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NORMALITY OF BLOWING-UP
BX-x#H %ﬁﬁﬁmgﬁﬁ ( Shiro Goto)
§1. Introduction.
Let A be a Noetherian local‘ring with maximal ideal m and
d =dim A >0 . Let q = (al,...,ad) be a parameter ideal in A
and put R = @ qn‘, the Rees ring of q . In this lecture we

nz0
shall explore when the scheme Proj R is normal and our result is

stated as follows:

Theorem(1l.1). Suppose that depth A > 0 . Then the following
conditions are equivalent.

(1) Proj R dis normal.

(2) A 4is a regular local ring and lA(q-+m2/m2) >d-1

When this is the case, the ring R 1s a normal ring with divisor
class group Z . (Here lA(q-kmg/mz) stands for the length of

the A -module q+m2/m2 .)

In [6] K. Yamagishi also tackled with this theme and mentioned
the equivalence of (1) and (2) in (1.1) with a rather strong
assumption that A is Cohen-Macaulay (cf. [6, Chap. 4, (1.3)1);

our theorem guarantees his assumption can be replaced by the weaker
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one that depth A > 0

We will prove Theorem(l.l) in the next section. As is noted
in (1.1), the ring R 1s normal if (and only if) Proj R is
normal and depth A > 0 . The normality of R 1itself is charac-
terized in divers manners; especially, appealing to a recent result
of J. Watanabe [7] on m- full ideals, we can prove that R 1is
normal if and only if g 1is m-—full. As the fact may have its
own significance, in §3 we will discuss this subject a little
more closely.

Throughout this lecture let A denote a Noetherian local
ring with maximal ideal m . We assume that dim A =d > 0 and
fix a parameter ideal q = (al,...,ad) in A . Let R = ngo a

be the Rees ring of ¢

§2. Proof of Theorem(l.1l).

Let B = A[x/all xeq] and P =mB . To begin with we note

Proposition(2.1). (1) dim B = 4
(2) P 1is a height one prime ideal of B and P = ValB .
(3) The elements ai/a1 mod P (2<is<d) of B/P are

algebraically independent over A/m .

Let pe&eSpec A with pSéal . We put I(p) = pA[l/al][\B
Then I(p)&€Spec B , I(p)NA =p , and BI(p) = Ap . Let x¥ =
x mod p for each x€A

Lemma(2.2). B/I(p) = A/p[x*/a§| xeq] as A-algebras.
In particular dim B/I(p) < dim A/p
Proof. By definition we get an embedding B/I(p)C;A/p[l/af]

of A -algebras, whose image coincides with A/p[x*/ail b =Xl
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As dim A/p[x*/afl xe€q] £ dim A/p by dimension formula, the

second assertion follows from the first.

Corollary(2.3). (1) Ass B = { I(p) | peAss A and pPay }
(2) { IeSpec B | dim B/I =4d } = { I(p) | p€Spec A and dim
A/p =d}t =1{IeSpecB | IEP }

Proof. Let Ie&eSpec B and put p = INA . Then if pséal ,

we have I = I(p) as A[l/al] = B[l/alj . Hence we get (1),
because a; is B -regular and Ap = BI(p) . Consider (2).

First of all take Ie€eSpec B with dim B/I = d . Then as dim BI
=0 , we may write I = I(p) with p = INA . Notice dim B/I =
d < dim A/p by (2.2) and we get dim A/p = d . Conversely let
pe Spec A and assume dim A/p = d . Then p;éal clearly. We
put I = I(p) . Recall that B/I = A/plx¥/a¥ | xeql as A-alge-

bras and we see by (2.1) that the ring B/P+I = (B/I)/m(B/I) 1is
a polynomial ring with d-1 variables over the field k = A/m
Hence the canonical epimorphism B/P - B/P+I of k -algebras must
be an isomorphism, because B/P and B/P+I are k - isomorphic;
thus PZ2I . Finally let I€ Spec B “with IQP . Then dim B/I

=d, as dim B/P=d-1 —— this completes the proof of (2).

Let e(A) (resp. e(BP) ) denote the multiplicity of A

(resp. BP ).

