
$2_{-}47$

Dynamic Orthogonal Segment Intersection Search and Its Applications

Hiroshi IMAI and Takao ASANO

Department of Mathematical Engineering and Instrumentation Physics,
Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract
This paper develops data structures for maintaining a set of orthogonal segments,

where a segment in the plane is called orthogonal if it is horizontal or vertical. By
combining the data structures with graph algorithms for depth-first search, matchings,
etc., or with algorithms in computational geometry, we obtain algorithms, with better
time complexities, for problems on orthogonal segments, which arise in various fields
such as VLSI design, computer graphics and database system.

1. Introduction
The orthogonal segment intersection search problem is stated as follows: Given a set

S of n orthogonal segments in the plane, report all the segments in S that intersect a
given orthog\’onal query segment. Here a segment in the plane is called orthogonal if it
is horizontal or vertical. The problem is called static if the set S remains unchanged,
and dynamic if the set S is updated by insertions or deletions. Until now, efficient
data structures for this problem have been developed [1,2,3,16,18,23]. For the static
problem, Chazelle’s $0(\log n+k)$ -time and $O(n)$ -space algorithm is the best known
solution [21, where k is the number of reported intersections. For the dynamic prob-
lem in which the size of the underlying set in the course of the algorithm is known to
be $O(n)$ in advance, McCreight [181 showed an algorithm with $O((\log n)^{2}+k)$ query
time, $0((\log n)^{2})$ update time and $0(n)$ space, and Lipski and Papadimitriou [161

presented an algorithm with O ($\log n$ log log $n+k$) query time, O ($\log n$ log log n) update
time and $O(n\log n)$ space. For the general dynamic problem, Edelsbrunner [31 gave
an algorithm with $O((\log n)^{2}+k)$ query time, $O((\log n)^{2})$ update time and $0(n\log n)$

space.
In this paper, we consider two restricted types of dynamic orthogonal segment

intersection search problems. One is called an insertion problem in which the underly-
ing set of orthogonal segments is updated only by insertions. The other is called a
deletion problem in which the set is updated only by deletions. We show that, in both
problems, an intermixed sequence of $O(n)$ queries and updates can be executed on-
line in $0(n\log n+K)$ time and $O(n\log n)$ space, where K is the total number of
reported intersections. That is, each of queries and updates in both problems can be
executed in $O(\log n(+k))$ time in an amortized sense. Our data structure is a combi-
nation of the layered segment tree developed by Vaishnavi and Wood [231, which was

-1-

数理解析研究所講究録
第 534巻 1984年 247-261

$2\backslash \delta_{\triangleleft}^{Q}\mathfrak{B}\vee$

originally designed for the static problem, and linear-time set-union and set-splitting
algorithms due to Gabow and Tarjan [51. Here, in order to obtain the result for the
insertion problem described above, we must generalize Gabow and Tarjan’s set-
splitting algorithm in such a way that the ground set can be incremented, which is the
main problem discussed in section 2. In section 3, we discuss about dynamic layered
segment trees, and show the main theorems for the insertion and deletion problems.

By combining the data structures with graph algorithms or with algorithms in com-
putational geometry, we obtain various new results for problems on orthogonal seg-
ments, which arise in many fields. A basic idea combining the data structure for the
deletion problem with graph algorithms such as depth-first search and breadth-first
search was found in Lipski [13]. Imai and Asano [7] independently obtained a similar
idea, and developed the idea further in [9]. Here, from the more general point of
view, as applications of both insertion and deletion problems, we discuss, in section 4,
seven problems the time complexities of which are improved by means of the data
structures developed in this paper.

2. Set-Union and Set-Splitting Problems
Let $V=\{1,\ldots,n\}$, and S and U be such that $S\subseteq U\subseteq V$. Suppose that $S=\{s_{1},\ldots,s_{p}\}$

and $0\equiv s_{0}<s_{1}<\cdots<s_{p}<s_{p+1}\equiv n+1$, where s_{0} and s_{p+1} are dummy elements.
Define $V(s_{i})(i=1,\ldots,p+1)$ to be $\{u|u\in U,s_{i-1}<u\leq s_{i}\}$. Then $\{V(s_{f})|i=1,\ldots,p+1\}$ is
a partition of U, and, for any $u_{i}\in V(s_{i})$ and $u_{j}\in V(s_{j})$ such that $1\leq i<j\leq p+1$, we
have $u_{i}<u_{j}$. We call $(V(s_{1}),\ldots, V(s_{p+1}))$ an ordered partition of U with respect to S, and
denote it by $P(U,S)$. The set U is called the ground set of the ordered partition
$P(U,S)$.

