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Geometric Singular Perturbation Theory .
for Electrical Circuits
by
Giko IKEGAMI ,
(BHEBXR #HEW ML HIL)
§1. Introduction

. . . AT .
An electrical circuit 4~ 1is called a network perturbation

of an electrical circuit 4~ if ,& is obtained by adding to

A~ some parasitic elements in a canonical way. T. Matsumoto
asked to the author how can we treat the dynamics of a network .
perturbation A} in relation to the dynamics of 4. The diffi-
culty exist in the fact that the configuration manifolds % -of
j} and I of w, on which the ‘dynamical éystems are defined,
are placed in different spaces. Owing to the propositions in
Secﬁion 2, wé can conquer this difficulty.

| By using these propositions we show two theorems.

Theorem 3.3 .is related to network R-perturbations. In these
perturbations parasitic elements consist of resistors.

Theorem 4.4 is related to network LC-perturbations. In this
situaﬁion the perturbation /& is obtained by adding to &~
parasitic inductors and capacitors. It is well known that the
dynamical system of a network LC-perturbation is reduced to thé
singular perturbation theory of constraiﬁed differential equations.
(111,121,071,1091,(101,(111,(12]). But the situation seems to
have been restricted in a local chart of the cqnfiguration
manifold % (i.e. % have been assumed to be an Euclidean spacé)

- in a fibre bundle [12]. The aim of Theorem 4.4 is the



reduction of the situation to global theories.
The main part of this paper consists of a reformulation

of announcement [5] and the proof of Theorem 3.3.

§2. Fuhdamental propbsitions.

Let G be the oriented and connected graph of the given
electrical circuit wo with resistors, inductors and capacitors.
Let Ck(G) and Ck(G) be the real k-chain complex and a real k-
cochain complex of G, k=0, 1. A state of the circuit &~ is

specified by a current vector i==(il,---,ib) eCl(G) and a

1

voltage vector v==(vl,---,v ) eCT{(G), where Db 1is the number

b

of the branches contained in G. Sometimes, we will use the
notations “Cl(ﬂﬂ and Cl(wW in the meaning of Cl(G) and Cl(G).

The Kirchhoff's law restricts the possible states of -

1

to a b-dimensional linear subspace of Cl(G)><C (G) called

the Kirchhoff space K=Ker 3x Im3*, where 3 °'is the boundary

operator 3:C,(G) ~C,(G) and 3* 1is the coboundary operator

1

1
(G) .

0
0
3* : C(G) »~C

- Y .
2.1 Definition. A graph G 1is a fundamental extension

of G if E is obtained by adding branches to G in the
following way.
(S) Insert finite (may be zero)‘extra branches in series with
each branches of G.
(P) Connect each pair of vertices of G by finite (may be
zero) number of parallel extra branches.

Let T be a maximal tree of G. Then L=GNT is the

. n n
link of T. We can take a maximal tree T of G such that
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(1) T c,%, and (ii) every extra branch inserted by (S) is
contained in %. Consequently, every extra branch Yj added
by (P) is contained in the link E of %. In fact, the
vertices' a,b in the boundary of Y ‘is‘contAined in T.

' So that a, b are contained in %. Hence vy. cannot contained

n S
in T. Therefore, we have

o " N :
- G=TUL, G=TUL : (2.1)
"\ v
T < T, L'c L.

Y] Y
Let T'=T~T and L'=L~L. Then, T' and L' are the graphs

consisting of the extra branches added by (S) and (P) respectively.

V] Y Ny v
tet ¥:c;(® »c,® ana 3x:c’(@ »cl(@ be the boundary
. ‘ N
and coboundary ‘operators. Kirchhoff space of G 1is given by
Y v v . v i Y v
K=Ker 3x Im3*. Since G=GUT'UL', the elements 1e§C1(G)
VR N,V ’ : '
and veC (G) are decomposed as
v v qa Yoo N 5
1 = (lGl»lTlr lL') an v = (V'GI VTII VTl) (2.2)
Put
\ N N
(Ker 3) ., = {ie€Kerd; i., =01}
0 L
v 4 n, 7
(m 3% = (Y e1m §*: Vpo =0} and (2.3)
3 ¥e) 0
Ky = (Ker )OX (Ima*) .
. . r\J
Then, KO is a linear subspace of K.
Define projections
LPER (e > ¢, (6) and
. (2.4)
N
0 et - et
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by : ﬂo(l) = 1.