Lemma(2.4). e(BP) > e(h)

Proof. Let h :A[T2,...,Td]-+B be the A -algebra map defined
5se++sTy are indeterminates -
T,-a, (2<isd).

by h(Ti) = ai/al (2<i<d), where T

over A . Let K = Ker h and put fi =2,

nKC(f2,...,f

a1 a’
n>1 , because A[l/al] = B[l/al] . Now let C = A[Tz,...,Td]M

Then K:D(fg,...,fd) . Notice for some integer
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where M = mA[Tz,...,Td] and consider the exact sequence 0 — L
— C/(fzs---,fd)c — B, — 0 of C-modules. Then as agL =0
and as al:'f2,~--, fd form a system of parameters for the local

ring C , we have IC(L) < ® and therefore e(BP) = e(C/(f2,...

>

£40C - Recalling that e(C/(f,,...,f;)C) 2 e(C) , we get the
e(A) .

required inequality e(BP);:e(A) , as e(C)

]

We say that A 1s unmixed 1f dim ﬁ/p d for any pe€Ass & )
where A denotes the completion of A . We shall use the following

criterion of regularity.

Proposition(2.5)([4,(40.6)]). A is a regular local ring if and

only if e(A)=1 and A is unmixed.
The next result (2.6) is a key theorem in this lecture.

Theorem(2.6). Suppose that A is unmixed. Then the following
conditions are equivalent.

(1) A 1is a regular local ring and lA(q-+m2/m2) >d-1

(2) BP is a DVR.

(3) Proj R is normal.

Proof. (3)=(2) Since Spec B appears as one of the affine
charts of Proj R , this implication is clear.

(2)=(1) As e(A)==1 by (2.4), we get A is regular (cf.
(2.5)). We will prove that 1A(q-+m2/m2) >d-1 . Let us maintain
the same notation as ianroof of (2.4). Notice that K = (f2,...,
fd) in our case, since 8y 5eer 2y is an A -regular sequehce.

, T

Hence £ is a part of a minimal system of generators for

PEEERE#
the maximal ideal mC of C , because Bp= C/(fg,...,fd)c is a

DVR by our assumption. Thus 1A<q-+m2/m2> = lc(qC-FmZC/mgc) >



d~-1 , as qC = (al,f2,...,fd)c

(1)=(3) As the ring R is Cohen-Macaulay (cf. [1]), the
scheme Proj R satisfies the condition (82). So it is enough to
check that all the rings A[x/ai| xeqg] (1l<i<d) satisfy the
condi tion (Rl)" We may assume without loss of generality that 1

I
is a DVR in this case. Suppose that

=1 . Let I€Spec B with dim BI=1 . Then if I$a1 s, B =

Ap where p = INA vand BI

Isa, - Then we get I=P by (2.1)(2). We must show that B

is a DVR. First of all notice that m = (a

P

..,ai,..,ad,b) for
some 1<i<d and b€m , because 1A(q-+m2/m2) >d-1 . We put
J=bB, . Assume 1>2 and write a, = ¥ a.x. + by with x. .,y
P \ 1 5#17377 J
€ A . Then as ak==alak/al for all k , we get al(ai/al - j;i,i
- & -
(aj/al)xj Xl) J . Hence ale-J , because ai/al j;i i(aj/al)xj
5
1 & P (cf. (2.1)(3)). We can similarly prove that a, € J for

the case 1=1 too. Thus mBP = bBP , which gurantees that BP

is a DVR. This completes the proof of (2.6).

- X

Remark(2.7). Unless A is unmixed, the implication (2)=(1) in
(2.6) is not true in general even though A is an integral domain
and B is a regular ring. In fact according to M. Nagata [4],
there exist a Noetherian local integral domain A of dim A = 2
and a system a,b of parameters for A which satisfy the follo-
wing conditions: (1) A 1s not a regular ring;

(2) B = A[b/a] is a regular ring.

Proof. Take a Noetherian local integral domain A of dim A
= 2 so that (1) the normalization A of A is a regular ring
and only has two maximal ideals, say M and N ; (2) m = MNAN ;
(3) A contains elements x and z such that M = (x-1,z)A , N

= xA , zZz€N , and A = A+ Ax . (Such a ring A must exist, see
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[4, p.204].) Then A 1is not regular as A#LA . We put a-=xz
and b=x(x-1) . Then a,b form a system of parameters in A
Let us check that B = A[b/al 1is a regular ring. Recall that =ze
m = MNN . Then we see BDA , as B contains b/a=(x-1)/z and

A[(x-1)/z] . Let Q be a

1]

as A = A+A(x-1) by (3); hence B
prime ideal of B and put p = QNA . If Q3z , then Q conta-
ins Xx-1=2z(x-1)/z and so we have p=M by (3). Therefore we

get Bp = EM[(X—l)/z] , which is a regular ring because x-1, 2

is a regular system of parameters for ‘KM (cf. e.g. [2,(4.6)]).
Hence the local ring BQ = (Bp)QB is regular. If Q#&z , then

BQ==Kp as B[1/z] = A[1/z] and we have BQ is a regular ring

alsc in this case.