For the ordered partition $P(U,S)$, we consider the following four operations, find,
link, split and add (Fig.2.1):

find: For $u\in U,$ $find(u)$ returns $s_{i}\in S$ such that $u\in V(s_{i})$.
link: For $s_{i}\in S,$ $link(s_{i})$ adds all the elements of $V(s,)$ to $V(s_{i+1})$, and modifies the

ordered partition to $P(U,S-\{s_{i}\})$. By link$(s_{i}),$ S is updated to $S-\{s_{i}\}$.
split: For $u\in U-S,$ $split(u)$ first executes $s_{i}:=find(u)$ and then divides the set $V(s_{i})$

into two sets, one containing all $\nu\in V(s_{i})$ with $\nu\leq u$, the other all $\nu\in V(s_{i})$ with
$\nu>u$. The ordered partition is modified to $P(U,S\cup\{u\})$. By split$(u),$ S is
updated to $S\cup\{u\}$.

add: For $\nu\in V-U$, let $\nu^{*}\in U$ be defined by $\nu^{*}=\min\{u|u\in U\cup\{n+1\}, u>\nu\}$. For ν

and $\nu^{*},$ $add(\nu, \nu^{*})$ inserts ν into $V(s_{i})$ such that $\nu^{*}\in V(s_{i})$. The ordered parti-
tion becomes $P(U\cup\{\nu\},S)$. By add$(v, v^{*}),$ U is updated to $U\cup\{\nu\}$. (Note
that, in add$(\nu, \nu^{*}),$ ν^{*} satisfying the above condition is given in advance with $\nu.$)

Concerning the general problem in which find, link, split and add operations are
executed, we can execute each of them in $0(\log n)$ time by means of balanced trees.
However, special cases of the problem can be solved more efficiently in an amortized
sense as follows. The problem in which find and link operations are only executed is a
kind of the set-union problem In fact, it is a special case of the set-union problem,
because the link operation can unite adjacent two sets in ordered partition only. For

-2-

$Z4^{\mathfrak{t}}9$

oooo eo
after add $(5,6)$; split(5) after link(3)

[fi nd (4) $=5$] [fi nd $(\rceil)=6$]

Fig.2.1. Ordered parti tions

(o^{i} implies $i\in U;\bullet i$ impliesi $\in S$)

this problem, Gabow and Tarjan [5] showed the following.

Theorem 2.1. [5] Suppose that a subset U of V is given in sorted order. Let
$n’=|U|$. Then, starting with an ordered partition $P(U, U)$, an intermixed sequence of
m find and ljnk operations can be executed in $O(m+n’)$ time and $O(n’)$ space. \square

The problem in which find and split operations are executed is the set-splitting prob-
lem first considered by Hopcroft and Ullman [6]. They showed that, starting with an
ordered partition $P(V,\otimes)$, an intermixed sequence of m find and split operations can
be executed in $O((m+n)\log^{*}n)$ time and $O(n)$ space. Gabow and Tarjan [5] showed
that the sequence can be executed in $O(m+n)$ time and $O(n)$ space.

We call the problem, in which, starting with $P(\emptyset,\emptyset)$, an intermixed sequence of m

find and split operations and 1 add operations is executed, the incremental set-splitting
problem Note that $l\leq n$. It seems that this problem has not yet been studied expli-
citly although it is rather straightforward to extend an algorithm for the set-splitting
problem to that for the incremental problem.

We first show that Hopcroft and Ullman’s [61 set-splitting algorithm can be
extended to the incremental set-splitting problem. Specifically, we show the following.

Theorem 2.2. Starting with an empty ordered partition $P(\otimes,\otimes)$, a sequence of m

find and split
$operations_{\urcorner}and\square l$

add operations can be executed in $0((l+m)\log^{*}l)$ time
and 0(1) space.

Define a function $F(i)(i\geq 0)$ by $F(O)=1$ and $F(i)=F(i-1)2^{F(i-1)}(i\geq 1)$. Also,
define a function $G(l)(1\geq 1)$ by $G(l)= \min\{i|F(i)\geq l\}$. Note that $G(l)$ is $\Theta(\log^{*}l)$

and increases very $s\hat{l}owly$. Hopcroft and Ullman’s set-splitting algorithm [61 uses a
tree defined as follows. A node of level 0 in the tree is a leaf, and does not have any
son. A node of level $i(\geq 1)$ has between one and $2^{F(i-1)}$ sons, hence it has at most
$F(i)$ leaves. A node of level i is called complete if it has $F(i)$ leaves among its des-
cendants, and is called incomplete, otherwise.

-3-

z se

We keep the ordered partition by the following data structures. The ground set U

is kept by a list in the increasing order from left to right. Each set in the ordered par-
tition is made to correspond to a tree the root of which contains the name of the set.
A set of leaves of all trees correspond to some subset W of U, and not necessarily to
the whole ground set U, where each element u such that split(u) has been executed is
in the set W. For each $u\in U$, we record $p(u) \equiv\min\{u’|u’\in W, u’\geq u\}$.

In order to execute find(u) , we find the root of a tree that contains a leaf
corresponding to $p(u)$, and return the name associated with that root. Concerning
add(ν,ν^{*}) , we insert ν in the left of ν^{*} in the list representing U, and let
$p(\nu):=p(\nu^{*})$. Consider the operation split(u) . If $u\in W$, we divide the tree containing
u along a path from a leaf to the root of that tree as in Hopcroft and Ullman’s static
set-splitting algorithm. If $u\not\in W$, we first find a leaf w that lies in the left of leaf $p(u)$

among all the leaves, and then partition the tree containing w along the path from w

to the root as above (if $p(u)$ is the leftmost leaf, we do not partition any tree). Then,
to the tree containing w , we add, from the right side, elements from the next element
of w to u in the list of U in this order one by one. At this stage, if the number of
sons of a node of level i comes to be greater than $2^{F(i-1)}$ by making a new node of
level $i-1$, we make a new node of level i and let the new node of level $i-1$ be a son
of the new node of level i .

