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Gauss—-Manin system and the flat coordinate system

(Connection with the expansion of the solutions at oo )

L L
Masatoshi NOUMI ( E%’/ﬂ 1 f& )

Sophia University (r%;{ -3791)

In this note, we consider the differential system of Gauss-
Manin associated with a versal deformation of a simple singularity.
As to such a Gauss-Manin system, it is known by K.Saito [4 ] that
the parameter space, say S, has a canonical linear structure. A
flat coofdinate system is a "linear" coordinate system With respekct
to the linear structure of S . The purpose of this note is to give
‘an explicit construction of the‘ flat coordinate system by mear\ls of

the expansion of the solutions near a point at infinity.

81. Gauss-Manin system and the flat coordinate system.

We begin with a review of the notion of a flat coordinate
system. Let f£f(x) =f(xl,...,xn) be one of the following canonical

forms of simple isolated singularities:

A :x£+l (n=1), vD :xe_l+x x2 (n=2),

[} 1 L 1 172 :
ey E_: Yexd, o i x3e 3 E. 5+x3 (n=2)

T T Xy X5, Eoorx] XX, Egotox] 5 .

Here, the subscript { or 6,7,8 stands for the Milnor number Iu=

Iu(f) of £ at x=0":

(1.2) w=ding Opn o/ (3,5) + (3,5 = (3, £, 8, £).
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szote that £ 1is weighted homogeneous of degree 1 with respect to
a uhique weight p = (fl,..., Pn) , Where p; are positive rational
numbers. In our case, the quotient ring 90:“,0 / (axf) has a C-
basis consisting of monomials. To fix the ideas, we take a set N
c N" of multi-indices as follows, so that the residue classes of
lVl. . _XnVn (¥=(yys...,y )eN) form a basis of the ring
Ogn o/ (948) -

xVY =x

[ ‘ _ JP1 . Pny .
(I) Case of AQ’EG’ES (f X3 +...+ X ) =

N = { YeN'; 0< ¥,;§p,-2 (1sisn) | .
(1.3)4
— <P1 P2y .
(II) Case of Dﬂ ,E7 (f X3 +x1x2 )
2, ' ‘ ’ U
; 0 Y,$p;-1, 0¢ »2$p2—2} {(0,p2-l)}

N = { yEN

~

Let S=C* Dbe the complex affine M-space with coordinate

system t=(t,) which we regard as the space 'of deformation

YEN '
parameters. We take a versal deformation F=F(t,x) of f=f(x)
defined by
(1.4) F(t,x) = £(x) + 2, ty, x¥ .
YVEN
The deformation F 1is versal in the sense that the residue classes

of 2F /2ty | (YeN) form a basis of @q:n o/ (94f) . Note again

t=0
that F is weighted homogeneous of degrée 1 with respéct to a unique
weight (r,p) of (t,x), r=(r, )))GN ’ and_ that all <rtyf_--(yefN) are
positive rational numbers as an effect of simpleness of the singu-
larity £ . We pay a siaecial attention to the parameter t0 . -Let
T=<Ep_l be the affine (M-1)-space with coordinate system t* =

(ty )Y€N* , where N*=N\{0§, and o : S —> T the canonical pro- -
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jection. Then the projection 7 is determined by the vector field
DO =Dt0 =2/ to and the paramete‘r t0 gives the fiber coordinate
of 7. |

| The Gauss-Manin system associated with bF ;, denoted by Eo o is
- by definition the differential system on S to be satisfied by the

integral

(1.5) u(t)=j‘5<F(t,x))dx, dx =@x A...ACX .
For each véN, défine

1(1.6) uy=g—§—%§(F) ax = SXVS(F) ax (‘u0=u) i

Then one can represent the Gauss-Manin system as a differential

system on S including the column vector T = (u,,)))eN as the unknown.

Proposition 1. The Gauss-Manin system H_ has a finite presentation

F

DtOtO

D

= (A, (t*)D, +A,(t*)) U,

to

: ¥
tO+Bl(t*))

-> -
u u
(1.7) N R
£ u u (véN*) ’
Y

(Bg(t*)D

where A, Bfe M(/u;(l‘[t»*]) (1i=0,1; YEN*) .

.

Let us recall here the Gauss-Manin system H For each VEN;

Sfttg

define Wy = Sx)).S(f + tO) dx and consider the column vector Cv’=

(wy,) Then the Gauss-Manin system E is given by
¥ =

yeN *© f+t0

> _ _ - _ - A% .
(1.8) Dtotow— Aw, -\=diag( &,; VEN) .

Note that the exponents gy (YEN) of f are determined by’ the for-

mulas
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(1.9) L, (xYdx)=¢g,x¥dx (YeEN),

x

where Lg is the Lie derivative with respect to the Euler vector
X

n
field 9x= Z Pixli- . Comparing the differential system (1.7)
©oi=1 T, 1 ’ '

with (1.8), one sees that

(1.10) A0|t*:0=0 and Al|t*:0=—/\,

. > . - —
since u 1is a deformation of w=u|t*__0 .