Corollary(2.8). The following conditions are equivalent.

(1) BP is a DVR.

(2) The completion R of A contains a unique prime ideal p
d

such that dim A/p = Furthermore A/p 1s a regular local

~ 2

ring, la(af+m ﬁ-kp/m2ﬁ-+p) >d-1, and ﬁp is a field.

Proof. We put C = ﬁ[x/al['XE-qj and Q=mC . Then C is
a fiat extension of B as C = ﬁ@AB . Notice Q=PC and P =

QNB . Then we get CQ is a DVR 1if and only if BP is; thus we

may assume that A 1is complete.
(L)=(2) By (2.4) we get e(A)=1 . Consequently by the

formula e(A) = l(Ap)-e(A/p) (cf. [4,(23.5)]1),

z
p€Spec A , dim A/p =d
we find that A contains a unique prime ideal p with dim A/p =
d . Furthermore A/p 1is a regular local ring by (2.5), as e(A/p)
=1 . Clearly Ap is a field. Now we will prove that 1A(q+wn2+

/m2+p) >d-1 . Let =I(p) . Then by (2.3)(2) we see I?P s



whence IBP==O as BP is a DVR. On the other hand we have by
(2.2) an isomorphism B/I = A/p[x*/ai] xeq] of A-algebras.
Thus the local ring (A/p[x*/ail XErq])P is a DVR and we conclude
by (2.6) that 1A(q-Fm2-Fp/m2-Fp) >d-1

(2)=(1) Let I=1I(p) . Notice that I 1is, by (2.3)(2), a
unique prime ideal of B such that I$I>. Then we get that IBP

=0, as BP is a Cohen-Macaulay ring and as BI=.Ap is a field.
Recalling the isomorphism B/I = A/p[x*/ai !X(Eq] ,  we have that
BP = BP/IBP is a DVR because by (2.6) so is the local ring (A/p

[x*/a¥ | xe al)p

Corollary(2.9). Assume that A 1is a homomorphic image of a Cohen-
Macaulay ring and let a==al be a non-zerodivisor of A . Then
the following conditions are equivalent;

(1) B is a normal ring.

(2) (a) A[l/al is a normal ring.

(b) A contains a unique prime ideal p such that dim A/p
2

d . Furthermore A/p 1s regular and 1A(q-+m,-+p/m2-+p) >d-1

(¢) For each Q€Ass A with Q#p

1 such that aNe qN+1 +Q

, there is an integer N

v

Proof. (1)=(2) As A[l/a] = B[1/a] , we see A[l/a] 1is a
normal ring; hence A is reduced as ACA[1/a] . Notice that B
is integrally closed in the total_quotient ring of A , as it 1is
normal. Then we get by (2.2) and (2.3)(1) an isomorphism B = QGQSSJ
A/Q[x*/a¥ | xeq] (#) of A-algebras. Recall that e(A)=1 Dby
(2.4) and we find by the formula e(A) = ) 1(A )

pE€Spec A, dim A/p =d 1S
e(A/p) that A contains a unique prime ideal p of dim A/p = d

Moreover A/p 1is, by (2.5), a regular local ring because A/p 1s
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unmixed by our standard assumption. Let Q€Ass A such that Q#
D Then we get by the isomorphism (#) that A/Q[x*/a* | xe q] =
;- (A/QLx*¥/a* | xeql]) , since P=mB is a prime ideal of B and

since A/plx*/a* | xe q] # m.(A/plx*/a%* | xeql) by (2.1)(2).

Hence we find that By = (A/plx¥/a¥ | xe q])P is a DVR and that
the element a* = a mod Q@ 1s invertible in the ring A/Q[x*/a¥* | x
eql . Thus 1,(q+m°+p/m°+p) > d-1 by (2.6) and a'eq 't +Q

for some N2>1

(2)=(1) Let Je3pec B and we will show that the local
ring Bj; 1is nérmal. If J$pa , this follows from (a) because
B[1l/a] = A[1l/a] . Assume J>a , or equivalently JDP

Claim. J2I(Q) for any Q€ Ass A such that Q#p
For, suppose that J2I(Q) for some Q€ Ass A with Q#p
Then as a* = a mod Q@ is invertible in the ring A/Q[x*/a¥ | xe q]
tcf. (c)), we find by (2.2) that I(Q)+P =B whence J=B ——
this is a contradiction.