Let us evaluate the time complexity of the above algorithm. Bach add operation
takes a constant time, and each find operation takes a time linear to the height of a
tree. In the above algorithm, each non-leaf node can have at most two incomplete
sons, so that the height of a tree is at most $G(1)+1$. Hence, each find takes $O(G(l))$

time.
Now we consider the complexity for executing split. Concerning incomplete

nodes, the number of incomplete nodes moved in one split operation is at most the
height of a tree, i.e., at most $G(l)+1$, hence the total number of times to move an
incomplete node is $O(lG(l))$. The remaining problem is to count the number of
times to move a complete node. For this purpose, we use the following technique
often used in analyzing the amortized time complexity of algorithms (see Tarjan [221).

In adding a new leaf, we put real-valued chips on non-leaf nodes, and, in moving a
complete node, we consume one chip of the father of the node. Then, the number of
times to move a complete node is bounded by the number of chips put in the course
of the algorithm if the number of chips on each non-leaf node does not become nega-
tive at any stage of the algorithm.

A non-leaf node having k complete sons is called admissible if either (i) it has at
least $k+(k\log k)/2$ chips and its rightmost son is complete, or (ii) it has at least
$k+(k \log k)/2+\max\{0, (\log(k+1))/2+2-d\}$ chips where its rightmost son is incom-
plete and requires d leaves in order to become complete. If a non-leaf node is admis-
sible, the number of chips on it is nonnegative.

We now show the following, from which, with the above discussions, Theorem 2.2
is obtained.

Lemma 2.1. The total number of times to move a complete node in all the split
operations is $O(lG(1))$.

-4-

251

Proof: We put chips as follows: In adding a new leaf to a tree, we put two chips
on each non-leaf node on the path from the leaf to the root. Then, the total number
of chips needed is $O(lG(1))$, hence, we have only to show that all the non-leaf nodes
are admissible in the computation when we put chips as above.

The number of chips changes when a leaf is added to a tree, or a tree is parti-
tioned into two. We flrst consider the case when a leaf is added to a tree. New nodes
created at this stage are apparently admissible. Among old nodes whose chips are
modified by this operation, a node, whose rightmost son is not changed and is still
incomplete, remains admissible, too. Among those old nodes, consider a node whose
rightmost son becomes complete. This node currently has $[k+(k\log k)/2]+$

$[2+(\log(k+1))/2]$ chips, whose number is easily seen to be greater than $(k+1)+$

$((k+1)\log(k+1))/2$. Hence, this node is admissible. Among old nodes, consider a
node whose rightmost son is a node newly created at this stage. Let i be the level of
this node. In the case of $i=1$, this node is easily seen to be admissible. In the case of
$i>1$, since $k\leq 2^{F(i-1)}-1$, we have

$k+ \frac{1}{2}k\log k+2+\frac{1}{2}\log(k+1)-(F(i-1)-1)\leq k+\frac{1}{2}k\log k+2$,

and so this node is admissible.
Next, consider the case when a tree is divided into two. Consider a father node

whose k complete sons are divided into two, where two cases occur. In the first case,
a complete son among those k sons is divided into two incomplete nodes to both left
and right $t^{J}rees$. Suppose that the other $k-1$ complete nodes are distributed into k_{1}

and k_{2} nodes in the left and right trees, respectively. Note that $k_{1}+k_{2}+1=k$. By sim-
ple calculation, we have

$\min\{k_{1},k_{2}\}+[(k_{1}+\frac{1}{2}k_{1}\log k_{1})+(2+\frac{1}{2}\log(k_{1}+1))-1]+(k_{2}+\frac{1}{2}k_{2}\log k_{2})$

$\leq k+\frac{1}{2}k\log k$.

After consuming $\min\{k_{1},k_{2}\}$ chips in moving complete nodes, chips left can be distri-
buted so that two nodes corresponding to the original father node are admissible.

In the second case, $k=k_{1}+k_{2}$ complete sons are divided into k_{1} and k_{2} complete
nodes in the left and right trees, respectively. Then we have

$\min\{k_{1},k_{2}\}+(k_{1}+\frac{1}{2}k_{1}\log k_{1})+(k_{2}+\frac{1}{2}k_{2}\log k_{2})\leq k+k\log k$.

Hence, after consuming $\min\{k_{1},k_{2}\}$ chips, chips at hand can be distributed so that two
nodes corresponding to the original father node are admissible. \square

Next, extending Gabow and Tarjan’s algorithm, we show the following.

Theorem 2.3. An intermixed sequence of m find and split operations and l add
operations can be executed in $O(l+m)$ time and 0(1) space with $O(n)$ preprocessing
and extra space of size $0(n)$ for the answer table.

Proof: Since almost all of Gabow and Tarjan’s algorithm for the set-splitting prob-
lem applies to the incremental problem, we note only those parts of their algorithm
which should be modified or remarked in the incremental problem.

-5-

$rr\dot{\epsilon}^{r}J^{O}$.