Now we recall the notion of a flat coordinate system of S.

Let s = (s))) be a coordinate system of S relative to q: S —>

Y€N

T . Namely, suppose that 9r is realized as the projection s =

(sO,s*) —3 s8* = (s5) and that DSO=D . For such a coordinate

YEN* 0

system s =(sy) we define

VEN !
(1.11) vu=g%—gv§(m dx for VEN.

Then, as to the differential system for the column vector V=

(vy ))/eN , we have

of s

Theorem 2. There exists a coordinate system s = (SV)VGN

relative to 9 : S —> T such that the Gauss-Manin system Hg is

represented in the form

-
\A

sg O S

D s.v=(A(s*)D_ -A)
(1.12) N N
D Vv BV(s*)Dsov (YEN*) ,

Sy

where A, BY e M(Iu;(li[s*]) (YEN*) . Moreover, such a coordinate

system s = (s,,) is determined uniquely up to_ linear trans-

VEN

formation.



66

A coordinate system s = (SV))/éN relative to 9 is called a flat

coordinate system if it has the property as stated in Theorem 2.

At the same time, Theorem 2 says that the space S of parameters
can be endowed with a linear structure. For an intrinsic formu-
lation of the linear structure and the flat coordinate system, we

refer the reader to K.Saito [4] or S.Ishiura-M.Noumi [27] .

§2. Expansion of the solutions near a point at infinity.

We keep the assumptions and the notations in §l. Here we
explain how one can constfuct the flat coérdinate system of S
by means of the expansion of the solutions of EF at infinity.

As to the differential system (1.7). of Proposition i, we

define the discriminant A = A(t) by

(2.1) A(t) =det(ty-a,(tx)),

which is a monic polynomial Of. degree /L in t0 with coefficients
in €[t*] . Then the system (1.7) defines an integrable meromorphic
connection over S with logarithmic poles along the discriminant
set D={ A =O} . Hence, one sees that the system (1.7) has a
unique fundamental system a-_)(t) of many-valued holomorphic r\‘solu-

tions on S\D such that

(2.2) Pe GL(/M;@(s’{'D)) and @t*=o=t6/\_l-

Now we take the compactification S=PxT of S=CxT in the direc-
tion of tO—axis. Then, it is easy to see that the discriminant-

set D is closed in S and does not intersect with the hyperplane

- 5-
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{to =00} at infinity. Moreover, the meromorphic connection in
question has regular singularities along {tO =00} in the naive

sense. So one sees that @(t) can be factorized in the form
(2.3) $e) = Fo) 65 near (£y,t%) = (e0,0)

where "j{'(t)EGL(/A;@gl(oo,O)) and Yl ,_g=1. (It is known that
this kind of expression gives rise to a hypergeometric representa-
tion of the solutions in the case where f£ =x€1 +...t xﬁn and F =
f We formulate this expression (2.3) in

+_ll .+tnxn+t0.)

connection with the flat coordinate system.

Proposistion 3. (a) There is a unique formal differential operator

o0

(2.4) ‘ P(t"‘,Dt ) = Z Pk(t*)Dtk ’ PkGM(IUN:[t*]) ’
0 k=0 0

such that '

(2.5) @(t) P(t*,D 0) taA‘l near - (t,,t*) = (e0,0) .
(b) As to the operator P in (a), define

2. ' = *) .

(2.6) Sy = S5yt tPy(t*)y ., for VEN
Then, s = (SV)))EN gives a flat coordinate system of S.

Remark that the 0-th row of the matrix P of operators represents
the expansion of /u independent solutions of u= jS(F) ax .

Now we mention how the matrix P can be determined explicitly.
The first step is to solve a system of difference equations for a
function c: N' —> €. To describe the difference system, we

introduce some notations. We denote by Ti (1€£i€n) the transla-

-6 -
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tion by one in the i-th direction. Namely, for a function «c:

N — ¢ , we define a function Tic N —— € by
(2.7) (Tic) (o) = cla+1;) for dEW",

<
where li stands for the unit vector (0,...,1,...,0) . Then the

difference system to be solved is given by
(2.8) d;cla-1,) +£. (T)c (1) =0 (o€N"; 1<isn),

where T = (Tl,...,T ) and f.=2_ f (1£ifn) . One can see that
n i Xi »

the difference system (2.8) has M independent solutions, denoted

by Cy (Y€ N) , as follows.

Case of By Egr Bg where f=x§’l +...+x§n. We define a lattice L

of #=" by L= ‘il ZZpili . Then, for each Y€ N, we define ab func-
i= .