- , a
2.2 Proposition. . (i) Ty maps (Ker 8)0 isomorphically

: N .
onto Ker o . (ii) ﬂo maps (Inla*)o isomorphically onto Imd%*.
So that (m, x 10y |K0 : Ky >K is an isomorphism.

Let r, 2 and c¢ be the number of the resistors,

inductors and capacitors in circuit 4. Let R, £ and ( be

the subgraph of G whiéhwconsists of the branches that correspond
to the resistors, inductors and capacitors of ', respectively.
Now we have b=r 4+ +c.

The following are the standing hypotheses of this paper:

2.3 Assumption.

(A) The graph of a circuit is connected.
(B) A circuit is time-invariant.
(C) The resistor constitutive relations are characterized

by (ip, vp) elg,

R R
where AR is a r-dimensional submanifold of class CS, s >2,
in Rzrlgcl(R)><Cl(R). AR is called the characteristic mani-
fold of R

In addition, we will set hypotheses about inductors and
capacitors in the next section. When we consider a dyanmical

system of a circuit, A will be assumed to be a manifold of

R

class CF, r>2.

We have the following natural direct sum decompositions.

W) = CLR) +Cy() + c (0) v R x R'x R

clw + ctwy + cto v RY X R*x R®

Q
3
I
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By the hypothesis (C) aboveﬁ the state (i, v) eCl(Mj><Clor)

of 4 1is contained in a submanifold

A=Ay x C;LEUC) X ctweuve) v A X r2 (4¥e)
Here, the 4% denotes to be diffeomorphic. Let_(jr(AR,:Rzr)
be the space of the Cr—mappings of AR into :RZr with Whitney
‘Cr—topology, where we consider :RZr‘ as Clﬂﬁ)><cl(R), Then,
generically in the mapping space Cr(AR':R2§), the manifold
A= AR><R2(1+C) and Kirchhoff space Kb intersect transversely
in IRZb = Clbf)><C10(). This is shown in Theorem 5 [8] in

class Cl case, but the extension to cf-version is trivial.
Hence, we may assume that £ = ANK is a (2 +c)-dimensional

Cr‘manifgld. We say that I 1is the cohfiguration manifold of

the circuit W« . AR is called a characteristic manifold.

f\) .
2.4 Proposition. .Let G be'a fundamental extension of

G. Let A be a ct submanifold in C, (G) XCl(G) having
transverse intersection with the Kirchhoff space K. Put
Y 1 - a 1.,V v VARV
A= A XCl(L'lJT') x C (L'lJT')c:Cl(G) xC"(G), £ = AnK and

v
ZO g Zr\KO. Then (i) the following intersections are transverse;
Vo v 1. ' "y . v N ,
AMK in C;(G) xC7(G) and IMK, in K so that I and 2,

r . - 0 . .
are C manifolds, and (ii) Mo X T maps ZO dlffgomorpblcally

§3. Network R-perturbation.

Y}
3.1 Definiton. A circuit 4 1is a network R-perturbation

"
of A if Aw 1is obtained by adding branches to A by following

ways:



(S) To every branch of 4 insert in series an extra branch
of resistor such that the set of these inserted resistors has
"small resistance" (may be zero).
(P) Connect each pair of vertices of A by a branch of resistor
such that the set of these resistors has "largevresistance"
(may be «).

