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Generators of Positive Co—semigroups on Banach Lattices

Shizuo Miyajima and Noboru Okazawa
BE B R =
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Let {Tt}tzO be a C,-semigroup of positive operators
on a real Banach lattice E with generator A . 1In this paper,
by the use of Yosida approximation , it is shown that if E is
o-order complete, then A satisfies abstract Kato's inequality

for u e D(A) and f « D(A+)n EI :
<|ul, ATE> 2 <(sgn u)Au,f> ,

where A" denotes the generator of the dual semigroup of
{Tt}tZO . In the special case in which E = LP( R") (15p<=)
and A 1is a differential operator with smooth coefficients, it
is proved that the order of A is at most 2 and the principal
part of A is (degenerate) elliptic, provided C3( R") is a
core of A . The paper contains an improvement of a recent
result of Baoswan Wong-Dzung on the generation of positive
semigroups by degenerate elliptic second order differential

operators.
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§1. Introduction

In this paper we deal with the problem of characterization
of positive (some authors prefer the term "positivity preserv-
ing') Co—semigroups on Bénach lattices through their (infini-
tesimal) generators.

Let {Tt}tZO‘ be a CO—semlgroup on a Banach lattice E

with generator A . Then (T is said to be positive

t}tZO
if Tt is positive for any t 20 , namely TtkaO whenever
x 2 0 . The resolvent ()\-’A)“1 of A 1is denoted by R(),A).

Then the equalities -

Ty = s-lim [(n/t)R((n/t),A)]" (t>0),

and
® -t

R(Ar,A) = 5 e T, dt (for sufficiently large A )
0 .

immediately imply that (T is positive if and only if

t}tZO
R(A,A) 1is positive for sufficiently large ) .(Concerning this
point, we note that Greiner-Voigt-Wolff [ 5 ] proved the positi-
vity of R(A,A) for A > sup{Reu ; u e o(A)} 1in case

{Tt}tzo is positive, where o(A) 1is the spectrum of A .)

Thus we get the solution to our problem on the "resolvent
level. But in practice, the resolvent R(A,A) is rather distant
from A itself. So we want to obtain a characterization which
is more closely related to the generators. Such a goal has been

sought by several mathematicians. Phillips [14] seems to be

the first result in this direction, in which Co-semigroups of



positive contractions on Banach lattices are characterized by
the dispersiveness of their generators. Related results were
obtained, for example, by Hasegawa [ 6 ] and Sato[15].

Recently this type of characterization has been brought to
a culmination by the paper of Arendt-Chernoff-Kato [ 2 ]. §2
consists of an exposition of their results and some remarks, by
which we try to put some earlier results in the light of their
theory and to prepare for later sections.

The paper of Nagel-Uhlig [11] opened an entirely new way
to approach this problem. They showed that the abstract '"Kato's
inequality", which was first introduced to deal with the self-
adjointness problem of Schrodinger operators, is relevant to th
characterization of positive Co—semigroups. In §3 , we prove
in an elementary fashion that the generator of a positive
CO—semigroup on an ¢g-order complete Banach lattice satisfies
the abstract Kato's inequality. Some related results are also
treated in this section.

§4 1is devoted to show that the differential operators
satisfying the abstract Kato's inequality must be of order at
most 2.

In the final §5, we improve the result in Baoswan Wong-
Dzung [19] on generation of positive semigroups by degenerate
elliptic second order differential operators. Our method
depends on the perturbation theory obtained by one of the

authors.



Throughout the paper we freely use the standard notations
k;oncerning Banach lattices, for which the reader is referred to
schaefer[17]. 1In this paper we exclusively work with real
Banach lattices, since positive CO-semigroups and their

generators are necessarily real operators.

Remark 1.1. After the completion of the manuscript, the
authors learned that Arendt [1] gave a simple proof of Theorem
3.3. of this paper. Nevertheless the authors think that the
use of Yosida approximation in the theory of positive semi-

groups 1is still of value, as the proof of Proposition 3.6 shows.

