Gathe work of J. ECALLE B. Malgrange

I Let D be a small disc {IXI <e} 0="0" =="" c;="0" file="" in="" th="" unucusal<=""></e}>
Grering of D' with some fixed base-point a ED*.
Put & = o(D), the space of Relowaglic functions on D*, and E = o/o(D); one has
two well-known morphisms of the , where "car" is the quotient map,
and "vor" is defined by var-can = I - 10; here I is the action of the nonodromy of of
The space E can be considered as a space of manfundions at OER; on E, the convolution
product (f,g) -> fig is well defined, with all theusual peoples.
Now, let Ω be a discret subgroup of C , for instance $\Omega=Z$, we suffer $D \cap \Omega=f$ =
Definition 1 we denote by E(1) the net of the f E oud that was f has an analytic
continuation to the whole space C-A, here C-A dentes the universal overing of
(- in with the sam base-point a.E.D as before
Theren ? (Ecalle). C(I) is a constitution subalgebra of E
This convolution algebra is the Basic object of Ecalle's theory. A important
nestalt to the description of the singularities of f*g (f, g ∈ C(I)) interess of
Persis gularities of fand g; this is done with the introduction of "alien derivations";
for more precise statements, see (E1).
II. Let G be the group of germs of sarialytic acts non plisms (1,0)5, and
fet H be the subgroup of genms tangents to identity. One of the walks of Ecallo
is the clarification of conjugacy classes in H; two methods are given to desail that
clanfication; for the first one, I refer to [EZ] or [M], I will desailse Briefley the
Of the and

For he in, write h(3) = 3 + a 232+....; Using the fact that & can be formally embedded in a one-parameter group, it is easy to prove that the formal conjugacy class of his determined by two invariants

- i) The pour (m, an), where m = inf {m | am =>}
- (i) The Gelfacut of $\frac{1}{3}$ in $\frac{1}{813)-3}$ (this disposes only of $a_{11},...,a_{2n-1}$)

Then one Ras to find the analytic invariants corresponding to a given for unal class. For stimplicity; I will counter only the formal class defined by $a_1 = a_3 = 1$. They we have $h(3) = 3 + 5^2 + 3^3 + a_4 3^4 + \cdots$; which satisfies $h(3) = \frac{3}{4 - 5}$. After the classes of variable $a_1 = \frac{1}{5}$, $a_2 = \frac{1}{6}$, one has $a_1 = \frac{1}{5} + \frac{1}{5} +$

Let $\overline{\Phi}$ be the Fourier-Boral transform of φ , i.e. the forence viricularities $\overline{\Phi} = 8^l + \sum_{i \in \mathbb{Z}} \frac{\mathbb{Z}^{k-1}}{k!} V$ (Y = He Herriside function). Given compare the large car from the fact $\overline{\Phi} \in \widetilde{\Xi}$; a much stronger routh is the following

Theorem: 3 (Ecalle, (E2I) If Ω denotes the net $2\pi i \mathbb{Z}$, one has: $\overline{\Phi} \in \mathcal{C}(\Omega)$ Ecalle prove now praise souths; committee for instance the oralistic cultivation of $\overline{\Phi}$ at 12 half-plane \overline{R} exxxx, and denote by $\overline{\Phi}_m$ the machinetion they this continuously definitions at the point $2\pi i n$; then one has, aforzone $C_n \in C$ and P_n Robinsplic near $2\pi i n$; $\overline{\Phi}_n = C_n \mathcal{E}(x-2\pi i n) + P_n Y(x-2\pi i n)$. Ecalle give some from that $P_n = C_n \mathcal{E}(x-2\pi i n) + P_n Y(x-2\pi i n)$. Ecalle give some from the continuous of $P_n = C_n \mathcal{E}(x-2\pi i n)$ from the solution of $P_n = C_n \mathcal{E}(x-2\pi i n)$ from the continuous of $P_n = C_n \mathcal{E}(x-2\pi i n)$ for $P_n = C_n \mathcal{E}(x-2\pi i n)$ from the solution of $P_n = C_n \mathcal{E}(x-2\pi i n)$ for $P_n = C_n \mathcal{E}(x-2\pi i n)$ f

Reference

[E1], [E2] J. Ecaple, there do forctions resurgertes, Distributions
Mattinatiques a l'Université d'Orsay (1981-82)

[M] B. Malgrouge, Travaux d'Ecolleprés Martiner-Rominaula ogstème des marques,