Here, the above "small resistance™ and."large resistance"
are in the following meanings. Let 020 and K_ be the set
of the branches of the resistors which are added to 4 by

(S) and (P) above, respectively. Then "small resistance" means

that the characteristic C -manifold AOCZCl(&O)><Cl(R0) is
ct close to the subspace Cq (Ry) X{O}c:Cl(ﬁ%)><ClQRO) in the
space Cr(Cl(RO), Cl(ﬁ%) XCl(ﬁb)) of all ¢t mappings,

Cl(RO)-+Cl(ﬁb) xCl(&b), with Whitney ct topology. "Large
resistance" means that Am<:Cl(Rw) XCl(ﬁ;) is ¢ close to
{0} xCl(&;)czcl(ﬁ;) xCl(km).~ If they are "sufficiently close',

. Y]
we say that A& 1is a "sufficiently small"network R-perturbation

of .

3.2. Lemma. Let K be a linear subspace and A be a

c®  submanifold of an Euclidean space R" such that they have

transverse intersection. Let F : A~ IR be an embedding such

that it is a ct perturbation of the identity mapping.

‘Then, there is a c* embedding G :Z = ANK~+K such

that G(Z) =F(A) NK. Especially, G can be taken arbitrarily

close to the identity mapping, if F is sufficiently close

to the identity mapping.

If we replace the differentiability of G€ by Cr—l,
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then this lemma becomes well known. When r =1, this is
Proposition 1 of ([8].

¥ o
Let 4 Dbe a network R-perturbation of ¥ and A Dbe
n

the characteristic manifold, i.e. = A><Ao>(Am. Let Z and

C be the sets of inductor-branches and capacitor~branches,

Y
resp. % = (Ad(Cl(iLJC)><Cl(ilJC))r1k is the configuration

v N Y}
manifold of 4, where K 1is the Kirchhoff space of X . Denote

K = (A><(Cl(ﬁo)><0*) x(Cl(Ew) x0,)), where O*escl(ﬁo)? and

04 eCy(R) are zero vectors. Put I = (K><C1(ItJC)><Cl(I\JC))

-
n%, By Lemma 3.2, there is a diffeomorphisms f :Z +I which

' ‘ v
is arbitrarily close to the inclusion mapping I

A" . .
~K if A 1is

sufficiently close to A.

Attention to the equality,

-Z-={A><C (£ ud) £UC 1 &, UR™) l(ROU(Rm))}

NKor

where K, = {(i, v) e% ;iR =0, Ve =0}. Since the graph of
£ 0

n : - - .
A" 1is a fundamental extension of that of A, by Proposition 2.4,

we have U xno maps I diffeomorphically onto the configuration

. n, N
manifold §y of A, where To iCl(N7-+ClOT) and ﬂo :Cl(ﬂ)
> Clof) are the projections defined by (2.4).

Let the Cr"l non-zero real functions ‘Lj(ij) and Ck( k)

be the inductance and capacitanée of the inductor Lj and the
capacitor Ck of the circuit respectiveiy. The dynamcial
system of A is the Cr—l vector field on the configuration ct

manifold I of 4°, which is defined by the following equations;

=.lr 2, crcy Q/. ‘ (3.1)
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dv
i, = C, (v

k k k)(F ’ k = l; 2, c**,C. (3.2)

Here, i. and vj denote the current and voltage, respectively,

of the inductor branch Lj, and i v similarly of the

k' 'k
. . r-1
capacitor branch Ck. Lj(lj) and Ck(vk) are C real
valued functions, called as the inductance of 'Lj and the
capacitance of Ck’ respectively.

We have dimI = 2+c. A point x in I is said to be

a singular point, if the differential

1

d(m|I) (x): T I — Cy &) xC7(C)

does not have full rank. If otherewise, x  1is called a regular

point. Here,

e Cy W) x ) — c, @) <ctiec) (3.3)

is the natural projection, and TXZ the tangent space of 1L

at x. The set Zr of all regular point of ¥ 1is called a

regular domain, which is an open set of I. WA is said to be
reqgular if I = Zr. If A~ 1is regular, the vector of the
dynamical system is defined at every voint of I.

