$\| \alpha T \|^* \| \alpha T \|^* \text{がわかる。これを使って、} \mathcal{K}(T^2) \text{ が} \tilde{N}(K') \text{ と同型になることが示せる。したがって定理 3.1 より系 3.3 が得られる。}
系3.4 つきの (a), (b), (c) は、同値である。

(a) \(f \in (H^1(\mathbb{T}^2))^* \)

(b) \(f \in \text{BMOA}(\mathbb{T}^2) \)

(c) ある \(R \in L^\infty(\mathbb{T}^2) \) が存在して、

\[
f(z_1, z_2) = \frac{1}{2} \int_{\mathbb{T}} \frac{w_1 + z_1}{w_1 - z_1} R(w_1, 0) \, dm_1(w_1) + \frac{1}{2} \int_{\mathbb{T}} \frac{w_2 + z_2}{w_2 - z_2} R(0, w_2) \, dm_2(w_2) + \frac{1}{4} \int_{\mathbb{T}^2} \frac{w_1 + z_1}{w_1 - z_1} R(w_1, w_2) \, dm(w) \quad ((z_1, z_2) \in \mathbb{D}^2)
\]

すなわち \(\|f\|_{\text{BMO}} \approx \|R\|_{L^\infty} \) ただし、ここでは \(\Delta R(w_1, w_2) = R(w_1, w_2) - R(w_1, 0) - R(0, w_2) + R(0, 0) \) とし、\(f, R \) で

各々、\(f, R \) の \(\mathbb{D}^2 \) への Poisson 拡張を表わすことにする。

（注意）系3.2 と系3.3 より、BMO(\(\mathbb{T}^2 \)) の Fefferman-Stein 型の分解が導かれる。このことと、[5] p. 397 で構成された関数の簡単な修正で、\(\mathbb{T}^2 \) 上では、Helson-Szego の定理が必ずしも成立しないことがわかる。すなわち、つきをみたす関数 \(W \) が構成できる。

(1) \(0 \leq W \leq 1 \) a.e. dm
(2) \(\exists c > 0, \forall f \in L^1(\mathbb{T}^2) : \sum_{j=1}^{\infty} \int_{\mathbb{T}^2} |\tilde{a}_j f|^2 w dm \leq c \sum_{j=1}^{\infty} |f_j|^2 w dm \)

(3) \(\log w \notin \{ g_0 + \sum_{j=1}^{\infty} \tilde{a}_j g_j : g_0, \ldots, g_3 \in L^\infty(\mathbb{T}^2) \} \)

§4. \(H^0 \) について。 (1 径数の場合)

この§では、以下の記号を使う。

\((\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t \geq 0}, (X_t)_{t \geq 0}, (Y_t)_{t \geq 0}) \) を完備 Brown 空間とし、

\(Z_t = X_t - \int_0^t Y_s \, ds \quad (t \geq 0) \) とおく。

\(\mathcal{F} \) を \(\mathcal{F} \) の部分の集合体としたとき、

\(L^p(\mathbb{R}) = L^p(\Omega, \mathcal{F}, P) \), \(L^p = L^p(\mathbb{R}) \) とし、

\(H^p(\mathbb{R}) = \{ x \in L^p(\mathbb{R}) : \frac{\partial x}{\partial x} = 0 \} \), \(H^0 = H^0(\mathbb{R}) \) (1 ≦ p ≦ \infty)

とする。（注：ここで \(H^0 \) は、§2, §3 での \(H^0 \) とは異なる。）

\(H^0 \) は、* 弱 Dirichlet 環で、Corona 定理をみたし ([14])、

解析構造をもたず ([33])、* 弱極大でない ([16])。

この§での主要定理は、つきの定理である。

定理 4.1. (主要定理) \(T \) を任意の \((\mathcal{F}_t) \) 停止時限で、\(T < \infty \)

a.s. とする。任意の \(A \in \mathcal{F}_T \) に対して、つきの (1), (2) を満たす \(A \) の分解 \(\{ A_n \}_{n=1}^{\infty} \) が存在する。

(1) \(A_n \in \mathcal{F}_n (n \in \mathbb{N}) \), \(P(\cap_{n=1}^{\infty} A_n) = 0 \) (\(n, m \in \mathbb{N}, n \neq m \)).

\(P(\Delta \cup_{n=1}^{\infty} A_n) = 0 \) （\(\Delta \) は対称差）
（2）任意の \(\varepsilon_n > 0 \) (\(n \in \mathbb{N} \)) と任意の \(a_n > 0 \) (\(n \in \mathbb{N}, \sum_{n=1}^{\infty} a_n < \infty \)) に対して、つきの (a), (b), (c) をみたす \(X \in \mathcal{H}^\infty \) が存在する。

(a) \(X_N = 0 \) (a.s. on \(A^C \)) (\(R \) は任意の \(\{t \} \) 停止時間)

(b) \(0 < |X| \leq a_n \) (a.s. on \(A^C \)) (\(n \in \mathbb{N} \))

(c) \(P(A_n \setminus \{ |X| = a_n \}) < \varepsilon_n \) (\(n \in \mathbb{N} \))

（証明の概略） \(T_n = \inf \{ t : |X_{t+1}| = n \} \) (\(n \in \mathbb{N} \)) とし、

\(K_n = \{ T_n \leq T \} \) (\(n \in \mathbb{N} \)) とおく。

\(A_n = A \cap K_n^C \), \(A_n = A \cap (K_n \setminus K_{n+1}) \) (\(n \geq 2 \)) とおく。

\(\delta(s, \omega) = \begin{cases} 0 & (0 < s \leq T(\omega)) \\ 1 & (T(\omega) < s) \end{cases} \) (\(\omega \in \Omega \))