By this claim and the embedding BC I AB/I(Q) (recall

QeAss
that M\ I(Q) =0 in B , see (2.3)(1)), we get that the ring
Q€Ass A ,
BJ appears as a local ring of C = A/p[x¥/a¥ | xeq] . Hence BJ

is normal by (2.6).

Example(2.10). Let S = k[X,Y,Z,W]] be a formal power series ring
over a field k and let I = (X)ON,Z2)N X-Y,Z,W) in S . We

put A =8/T, a=2°-%Xmod I, b=Y-Xmod I, and c = W-X

mod I . Then g = (a,b,c ) 1is a parameter ideal in A and B =
Alb/a , c/al is a normal ring.
Proof. To check that q 1is a parameter ideal in A 1is

routine. To see that B is normal, let x =X mod I , y. = Y mod

I and z =Z mod I . Then m = (x,b,c,z) ;3 hence b,c form a
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part of a regular system of parameters for the ring A/xA . As a
€ (q2-+<y,z))/\(q2-+(x-y,z,w)) and as A[l1/a] is normal, our

assertion follows from (2.9).

Lemma(2.11). Let I = (bl,...,bs) be an m- primary ideal of A
Then A[x/bi| Xx€I] # m-A[x/bil xe€I] for some lxgxigs
Proof. Assume the contrary and take an integer N2x=1 so that
N N . n, n+l
= = . mod
biéwm[ for all i . Let G ngo /1 and put fi o,

12 . Then as f?e mG , we find that all the fi's are nilpotent

in G , whence d = dim G = 0 —— this is a contradiction.

In the situation of (2.11) we don't have always A[x/b, [X€
I] # m-A[x/biI x€I] . (For instance, consider A = kﬂtz,tsI

and I = (t2,t3) .) This is, of course, the case when D .5 D

10 5

is a system of parameters in A , cf. (2.1).

We now prove Theorem(1l.1l).

Proof of Theorem(l.1). (2)=(1) See (2.6).

(1)=(2) According to (2.6) we have only to show that A 1is
unmixed. We put, as in Proof of (2.8), ¢C = ﬁ[x/ali x€e q] and
Q=mC . Let N Dbe a maximal ideal of C such that NDQ

Claim 1. dim CN/QCN = d-1
Proof. The ideal N/Q 1is maximal in the ring C/Q and so we
have that dim CN/QCN = d-1, since C/Q 4is a polynomial ring

with d-1 variables over the field A/m , cf. (2.1)(3).

Claim 2. dim CN/I = d for any I€Ass Cy

Proof. Notice that AssgB/a;B = {P} as B 1is normal. Then we

R Ava = E d
have ASSCC/alC {Q} as B/alB C/alc . Let IE&Ass Cy an

take JE€ Ass CN/a so that J2I (this choice i1s possible as

¢, "N 214N
aq is CN—regular, cf. e.g. [3,(15.D)]). Then we must have , as
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ASSCNCN/alcN = { QCN } , that J==QCN whence dim CN/J = dim CN/QCN
=d-1 by Claim 1. Thus dim CN/I = d since JZT

Let us check that A 1is unmixed. Assume the contrary and
pick D€ Ass A so that dim A/p < d . Then we get by (2.11)
@/p[x*/ail x€ql # m-(ﬁ/p[x*/ail x€ql) (#) for some 1l<ic<d ,
where x¥ = x mod p for each xel . We may assume 1=1
Recall that the ideal q 1s generated by non-zerodivisors of A ,
because depth A > 0 by our standard assumption. Hence we may
further assume that a==a1 is a non-zerodivisor of A . Then as
ppa , we get by (2.2) an isomorphism C/I = B/p[x*/a* | x€q] of
R - algebras, where I=1I(p) . According to (#) this isomorphism
guarantees that Q+I # C , whence we may choose a maximal ideal
N of C so that NDQ+I . Then as I€Ass C by (2.3)(1), we
get dim CN/ICN = d by Claim 2 —— this is gquite impossible since
by (2.2) dim CN/ICN < dim C/I < dim B/p < d . Thus A is unmixed.

The proof of the last assertion of (1.1) shall be given in the next

section, see (3.1).