Let M and N be ct

manifolds and f :M>N be a C
diffeomorphism.. Let X ‘bera vector field on M. Then a vector

field Y = £,X on N is defined by

Tex T (df)x " Xy

where Xx denotes the vector Qf X at x.

Let X be the dynamical system of 7, which is the vector

field on L. Let X be the vector field on = defined by



the equations (3.1) and (3.2). Then, we have

((n x1% (D), X = x.

0

Hence, we may identify X with X. Let X be the dynamical

system of A>, which\is a vector field on g. There is a

diffeomorphism £ .z +,% which is a perturbation of the inclusion

mapping f :E > E. Therefore the vectors ix and kfx are close.
Let £r(M) denote the space of all ct vector field on

a manifold M with Whitney c*t topology (cf. [8]1). A vector

field X 1is structurally stable, if there is an open set U

of X in %?(M) such that for every Y €U there is a homeo-
morphism h :M~->M mapping every orbit of X onto an orbit of
Y with preserving the orientations of orbits.

§ and-‘f*k has the’same orbit structure, ihfact, £
maps every orbit of % onto an orbit of f*§. If f is

‘ _ o - - N - .
sufficiently close to the inclusion, then £,X 1is arbitrarily

close to X in {r—l(Z).

Therefore, we have proved the following theorem.

3.3 Theorem. Let 4 be a regular electrical circuit

which dynamical system X is structural stable. Then, the

N :
dynamical system X of a sufficiently small R-perturbation

;; of N has the same orbit structure as X, that igvthere is

Y
a diffeomorphism I ~I of configuration manifolds which maps

every orbit 924 ¥ onto an orbit of X with preserving the

orientations of orbits.
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§4. Network LC-perturbation.

V]
4.1 Definition. A circuit A& 1s a network LC-perturbation

of «, if ,;’ is obtained by éddingvbranches to &~ Dby following
ways:

(8) To every branch of A insert in series at most one extra -~
branch of inductor with small non-zero inductance.

(P) Connect each pair of vertices of &~ by at most one extra

branch of capacitor with non-zero small capacitance.

Here, small inductance means the function Lj(ij) in
(3.1) which is c*™! close to the constant zero map in Whitney
Cr—l topology, and similarly for small capacitance.

AV}
4.2 Definition. A network LC-perturbation 4 of & is

. , n ; .
called a regularized network perturbation, if 4~ 1is regular.

4.3 Remark. If every resistance of A~ 1is current controled

or voltage controled, then there is a regularized network pertur-

bation. This is verified using the method of [ 4].

. Y]
To a regularized network perturbation 4, a family of

Y
networks Ufé ;0<e <€O} is defined as follows: For € =0,

V) - . N . v

,Mb =N. For ¢ >0, the graph of Afe is the same as A~. If

Li(il)’ -~-,Li(iz) are the inductances of parasitic inductors
ny V) C

of &, -then /Vk has the parasitic inductors of inductances

eL! (il'), « e, €L

(i,) at the same branches of the graph, has

1 272
the parasitic capacitors similarly, and has the same elements
N , ,
as A~ at every other branches.
Y]

The graph of ,Mg, € >0, is a fundamental extention of that
v n,
of A . AfE has the same configuration manifold I for every

e >0. By Proposition 2.2 and Proposition 2.3, there is a

- 10 -
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N
submanifold ZO in I such that ZO is mapped by o Xno

diffeomorphically onto the configuration manifold I of A,

where L and no are defined similarly as 2;4.
Y]

v} .
Let Xe be the dynamical system of Afé, which is a vector
n ") N

field on I. Here, we describe Xg in a local chart of I.
Let £, C and ® be the inductors, capacitors and resistors
of A Q;;‘z) and (' be the_parasitic inductors and capacitors
of A}; Since A; is regular, then for a small neighborhood U
N

of every point in I the mapping Tw:U -+ Cl(itJi?)><Cl(ClJC')

is a diffeomorphism onto the image, where w 1is the projection

defined similarly as (3.3). Hence, U 1is the graph of the
mapping, so that U is canonically coordinated by (iL, iL"
VC ,Vc,).