§2. Dispersive operators and positive semigroups

W.Arendt, P.R.Chernoff and T.Kato based their theory in [2]
on the notion of half-norms. Recall that a functional ¢ on a
Banach space X 1is called a half-norm on X if ¢ is a
positively homogeneous subadditive functional satisfying o(x)+
¢(-x) > 0 for any x # 0. A typical example of a half-norm is
the canonical half-norm on an ordered Banach space E : namely
we define o(x) = d(-x,E ), where d(-x,E,) denotes the
distance from -x to E+(=the positive cone of E ). 1In
particular if E is a Banach lattice, the canonical half-normb
on E is given by o(x) = ||x7|| . This is a consequence of

the following observations: d(-x,E+) $ll-x - x| = “x+|l3
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For y ¢E_ ,(-x - y); 2 (-x) = x+, hence ||-x - y]|| 2
Hx+|[. (Thus we have shown that x  is a nearest point in
E, to -x )
To obtain fruitful results, we always assume that ¢ 1is
continuous with respect to the norm topology.
Let A be a linear operator with domain D(A) and range
R(A) in X and let ¢ be a half-norm on X . Then A is said
to be ¢-dissipative if  ¢(x - pAx) 2 ¢(x) holds for any
x € D(A) and y > O . When A further satisfies the condition
R(I- pA) - X for any pu > 0 , A is called an m-¢-dissipative
operator. If a linear operator A in X has the property that
A - o is  ¢-dissipative [resp. m-¢-dissipative] for some
constant o« , A 1is said to be quasi-¢-dissipative [resp.quasi-
m-¢-dissipative]. By Theorem 2.4 in [ 2], a densely defined
quasi-¢-dissipative operator A is closable and its closure A
is also quasi- ¢ -dissipative. We call a densely defined linear
operator A essentially quasi-m-¢-dissipative if its closure A
is quasi-m-¢~-dissipative.
If the canonical half-norm on a Banach lattice is concer-

n

ned, the term " ¢-dissipative" is replaced by '"dispersive". So

we say ''essentially m-dispersive" instead of "

essentially m-¢-
dissipative", for example.
On the other hand, an everywhere defined linear operator T

on X 1is called a ®-contraction if ¢(Tx) s ¢(x) for any x €

X .



Under these definitions, the following theorem is proved in
a similar way as for the Lumer-Phillips theorem on contraction

semigroups.

Theorem A.(Theorem 4.1 in [2]) Let {Tt}th be a CO-
semigroup on a Banach space X with generator A , and let ¢
be a continuous half-norm on X . Then {Tt}th is a CO-

semigroup of ¢-contractions if and only if A is ¢-dissipa-

tive.

In case ® 1is the canonical half-norm on a Banach lattice
E , it is easy to see that a bounded linear operator on E is
a ©®¢-contraction if and only if it is a positive contraction.
Hence we obtain the following

Corollary B. Let {T be a Co-semigroup on a Banach

t}tzO

lattice E with generator A . Then {Tt}tzO is a CO-
semigroup of positive contractions if and only if A 1is disper-

sive.
The following is also an immediate consequence of Theorem A
the proof of "if" part of which is concerned with Proposition

2.1 stated below.

Corollary C. A densely defined linear operator A 1in a
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Banach lattice E 1is the generator of a CO—semigroup of positive
contractions if and only if A 1is m-dispersive. Therefore A

generates a positive Co—semigroup if A 1is quasi-m-dispersive.

Whether a dispersive operator is necessarily dissipative or
not is still unknown to the authors. We collect here some

partial answers to this question.

Proposition 2.1. Let A be a dispersive operator in a
Banach lattice E . Then the following assertions hold.

i) If the range of ) - A 1is a sublattice of E for any
A >0, then A 1is dissipative. In particular if A is m-dis-
persive, then A is m-dissipative and AR(A,A) 1is a positive
contraction. The same conclusion holds if A 1is an everywhere
defined bounded operator.

ii) If E is an AM-space ([17] p.101) or an LP space,

then A 1is dissipative.