とおく。

\(Y_{t(\omega)}^{(n)} = \int_0^t \delta(s) \mathrm{d}s \mathrm{d}z_s \) (\(n \in \mathbb{N}, t \geq 0 \))

とする。

\(R_n = \left\{ \begin{array}{ll} T & (\text{on } A_n^C) \\ \infty & (\text{on } A_n) \end{array} \right\} \) (\(n \in \mathbb{N} \))

とおくと、ある \(0 < \delta_n < 1 \) が存在して、

\(P(A_n \setminus \{ |Y_{R_n}^{(n)}| > \delta_n \}) < \varepsilon_n \) (\(n \in \mathbb{N} \))

が成り立つことがわかる。そこで、

\(S_n = \inf \{ t : |Y_{R_n \wedge t}^{(n)}| = \delta_n \} \) (\(n \in \mathbb{N} \))

とおく。
\[
X = \sum_{n=1}^{\infty} \frac{a_n}{\delta_n} Y^{(n)}_{R_n} \quad \text{とすると、} \ X \in H^\infty \ \text{で、さらに、以上の}
\{\delta_n\} \ \text{を含む} \ X \ \text{を含む} \ X \ \text{が、所要の性質をもつことが確かめられる。}
\]

系4.2. 任意の \(A \in \mathcal{F} \) で、\(T < \infty \ a.s. \) なる（即）停止時
間 \(\{ \} \) と、任意の \(\alpha, \varepsilon > 0 \) に対して、つぎのことをみたす \(X \in H^\infty \)
が存在する。

1. \(X_R = 0 \quad (a.s. \ on A^c) \) \((R \ \text{は、任意の(即)停止時間}) \)
2. \(0 < |X| \leq \alpha \quad (a.s. \ on A) \)
3. \(P(A \setminus \{|X| = \alpha\}) < \varepsilon \).

（証明）定理4.1 で \(a_1 = a_2 = \cdots = \alpha, \ \varepsilon_n = \frac{\varepsilon}{2^n} \) とすればよい。■

定理4.1、系4.2 より、\(H^\infty \) が解析環ではない（したがって、
* 弱極大でない）ことが示されるが、さらに、つぎのことも
定理4.1 から示される。

系4.3 \(H^\infty \) の元の support set の特性関数で生成される
* 弱閉線型空間は、\(L^\infty \) である。

（注意）よく知られているように、\(H^\infty(\mathbb{I}) \) の support set
の特性関数は、本質的に、1か0だけである。

16
（注意）この系から、$H_{\text{max}}^0 = L^p$となることがわかる。H_{max}^0の定義については、Nakazi [9] 参照。

定理4.1は、H^0の単位球の端点の多くが、$H^0(\mathbb{T})$のそれよりも非常に単純な形をしていることも示している。すなわち、つきのことが証明できる。

系4.4. $x \in H^0$とする。$T < T < \infty$である (i) 停止時間とする。このとき、つきの (1), (2) は同値である。

(1) X_T は、H^0の単位球の端点である。
(2) $|X_T| = 1$ a.s.

系4.5. $f \in H^0(\mathbb{T})$とする。つきの (1), (2) は、同値である。

(1) M_f は、H^0の単位球の端点である。
(2) f は内部関数である。

ところで、H^0を含む*弱閉環が存在することが、定理4.1からわかったわけであるが、この場合、H^0を含む*弱閉環に関して得た結果を述べる。

定理4.6. $T < 0 < T < \infty$である任意の (i) 停止時間とし、

17
A_{T}をH^{∞}と$L^{\infty}(\mathbb{T})$で生成される*弱閉環とする。このとき、

$H^{\infty} = A_{T} + L^{\infty}$

*弱Dirichlet環の一般論において、H^{∞}_{min}の果たす役割は大きい（cf. Nakazi [9], [10]）。したがって、H^{∞}_{min}の形を決定することは、重要なことであるといえる。定理3.5.から、つぎの系が得られる。

系4.7. $H^{\infty}_{min} = H^{\infty}$

のをH^{∞}と$M_{\mathbb{T}}$で生成される*弱閉環とする。系4.7.と*弱Dirichlet環の一般論([9],[10])とあら、H^{∞}と$M_{\mathbb{T}}$の間に、必ず無限個の*弱閉環が存在することをわかりめる。ここで、それらを、つぎのように特徴づける。$B = \sigma(M_{\mathbb{T}})$とする。

定理4.8. $H^{\infty} \subset B \subset \sigma$なる*弱閉環$B$に対し、つぎが成り立つ。

(1) $H^{\infty} \subset B$ \iff $B \cap L^{\infty}(\mathbb{T}) = H^{\infty}(\mathbb{T})$
(2) $H^{\infty} = B$ \iff $B \cap \overline{B} \subset L^{\infty}(\mathbb{T})$

系4.9 (Carne [3]のNに関する結果の拡張)

$g \subset B$なる非集合体gに対して、$E_{T}\|g]$がH^{∞}上乗法的なら、

g = trivial である。特に、NはH^{∞}上乗法的でない。
参考文献

[1] A. Bernard, Espace H^1 de martingales à deux indexés. Dualité avec les martingales de type $\langle BMO \rangle$, Bull. Sc. math. 2e Série 103 (1979) 297-303

[4] E. Decamp, Caractérisation des espaces BMO de martingales dyadiques à deux indexés, et de fonctions bi-harmoniques sur $\mathbb{R}^2 \times \mathbb{R}^2$, These de doctorat, Grenoble (1979)

[8] P.A. Meyer, Un cours sur intégrales stochastiques,

[12] H. Sato, Caracterisation par les transformations de Riesz de la classe de Hardy H1 de fonctions bi-harmoniques sur $\mathbb{R}^n \times \mathbb{R}^m$, These de doctorat, Grenoble, (1979).