vy = fL(iL ’iL' ,VC‘,VC.). ﬁ

§L' = fL.( . | )

e T o ' | C4.1)

o= fc.( . )4

ip = £l ),

ve = ER( )

V) - .
Using this coordinates, X. 1s expressed by the following

equation.
L iy = £ G i, v Vo)
C(VC)'GC ) fc( o ! ’ ‘ (4.2)
s-L'(iL,) i, = fL,( . ) -
€-C'(VC,) Vor = fc,( .- )
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Putting € =0 we have

L(1L)-1L = fL , C(vc)~vC = fc
(4.2)0
0= £, 0 = £,
. ’\J . .
Since Zow={(1,~v)62 PV =0, ic.==0}, then (4.1) implies that

(4.2)0;is the equation of the dynamical system of 4~ on ZOfTU.

A"}
Define a vector field YE on Z: by

N
e-XE ’ if e #£ 0
Y. = { y : : (4.3).
lim €-X_, if € =0
€
e>0
Since 'YO - vanishes identically on ZO, the differential
n, v
dYO(x) :TXZ-+TXZ induces a linear map
Y Y]
QYO(X) : TXZ,/TXZO —> TXZ,/TXZO
on the quotient space. Let (ZO)Rc:ZO be the open subset
where QY0 is invertible. (ZO)R is called the normally
regular domain of I Let (ZO)Sc ZO be the open subset

0"
where all the eigenvalue of QYO has negative real part.

(ZO)S is called the normally stable domain of ZO. For each
X e(ZO)R ' TXZO has a unique complement NX which is invariant
under dYO(x). In fact NX is the subspace of TXZO generated

by (iL, ,vc,) in the above canonical coordinate system. NX

N
is a realization of TXZ,/TXZO. Let Vv be the projection
J V]
v o: TZI(ZO)

g = (TZH[(Zy)g) ®@ N = TZ,[(Z,)p-

In (ZO)R the reduced vector field XR is defined by




n .
where we regard Y _(x) as a vector field on I x [0, €g) -

We have the following theorem.

n
4.4 Theorem. Let LM; 0<e <ao} be the family of networks

' n
associated with a reqularized network perturbation s of a

v
network 4. Let ¢ and ¢ be the configuration manifolds of

r\l .
A~ and jfg(g #0), respectively.

: ; n
Then, there is a canonically defined submanifold ZOC L,

which iE identified with 3} 'Qi the natural projection

0. . o ,
T X T 7(1ﬁ ,Vﬁ) B (1N ,VN). Let X_ be the dynamlcal system

N iy . ) :
2£ /{; on g, X ~the dynamical system of 4 on ZO' and Y€

the vector field (defined by (4.3)). Then we have,
(1) (no xno)—image of nérmally regular domain (Zo)ﬁ coincides
. . ' : , 0 o

with the reg?la; domain §_ ,‘l.e. (mg xm )(:O)R =1

(ii) X_ = X, where X is the reduced vector field (defined

R
Ez_(4.4)).

R

4.5 Remark. This thoerem enable us to reduce the situ-

ation near the normally stable domain to the main theorem of

[N. Fenichel, 3]. By Fenichel's theorem, there is a unique

. . . € Y , o €
invariant manlfold Dy of X_ near j(ZO)S » with Xele
close to XI(ZO)S , and that in a neighborhood of (I;) the

€

V]
motion of ng is asymptotic to DS’

4.6 Remark. By the forthcoming paper [6] the following

fact holds under a generical assumption: . Let- S be the set of
singular point of A~ in the boundary of the normally stable domain
(zo)s, There is an open and dense subset T cS such that, if
a trajectory of X come to a point in T, then it jumps into

a point in another component of (20) along a unique orbit.

S
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this jumping is in the sense of singular perturbation.

4.7 Remark. The part (i) of the Theorem means that,

though there may be many regularized network perturbation of

A+ the important domain ‘(ZO)R is unique in this sense.
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