The first problem is how to represent the ground set U in order to obtain $O(l+m)$

bound. We use three levels of set: microsets, mezzosets and macrosets. (Since we
employ the parent encoding scheme as described below, two level of sets seems to be
insufficient for our purpose.) The set U is partitioned into consecutive elements,
called mezzosets, of size at most $|\log n|$ in such a way that there is $O(|U|/\log n)$ mez-
zosets. Each mezzoset \tilde{U} is partitioned into consecutive elements, called microsets, of
size at most $|\log\log nJ$ in such a way that the number of microsets in \tilde{U} is
$0(|\tilde{U}|/\log\log n)$.

The second problem is how to execute the table-lookup method on microsets so
that add operations can also be executed efficiently. In the static problem, each
microset is represented as a path, and is encoded into a single computer word through
its parent table. In the incremental case, we represent each microset by a forest
whose preorder gives an ordering of elements in the set in decreasing order, and
encode it through the parent table.

This enables us to execute add operations quickly as follows. In add(ν,ν^{*}) , we
add ν to the forest of the microset containing ν^{*} by making ν^{*} the parent of ν so that
the preorder of the augmented forest satisfies the above condition, which is possible
owing to the definition of ν^{*} for ν . If there comes to be a microset of size greater
than $|\log\log n|$ by add, we first compute the preorder of the forest representing it, and
then partition it into two halves according to the preorder, which can be done in
$O(\log\log n)$ time. If there comes to be a mezzoset of size greater than $|\log n|$, we
simply divide it into two halves.

Concerning the table lookup on microsets, we construct the answer table for
parent tables and mark tables, which is the preprocessing. Here we must redefine the
answer table for the incremental problem. Suppose that f is the forest, and a is a
mark table of it, and j is a node in the forest. In Gabow and Tarjan [51,
answer (f,a,j) is defined to be the nearest marked ancestor of node j in the forest f .
For our problem, we redefine answer (f,a,j) to be the nearest marked predecessor of
node j with respect to the preorder of f . Concerning the redefined answer table,
given a forest f and a mark table a , we can compute the values of answer (f,a,j) for
all nodes j in the forest in time linear to the number of nodes, which can be done by
traversing the forest in preorder. Thus, the preprocessing, to construct the answer
table, can be done in $O(n)$ time and space.

The last problem to be mentioned is on the “relabel-the-smaller-half‘ method for
the incremental set-splitting problem, since we use it for the unsplit microsets and also
the unsplit mezzosets. It is noted that a sequence of \tilde{m} find and split operations and \tilde{l}

add operations
$can\square$

be executed in $0(\tilde{m}+\tilde{l}\log\tilde{l})$ time by this method, which can be
shown easily.

Theorem 2.4. Consider sequences of m_{i} find and split operations and l_{i} add opera-
tions maintaining ordered partitions $P(U_{i},S_{i})$ whose ground set U_{i} are subsets, ini-
tially empty sets, of V. We assume that, given an element u of U_{i} , we can find the
microset, $micro_{i}(u)$, containing u and the number, $number_{i}(u)$, of u within its
microset in a constant time, totally using $0(\sum_{i}l_{i})$ space (concerning micro $()$ and
number $()$, see Gabow and Tarjan [5]). Then, we can execute these sequences

$- 6-$

253

simultaneously in $0(n+ \sum_{i}(l_{i}+m_{i}))$ time and $0(n+ \sum_{i}l_{i})$ space.
Proof: In each sequence, we use the same answer table. That is, in the prepro-

cessing step, we construct only one answer table, which takes $O(n)$ time and space.
Due to the assumption that, for $u\in U_{i},$ $micro_{i}(u)$ and $number_{i}(u)$ can be found in a
constant time, we can execute each sequence in $0(l_{i}+m_{i})$ time and $0(l_{i})$ space by the
algorithm in Theorem 2.3. Then, the total time and space complexities are $O(n+$

$\sum_{i}(l_{i}+m_{i}))$ and $0(n+ \sum_{i}l_{i})$, respectively. \square

3. Dynamic Layered Segment Tree
3.1. Layered segment tree

In this section, we recall the layered segment tree, developed by Vaishnavi and
Wood [231, for the static orthogonal segment intersection search. Concerning inter-
sections of parallel segments, the problem is essentially the one-dimensional interval
intersection problem, for which efficient dynamic data structures such as priority
search tree [18] are known. So, in the following, we consider the case in which a set
of vertical segments is given, and a query is a horizontal segment. The case in which
a query is a vertical segment is analogous.

Let $V\subseteq\{\nu_{1},\ldots,\nu_{n}\}$ be a set of vertical segments. For simplicity, we assume that
abscissae of vertical segments are different from one another. (It is easy to modify
our algorithm so that it can treat vertical segments with the same abscissa; for exam-
ple, when several vertical segments with the same abscissa must be handled simul-
taneously, we record them by a list and make them represent by the value of the
abscissa.) We can then suppose that ν_{j} itself denotes the abscissa of vertical segment
$\nu_{i}\in V$. Denote by $L(\nu_{i})$ the interval of ν_{i} with respect to ordinate. We suppose that
$L(\nu_{i})$ is an open-closed interval, i.e. $(a,b$], and that all the endpoints of segments in
V have integer values from 1 to n with respect to abscissa and from 1 to $N(\leq 2n)$

with respect to ordinate.
We now recall the segment tree due to Bentley [11. For an integer interval $(a,b$],

a segment tree $T(a,b)$ consists of a root w associated with interval $I(w)=(a,b$], and
in the case of $b-a>1$, of a left subtree $T(a,|(a+b)/2|)$ and a right subtree
$T(|(a+b)/2|,b)$; in the case of $b-a=1$, the left and right subtrees are empty (Fig.3.1
and Fig.3.2). For $\nu\in V$, a node w of $T(1,N)$ is called an t-\’{n}ode of ν if

(i) w is the root of $T(1,N)$ and $L(\nu)\neq I(w)$, or
(ii) the parent of w is a t-node of ν , and $\emptyset\neq L(\nu)\cap I(w)\subset I(w)$.