Remark(2.12). Proj R 1s not necessarily regular even though
Proj R 1is normal and depth A > 0 . In fact, provided d2>22 and
depth A > 0 , Proj R 1s regular if and only if A 1is a regular

local ring and q=m (cf. [2,(4.6)]).

§3. Normality of the ring R
In this section we discuss the normality of the ring R =

® qn and our goal is

nx0

Theorem(3.1). The following conditions are equivalent.

(1) A 1is regular and 1A(q-km2/m2) >d-1

- 10 -
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(2) A 1is an integral domain and q 1is integrally closed.

(3) g is m- full.

() R is normal.

When this is the case, the divisor class group C(R) of R 1is

an infinite cyclic group.
To begin with we recall the definition of m- full ideals.

Let I be an ideal of A . Then we say that I 1is m- full

1f mI:x =1 for some XE€m

The concept of m- full ideals was introduced by D. Rees [5]
and basic properties of such ideals are discussed in [7], a few
of which we need to prove (3.1).

Let VA(M) denote the number of elements in a minimal system

of generators for a finitely generated A -module M

Proposition(3.2)([7, Theorem 2 and 3]). Let I be an m- primary
ideal of A and assume that I 1is m-full. Let xem such
that mI:x = I . Then VA(J) < VA<I) = 1A(A/I+XA)-FVA(I+xA/xA)

for any ideal J of A containing I

Let I Dbe an ideal of A . Then an element x of A is

called integral over I 1f x satisfies an equation XN4-chN—1
terotcy =0 with c, €I
1

to be integrally closed if every element of A which 1s integral

(1<1<N). Recall that I 1is said

over I ©belongs to I

The next result i1s due to D. Rees and a proof may be found

in [7] (cf. Theorem 5).

Proposition(3.3). Suppose that A is an integral domain with

- 11 -



infinite residue class field. Then every integrally closed ideal

of A 1s m-full.

proof of Theorem(3.1). (4)y=(2) Let N = mR-FR+ and P€ Ass R
Then PCN , as P is graded and as N 1is a unique graded maximal

ideal of R . As RN is normal, it 1s an integral domain and so

PRN = 0 , whence P=0 . Thus R is an integral domain and so A

is. Let us identify R with the A - subalgebra A[cT|c€qg] of

A[T] where T 1is an indeterminate over A . Let c¢&A which is
integral over q . Then as ¢T 1s integral over R , we get ¢T
€ R ; hence c¢cT&€gT , that is c€&€q . Thus ¢ ié Integrally
closed.

(3)=>(1) Take =x€m so that mg:x = q . Then by (3.2) we
find that vA(m) < vy(a) = 1,(A/q+xA) +v,(q+xA/xA) . So A is a
regular local ring, since VA(m) < VA(q) = d . Furhtermore we get
lA(A/q+XA) = 1 , because lA(A/q+XA) > 1 and VA(q+XA/XA) > d-1
Thus q+xA = m , that is 1A(q+m2/m2) >d-1

(2)=(1) Passing to the ring A[U] where U 1is an

mA[U]

indeterminate over A , we nmay assume that the field A/m is
infinite. Then as q is m- full by (3.3), our implication
follows from (3)=(1).

~

(1)=(3) Let xe€m with m = (aj,..,a .»a4,x) for some

IEE
l<ig<d . Then we get 1A(A/q+xA)-+vA(q+xA/xA) = lA(A/m)-+vA(m/xA)
=d (a) . Recalling the exact sequence 0 — mq : x/mg — A/mq
=N A/mq — A/mg+xA — 0 of A -modules, we have 1A(mq : x/mq) =
lA(A/mq+xA) (b) . Notice that lA(A/q+XA)-+VA(q+XA/XA) = 1A(A/
q+xA)-+lA(q+XA/mq+xA) = 1,(A/mg+xA) . Then we get DY (a) and (b)

that 1,(mq:x/mg) = 1,(a/mq) (c) , as 1,(q/mq) = vy(q) =d

- 12 -
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Since mq:xDq , it follows from (c¢) that mgq:x =q . Thus (¢

is m- full.
(1)=(4) Let N =mR+R, . Then as Proj R is normal (cf.

(2.6)), we get that the local ring R is normal for any prime

P
ideal P ( P#N ) of R . On the other hand as R 1s a Cohen-

Macaulay ring (cf. [1]), we see depth RN = dim RN =d+1 2 2 ;

so the local ring R must be normal too. This completes the

N

proof of the equivalence of the conditions in (3.1).