. n
tion ¢, : N —> € by

n
_ k:  VYVi+l . _di_yi

if d€(YHLIAN" and by c,, () =0 if a€N"\ (¥+L) .
Case of Dg ’ E7 where f=x§)1+xlx1§2)2 . We define a lattice L of 7"
by L=2Zplll+ZZ(p212+ll) . Then, for each Y€ N, we define a

function cy, : ]Nz — € by‘

, YV +1 Vo+1 Yo+l
K
(2.10) cyla) = (0)F - 22 k) (22 k)
P1 PP P2
‘ A=V odo-y o= V.
with k,=— 172772 19 k. =—2_"2 if ge(Yy+L)AN" and
L Py P1P; 2 P

by ¢, (a)=0 if &€ N2\ (¥ +L) .
In (2.9) and (2.10), the expression (z;k) stands for the factorial

function I (z+k)/ TI"(z) . It is directly checked that the functions

-



69

Cy (VEN) defined as above give }k independent solutions of (2.8).
As the next step, we introduce a linear mapping Z:]N"_l —_— W
by the formula
. *
(2.11) exp( 2. tyx ) = Z ) i,,fx“"‘*) .
N Y€ N* otte wh1 '
In other wérds, the multi-index (o™ =(£1(dﬂ,...,ﬂn(d5) is given

by f;(a%) = >3 V.o, for 1<€isn.
VE N*

Theorem 4. By means of the functions cx,ﬁmn —> € and the linear

mapping f :]ﬂﬂ-l —s N above, the operator P(t*,Dt ) of Propo-
Zebibottd g —
sition 3 is determined as follows:

o

_ , x t*
(2.12) P (t*), —ot*eZ]N/“l ¢y (L(dM+K) =5

for K,Y&€ N and k€]N.

Corollary. The flat coordinate system of Proposition 3 can be re-

presented by the formulas

X

o .
- xyy E*
(2.13) s., = 50,yt0+d*€§m.ﬂ_l Cv(p(o{‘))d"—{!—' (YEN) .

Note that Pk(t*) and so s, are weighted homogeneous polyno-

L%

mials. Details of the above argument are given in M.Noumi [ 3] .

§3. A remark in the case of type A, .

In the case of type A, it is known by S.Ishiura-M.Noumi [ 1]
that the flat coordinate systems of type Al( £>21) can be sbtained
by a method of reduction from a countable sequence of weighted

homogeneous polynomials. Here we remark that this seguence of

-8 -
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polynomials eventually appears in the expansion (2.5) of the
solutions of the Gauss-Manin system.
Let t= (EZ,E3,...) be a sequence of countably many variables

and consider the formal Laurent series

(3.1) f(x)=x+t.x +¢

(3.2) g(y)=y—§2y -8y “+...

such that gef(x) =x and feg(y) =y, so that one obtains a new

~

sequence s = (s2,§3,.. .) of countably many variables. Note that

§2, §3 ,... are weighted homogeneous polynomials in EZ ,E3, ... and

~

vice versa. Moreover, the two sequences t= (E2,t3,...) and s =

(52,53,...) ‘are connected to each other by the formulas
s - 1 k -
s, = ——Res( f(x) &) (k=2,3,...) and
(3.3) k k-1
) ~ =1 : k ' _ .
tk—m—Res(g(y) dY) (k—2,3,..-).
There is reason to call this sequence s = (52,§3,...) the "flat

~

coordinate system" associated with t = (Ez,t3, I T

Consider the versal deformation

n-2 . n=-3
X +t.,x +...+tn,t=(t2,...,tn)

(3.4) F(t,x)= x"+ t,

of the singularity x'=0 of type An—l (in a different way of
indexing from that of preceding sections). Then one can take the
fractional power Fl/n in the form (3.1), so that EZ’E3' ... are

weighted homogeneous polynomials in t2, e ,tn .  (Among those,

- 9.
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EZ""’En are algebraically indepencdent.) Then the variables

Now, we define a sequence 52,53,;;; ‘of polynomials in 't2,...,tn

y+++ in (3.2) are determined as polynomials in t2,...,tn.'A

as follows:

(3.5) sk=nsk€¢[t] for k= 2,3,... . :

Then one can prove that Syr---sS, are algebraically independent
and that the coordinate system (s2,...,sn) coincides with the
flat coordinate system given in Corollary of Theorem 4. It is by
this reduction process that the flat coordinate systems of type A,
are obtained from the sequence §==(§2,§3,...) of "flat variables".
The sequence of "flat variables" also appears in the expansion of

the solutions of the Gauss-Manin system Hp at infinity.
[
Theorem 5. Let ?k (k=2,...,n) be the n-1 independent solutions

of the Gauss-Manin system H_, that appear in the 0-th row of (2.5).

F

Then we have

k-1

oo
i . ‘—r
k-1 ' n
(3.6) ?}<= gk,ns T Zi (=17 n +r—l)-s(r—l)nﬁ“ksn !

where si= s. | is the polynomial obtain®=d from S by setting

i

sp=0

s =0 for i=2,3,....
n R —
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