A node w is called an s-node of ν if
(i) w is the root of $T(1,N)$ and $L(\nu)=I(w)$, or
(ii) the parent of w is a t-node of ν , and $I(w)\subseteq L(\nu)$.

For each node w of $T(1,N)$, let $S(w)$ be the set of $\nu\in V$ such that w is an s-node of
v , and $U(w)$ be the set of $\nu\in V$ such that w is an s-or t-node of ν . Note that
$S(w)\subseteq U(w)$. We keep the set $S(w)$ by a doubly linked list in increasing order.

In the layered segment tree, we manipulate two kinds of ordered partitions. For
each node w of $T(1,N)$, we record an ordered partition $P(U(w),S(w))$. Also, for
each non-root node w , we record an ordered partition $P(U(w_{\pi}), U(w))$ where w_{π} is
the parent of w (note that $U(w)\subseteq U(w_{\pi})$) (Fig.3.3). Initially, we construct these

$-7-$

254

v_{3} v_{4} v_{5}

21435

$——————-v_{1,I_{-\underline{\ovalbox{\tt\small REJECT}}-\ovalbox{\tt\small REJECT}_{--}^{-\underline{\ovalbox{\tt\small REJECT}}_{----}^{-}}}^{-}}v_{2_{-}-}----------I_{--}^{--}--$

w_{31} w_{32} w_{33} w_{34}

Fig.3.1. The segment tree $T(1,5)$ Fi g.3.2. Vertical segments

$P(U(w_{34}),S(w_{34}))$

Fig. 3.3. The layered segment tree for vertical segments in Fig.3.2

structures, which can be done in $0(n\log n)$ time and space.
Let h be a horizontal segment, whose interval with respect to abscissa is $[h_{/},h_{r}]$

and whose ordinate is $h_{o}(1</l_{0}\leq N)$. Then the query for h can be executed as fol-
lows.
QUERY:
(i) find $\nu\in V$ such that $\nu=\min\{\nu’|_{\nu’\in}V\cup\{n+1\}, h_{/}\leq\nu’\}$ by binary search;

if $\nu=n+1$, then stop; otherwise, let w be the root of $T(1,N)$;
(ii) $s_{i}:=find(\nu)$ with respect to the ordered partition $p(U(w),S(w))$;

report all the vertical segments $s\in S(w)$ such that $s_{i}\leq s\leq h_{r}$ by traversing the list
representing $S(w)$;

-8-

$f55$

(iii) if w is a leaf, then stop; otherwise, let w_{σ} be a son of w with $h_{0}\in I(w_{\sigma})$;
$\nu:=find(v)$ with respect to the ordered partition $P(U(w), U(w_{\sigma}))$;
return to (ii);

In the algorithm QUERY, each find can be executed in a constant time, hence
Vaishnavi and Wood’s theorem [23] is obtained.

Theorem 3.1. [23] The static orthogonal segment intersection search problem can
be solved in $0(\log n+k)$ query time and $O(n\log n)$ space where k is the number of
reported intersections. \square

3.2. The insertion problem
In this problem, the set of vertical segments is updated by insertions. Concerning

queries, the algorithm QUERY given abOve works if we maintain respective ordered
partitions correctly. We now give an algorithm INSERT which inserts a vertical seg-
ment ν into the set with handling those ordered partitions correctly.
INSERT:
(i) find $\nu^{*}\in V$ such that $\nu^{*}=\min\{\nu’|_{\nu’\in}V\cup\{n+1\}, \nu\leq\nu’\}$ by binary search;

let w be the root of $T(1,N)$;
(ii) with respect to the ordered partition $P(U(w),S(w))$,

add (ν,ν^{*}) ; if w is an s-node of ν , then split (ν) ;
if w is a leaf, then return; otherwise, let w_{λ} and w_{ρ} be the sons of w ;
with respect to the ordered partition $P(U(w), U(w_{\lambda}))$,

$\nu_{\lambda}:=find(\nu^{*})$; add (ν,ν^{*}) ; if w_{λ} is an s-or t-node of ν , then split (ν) ;
with respect to the ordered partition $P(U(w), U(w_{\rho}))$,

$\nu_{\rho}:=find(\nu^{*});add(\nu,\nu^{*})$; if w_{ρ} is an s-or t-node of ν , then split (ν) ;
(iii) if w is a t-node of ν , then

if $L(\nu)\cap I(w_{\lambda})\neq\emptyset$ then $\nu^{*}:=\nu_{\lambda};w:=w_{\lambda}$ and return to (ii);
if $L(\nu)\cap I(w_{\rho})\neq\otimes$ then $\nu^{*}:=\nu_{\rho};w:=w_{\rho}$ and return to (ii);

It is seen that, in the step (ii) of INSERT, ν^{*} for ν satisfies the condition required
for executing add. It is then easy to show that the algorithm INSBRT correctly main-
tains all the ordered partitions. We now consider the complexity of the above algo-
rithm.