Let us compute the divisor class group C(R) of R . We
may assume d=>2 . Let e==eq(A) and choose a minimal system bl’
.sby of generators for m so that g = (bi,bz,...,bd) . We

- put p==blA » P =pA[T]NR , and Q=mR . Then we have
Claim. (1) P and Q are height one prime ideals in R

(2) PNA =p and QNA =nm

(3) bR =PNQ

Proof. (1) As R/P = RA/p(q+p/p) , we get dim R/P = d ; hence

dim Rp = 1 . Recall that R = A[Tl,;..,de/I as A -algebras,

where C = A[Tl,...,Td] is a polynomial ring over A and I

denotes the ideal of C generated by all the 2 x 2 minors of the

Ty T, eee Ty
matrix . Hence R/Q = A/m[Tl,...,Td] and we get

by by o by

Q=mR 1is a height one prime ideal of R

= O

(2) This is clear.
(3) It suffices to show that AsspR/b R = {P,Q} , DbRp=FRp

and blRQ = QRQ . As PNQ>3>p ASSRR/blR D{P,Q} clearly.

l ]
Let P'€ ASSRR/blR and put p' = P'NA . Notice dim RP' =1
since R 1is normal. If p'=m , then P'DQ ; hence P'=Q

Assume p'#m . Then Rp, = Ap,[T] and P'Rp,jjp‘Rp, # 0

- 13 -
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D =p'Rp‘ (as dim RP' =1 ) and so we find dim
A, =1 . Thus p'=p (recall p'> bl ) and therefore P'Rp==pRp
p v
Because PG_ASSRR/blR and PNA = p , we see P'Rp==PRp whence

consequently P'R

p' =P . Thus ASSRR/blR = {P,Q} . Furthermore as PRp==pR (=

P
bRy ), we find bRy =PRy . Let B = R[l/biT] and we get QR =
bR (recall by = bib,T/b{T for each 2<i<d ). Therefore biRg
= QRQ as QaibiT , which completes the proof of Claim.

By this claim and the fact that R[l/bl] = A[l/bl][T] is a
UFD, we see that C(R) 1is generated by c¢1(Q) (= -cl(P) ). We

must show that the order of ¢1(Q) is not finite. Assume the

contrary and choose an infeger n>0 so that n-cl(Q)=0 . Then
Q(n)=bR for some Db€R and, as b?E Q(n) , We may write brll=bc

with ceR . Notice that b ,c€A=R. , because blz;zo and R

0
is a graded integral domain. Moreover we find c&€Q since ‘blilRQ
= QnRQ = bRQ . Therefore c¢ 1s a unit of A and we get Q(n)=
bR==b?R ; consequently PDQ (as Piabl ). This is of course

impossible and we conclude that C(R) = Z as required.

Remark(3.4). Let By = A[X/ai | xeq] for 1<i<d . We put e-=
eq(A) and assume R is normal. Then we get for each 1<icg<d ,
similarly as in Proof of (3.1), that the divisor class group
C(Bi) of B, 1s a finite cyclic group and IC(Bi)|| e . The

proof is not complicated which we leave to readers.

References
[1] J. Barshay, Graded algebras of powers of ideals generated by
A - sequences, J. Algebra, 25 (1973), 90 -99.

[2] S. Goto, Blowing-up of Buchsbaum rings, Commutative Algebra:

- 14 -



-3
o

Durham 1981, London Math. Soc. Lect. Note Ser. 72, 140 -162.
[3] H. Matsumura, Commutative Algebra, Benjamin, 1970.
(4] M
[5] D. Rees, Lectures at Nagoya University, 1983.
K

[6]

Nagata, Local Rings, Interscience, 1962.

Yamagishi, Embedding in modules and grading of Noetherian
rings, Thesis, Science University of Tokyo, 1984.
[7] J. Watanabe, m- full ideals, in preprint (a part of this

paper may be found in the present volume).

Added in proof. After giving this lecture, the author was
told that a similar result as the equivalence of the conditions (1)
and (2) in Theorem(3.1) had been obtained also by D. Katz (A cri-
terion for complete-intersections to be self-radical, Arch. Math.,
42 (1984), 423 - 425). However according to our Theorem(l.1l), his
main result Theorem 1 is not correct and therefore the proof of
Corollary 6 and 7 in the paper is not complete. The author guar-

antees that they are immediate consequences of our Theorems (1.1)

and (3.1).
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