Theorem 3.2. An intermixed sequence of $0(n)$ queries and insertions can be exe-
cuted in $O(n\log n+K)$ time and $O(n\log n)$ space, where K is the total number of
reported intersections.

Proof: The above algorithm obviously takes $O(n\log n)$ space, so that we consider
the time complexity. Suppose that, in the sequence, there are q queries and r inser-
tions, where $q+r=O(n)$. In the query step, q queries except those parts for find
operations can be executed in $0(q\log n+K)$ time. In the insertion step, r insertions
except those parts for find, split and add operations can be executed in $O(r\log n)$ time.

In all the steps, suppose that, for the ordered partition $P(U(w),S(w))$ of each
node w of $T(1,N)$, the find and split operations are executed $m_{0}(w)$ times, an the add
operation is executed $l_{0}(w)$ times. Also, suppose that, for the ordered partition
$P(U(w_{\pi}), U(w))$ of each non-root node w of $T(1,N)$, where w_{π} is the parent of w ,

$-9-$

256

the find and split operations are executed $m_{1}(w)$ times, and the add operation is exe-
cuted $l_{1}(w)$ times. We consider that, for the root $w,$ $m_{1}(w)=l_{1}(w)=0$. Then, we
have $\sum_{w}(m_{0}(w)+m_{1}(w))=O((q+r)\log n)$ and $\sum_{w}(l_{0}(w)+l_{1}(w))=O(r\log n)$,
where the summations are taken over all the nodes w of $T(1,N)$.

Let us consider the complexity to execute sequences of $m,(w)$ find and split opera-
tions and $l_{i}(w)$ add operations ($i=0,1$; all nodes w of $T(1,N)$). Owing to the struc-
ture of the segment tree, given $v\in V$ in some sequence, we can devise a procedure to
find micro (ν) and number (ν) in the sequence in a constant time. We then see that,
from Theorem 2.4, these sequences can be executed in $0(n+ \sum_{w}\sum_{i}(m_{i}(w)+l_{i}(w)))$

time.
Thus, the whole sequence can be executed with the time complexity

$0((q \log n+K)+(r\log n)+n+\sum_{w}\sum_{i}(m_{i}(w)+l_{i}(w)))$,

which is $0(n\log n+K)$. \square

We next introduce a new operation, called right. For a set V of vertical segments,
the operation right (i,j) finds $\nu\in V$ such that $\nu=\min\{\nu’|\nu’=n+1$ or $[\nu’\in V,$ $i\leq\nu’$,
$j\in L(\nu’)]\}$. That is, right (i,j) finds the first segment in V that meets a line stretching
from a point (i,j) in increasing abscissa. We can execute this right operation by an
algorithm similar to that for the query. In this case, we do not need traversing the list
of $S(w)$, so that the following theorem is obtained.

Theorem 3.3. An intermixed sequence of $O(n)$ right operations and insertions can
be executed in $O(n\log n)$ time and $O(n\log n)$ space. \square

3.3. The deletion problem
Using the operations link and find, we can efficiently solve the deletion problem.

Given a vertical segment ν to be deleted, we do not remove all the elements
corresponding to ν from the data structure, but modify them so that ν will no more
be reported in queries. Specifically, on each s-node w of ν , we remove ν out of
$S(w)$. This makes the ordered partition $P(U(w),S(w))$ update. To obtain the
updated ordered partition, we have only to execute link(ν) . Combining this procedure
with the algorithm QUERY, we can solve the deletion problem correctly. For com-
pleteness, we describe below a procedure for deleting a vertical segment ν .
DELETE:
(i) let w be the root of $T(1,N)$;
(ii) if w is an s-node of ν , then link (ν)

with respect to the ordered partition $P(U(w),S(w))$;
(iii) if w is a t-node of ν , then

let w_{λ} and w_{ρ} be the sons of w ;
if $L(\nu)\cap I(w_{\lambda})\neq\otimes$ then $w:=w_{\lambda}$ and return to (ii);
if $L(\nu)\cap I(w_{\rho})\neq\otimes$ then $w:=w_{\rho}$ and return to (ii);

The following theorem on the complexity can be obtained in a way similar to
Theorem 3.2 (we use Theorem 2.1 in place of Theorem 2.4), so that we omit the
proof.

- 10-

$|^{v}$ S7

Theorem 3.4. An intermixed sequence of $O(n)$ queries and deletions can be exe-
cuted in $O(n\log n+K)$ time and $O(n\log n)$ space, where K is the total number of
reported intersections. \square

4. Applications
(1) Finding the connected and biconnected components of an intersection graph of n orthog-

onal segments [9].

An intersection graph of segment@ in the plane is obtained by representing each seg-
ment by a vertex and connecting two vertices by an edge iff their corresponding seg-
ments intersect. In [9], it is shown that, if a sequence of $O(n)$ deletions and right
operations can be executed in $T_{D}(n)$ time and $S_{D}(n)$ space, the connected and bicon-
nected components of the intersection graph can be found in $0(T_{D}(n))$ time and
$O(S_{D}(n))$ space. Hence, from Theorem 3.3, we see that the connected and bicon-
nected components can be found in $0(n\log n)$ time and $0(n\log n)$ space. Note that,
only for finding the connected components, $0(n\log n)$ -time and $O(n)$ -space optimal
algorithms, that use the plane-sweep technique, are known [41, [81.

Fig.4.1. Rectilinear regi on and a shortest Fig.4.2. Manhattan wi ri ng
path between two points S and T

in respect to L_{1} metri c

(2) Finding a shortest path, in respect to L_{1} metric, between two $gi\nu en$ points in a rectil-
inear region with n edges [12] (see Fig.4.1).

A rectilinear region is a polygonal region whose edges are orthogonal segments, and
may contain “holes. In [12], Kojima, Sato and Ohtsuki showed that the problem can
be solved in $0(n\log n+T_{D}(n))$ time and $0(S_{D}(n))$ space. Hence, it is seen from
Theorem 3.3 that the problem (2) can be solved in $O(n\log n)$ time and $O(n\log n)$

space.
(3) Discerning the existence of a Manllattan wiring of n nets on a single layer (Fig.4.2).

For n pairs of points, called nets, on a grid, a wiring connecting all the pairs of
points by wires along grid lines is called a Manhattan wiring if the wires do not inter-
sect one another and no wire has more than one bend. This problem was first con-
sidered by Raghavan, Cohoon and Sahni [201, who gave $0(n^{3})$ -time algorithm.
Masuda, Kimura, Kashiwabara and Fujisawa [171 gave an $0(n^{2})$ -time algorithm by
considering an intersection graph of possible wires and employing depth-first search
technique on that graph. Imai and Asano [91 gave an efficient implementation of their
algorithm. Using the implementation with the data structure considered in this paper,
we obtain an $O(n\log n)$ -time algorithm for this problem (3).

- 11 -

258

Fig. 4.3. Maximum number of Fi g.4.4. Minimum number of parti tion
non-intersecting segments into disjoint rectangles

(4) Finding, among n orthogonal segments such that no two of horizontal ones and no two
of $\nu ertical$ ones intersect, a maximum number of non-intersecting segments (Fig.4.3).

This problem is equivalent to finding a maximum independent set of an intersec-
tion graph of those segments, and, in this case, the intersection graph is bipartite, so
that a maximum independent set can be found quickly. Combining the techniques
developed in [91 with the data structure for the deletion problem, we can show that
this problem can be solved in $O(n^{3/2}\log n)$ time and $O(n\log n)$ space.
(5) Partitioning a $gi\nu en$ rectilinear region with n edges into a minimum number of disjoint

rectangles (Fig.4.4).
Algorithms for this problem w\‘ere given in [151 and [191. The main step of those

algorithms is the problem (4), and so we can solve this problem in $O(n^{3/2}\log n)$ time
and $0(n\log n)$ space.

The above problems are applications of the algorithm for the deletion problem.
Here, it should be noted that, concerning the problems $(1\sim 5)$, a simpler data struc-
ture which gives the same results as above is given in Imai and Asano [91 by using
proper structures of those problems. Also, note that a data structure similar to that in
[91 is independently developed in Lipski [141.

We below present two applications of the algorithm for the insertion problem.
(6) Finding the closure of a set of n rectangles with orthogonal sides [161.

A region R in the (x,y) -plane is called closed if, for any pair of points (x_{1},y_{1}) ,
$(x_{2},y_{2})\in R$ with $(x_{1}-x_{2})(y_{1}-y_{2})<0$ which are connected in R , we have (x_{1},y_{2}) ,
$(x_{2},y_{1})\in R$. The unique smallest closed region containing R is called the closure of R .
In [161, Lipski and Papadimitriou considered the problem of finding the closure of a
set of n given rectangles with orthogonal sides (Fig.4.5).

The algorithm given in [161 can be implemented so as to run in $O(n\log n)$ time
and $O(n\log n)$ space by using the algorithm for the insertion problem. Here, it
should be noted that, concerning the problem itself of finding the closure of rectan-
gles, an $O(n\log n)$ -time and $0(n)$ -space optimal algorithm, which is different from
that in [161 and uses the plane-sweep technique, is known [211.

- 12 -

S5$

Fig.4.5. The cl osure of a set of rectangles

(7) Partitioning a rectilinear region into disjoint rectangles by adding $O(n)$ chords one by
one in a $gi\nu en$ order.

This problem can be solved in $0(n\log n)$ time and $0(n\log n)$ space. This prob-
lem can be used in several other problems. Here, we take up the problem of parti-
tioning a rectilinear region into disjoint rectangles in such a way that the sum of the
perimeters of those rectangles is as small as possible. This problem is known to be
NP-complete [111, and several heuristics have been considered. For example, con-
sider the following simple heuristic (see Fig.4.6).

(a) (b)

Fig.4.6. Minimum perimeter partition into disjoint rectangl es
(a) Concave points P with di rected segments l_{P}

(b) Approxi mate sol uti on

(i) For each concave point P in the given rectilinear region, stretch horizontal and
vertical directed segments starting from P into the region until they meet an
edge of the region; take the shorter of the two, and denote it by l_{P} .

(ii) Arrange all the concave points P in the increasing order of the lengths of l_{P} .
(iii) In that order, stretch and add a segment starting from P in the direction of l_{P}

-13-

t60

until it meets an edge of the region or another segment that has aiready been
added to the region.

In this heuristic algorithm, the main step is just the problem (7), and so this heuristic
can be executed in $O(n\log n)$ time and $O(n\log n)$ space.

Acknowledgment
The authors thank Professor Y. Kambayashi of Kyoto University for informing

them of the paper [211.

References
[11 J. L. Bentley: Solutions to Klee’s Rectangle Problems, unpublished note, Depart-

ment of Computer Science, Carnegie-Mellon University, 1977.
[21 B. Chazelle: Filtering Search: A New Approach to Query-Answering. Proceedings

of the 24th Annual IEEE Symposium on Foundations of Computer Science, Tucson,
1983, pp.122-132.

[31 H. Edelsbrunner: Dynamic Data Structures for Orthogonal Intersection Queries.
Report 59, Institut f\"ur Informationsverarbeitung, Technische Universitat Graz,
1980.

[41 H. Edelsbrunner, J. van Leeuwen, T. Ottmann and D. Wood: Connected Com-
ponents of 0rthogonal Geometric Objects. Report 72, Institut f\"ur Informa-
tionsverarbeitung, Technische Universitat Graz, 1981.

[5] H. N. Gabow and R. B. Tarjan: A Linear-Time Algorithm for a Special Case of
Disjoint Set Union, July 1982, submitted to Journal of Computer and System Sci-
ences (also cf. Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, Boston, 1983, pp.246-251).

[6] J. E. Hopcroft and J. D. Ullman: Set Merging Algorithms. SIAM Journal on
Computing, Vol.2 (1973), pp.294-303.

[7] H. Imai and T. Asano: An Efficient Algorithm for Finding a Maximum Matching
of an Intersection Graph of Horizontal and Vertical Line Segments. Papers of the
Technical Group on Circuits and Systems, CAS 83-143, Institute of Electronics and
Communication Engineers of Japan, 1983.

[81 H. Imai and T. Asano: Finding the Connected Components and a Maximum
Clique of an Intersection Graph of Rectangles in the Plane. Journal of Algo-
rithms, Vol.4 (1983), pp.310-323.

[91 H. Imai and T. Asano: Efficient Algorithms for Geometric Graph Search Prob-
lems. Research Memorandum RMI $83- 05$, Department of Mathematical Engineer-
ing and Instrumentation Physics, University of Tokyo, 1983.

[101 H. Imai and T. Asano: Dynamic Orthogonal Segment Intersection Search.
Research Memorandum RMI $84- 02$, Department of Mathematical Engineering
and Instrumentation Physics, University of Tokyo, 1984.

[111 D. S. Johnson: The NP-Completeness Column: An Ongoing Guide. Journal of
A lgorithms, Vo1.3 (1982), pp. 182-195.

[121 I. Kojima, M. Sato and T. Ohtsuki: A Shortest Path Algorithm on a Planar Rec-
tilinear Region (in Japanese). Papers of the $Tec/mical$ Group on Circuits and

-14-

$d\mathcal{L}$Sl

Systems, CAS 83-205, Institute of Electronics and Communication Engineers of
Japan, 1984.

[13] W. Lipski, Jr.: Finding a Manhattan Path and Related Problems. Networks,
Vo1.13 (1983), pp.399-409.

[14] W. Lipski, Jr.: An $O(n\log n)$ Manhattan Path Algorithm. Research Report 141,
Laboratoire de Recherche en Informatique, Universite de Paris-Sud, 1983.

[15] W. Lipski, Jr., E. Lodr, F. Luccio, C. Mugnai and L. Pagli: On Two Dimensional
Data 0rganization II. Fundamenta Informaticae, Vo1.2 (1979), pp.245-260.

[161 W. Lipski, Jr., and C. H. Papadimitriou: A Fast Algorithm for Testing for Safety
and Detecting Deadlocks in Locked Transaction Systems. Journal of Algorithms,
Vo1.2 (1981), pp.211-226.

[17] S. Masuda, S. Kimura, T. Kashiwabara and T. Fujisawa: On Manhattan Wiring
Problem (in Japanese). Papers of the Technical Group on Circuits and Systems,
CAS 83-20, Institute of Electronics and Communication Engineers of Japan,
1983.

[181 B. M. McCreight: Priority Search Trees. Technical Report CSL-81-5, Xerox Palo
Alto Research Centers, 1982.

[19] T. Ohtsuki, M. Sato, M. Tachibana and S. Torii: Minimum Partitioning of Recti-
linear Regions (in Japanese). Transactions of Information Processing Society of
Japan, Vol.24, No.5 (1983), pp.647-653.

[201 R. Raghavan, J. Cohoon and S. Sahni: Manhattan and Rectilinear Wiring. Techn-
ical Report 81-5, Computer Science Department, University of Minnesota, 1981.

[211 B. $Soisalon- So|ninen$ and D. Wood: An Optimal Algorithm for Testing for Safety
and Detecting Deadlocks in Locked Transaction Systems. Proceedings of the 1st
ACM Conference on Principle ofDatabase System, 1982, pp. 108-116.

[221 R. E. Tarjan: Data Structures and Network Algorithms. Society for Industrial and

-15-