Proof. First we note the following facts: For any A >0
and x ¢ D(A), the dispersiveness of A implies

(2.1) 1= 0T 2 A Ik

(2.2) 1 CCx = a)x)7||
( (2.2) 1is obtained from (2.1) by substituting x by -x .)

[\

2 A llx7 .
Therefore A - A 1is injective and (A- A)x 2 0 implies x 2 0
for A >0 and x e D(A)

To prove i) we note that if x e D(A) and X > O ,there
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'

exists a y € D(A)\ such that [(x=- A)x| = (x= A)y when
the range of A - A is a sublattice of E. The inequality
(r- A)(y-x), (x- A)(y+x) 2 O implies 'y 2 |x| by the above
argument. Therefore Allx|| s allyll s [[(i= Ayl = (- a)x]|
and hence A 1is dissipative. (The second inequality is
obtained from (2.1) by substituting y for x .) The other
assertions in i) is an immediate consequence of what proved
above.

ii) 1is a direct cosequence of the inequalities (2.1) and

(2.2).//

Remark 2.2. K.Sato proved an apparently more general
result than Proposifion 2.1. ii)([16 ] Theorem 5.1). But consi-
dering Bohnenblust's theorem ([ 8 ] p.137 Theorem 5), his result

is essentially the same as Proposition 2.1. i).

In the rest of this section, ¢ denotes the canonical

half-norm on a Banach lattice E with dual Banach lattice E .
Thén as pointed out in [ 2 ], the subdifferential 3¢ of ¢ at
Xx ¢ E is given by

30(x) = {£ e E5; £ 20, |IEllg1, £(x) =Ix*]l },

[AV4

which is nonvoid since ¢ is continuous. On the other hand let
Y be the convex function x — ||x|]l on E, and a¥ its
subdifferential. Note that xt ||x|[a¥(x) is nothing but the

duality map on E .



The norm on a Banach lattice X 1is said to be strictly
monotone if x, y e X , 0 £ x £y and ||x]|] =llyll imply x =

y

Proposition 2.3.i) a8e(x) < aW(x+) holds for any xe E.
i1) 20(x) =00(x") n {£ ¢ E'; £(x7) = 0} holds for any
x ¢ E . If the norm on E* is strictly monotone, 3¢(x) =
36(x") for any x ¢ E with x'# 0 . iii) For any x ¢ E ,
the set

3o(x) n { f e E*; £20, X+.AIY|= 0 =f(y) =0 (Vy ¢ E)}
is nonvoid. Moreover if the norm on E* is strictly monotone
and x'# 0, any f ¢ 30(x) satisfies f(y) =0 if x',|y|

=0

Proof. i) and the first part of‘ ii) is an immediate
consequence of the remarks before fhe proposition. To prove thé
second half of ii) we first show iii), for which we use the
standard truncation technique. Namely we define a new functiona
fl from f € E*+ and x € E by putting

£,(y) = %ig £(y anx") - %32 £(y " anx™")

for y ¢ E . Then it readily follows that f1 ¢ E and

0 ¢ f1 < £ . Moreover, fl(x+) = f(x+) ‘and fl(y)=0

if x+A]y| = 0 . Hence f1 belongs to the set described in
iii) if f e 36(x) . The final assertion in iii) follows fro

0¢fy ¢f and |[£/][= |[f]l=1, which holds if £ €3¢(x)

and x' # 0 . The same argument also proves the second half



of ii). //

Remark 2.4. The first part of iii) can be proved by a
compactness argument with a minimum knowledge of Banach lattice
theory. In fact, let x € E be fixed and let Yiseer¥,
be arbitrary finite elements of E satisfying x+A|yi|= 0
for i=1,...,n . Put z:= x - Clyqgl+ly I+ oee +y DD
Then z = x  and 2z = [y1]+ ser +|y_|. By ii) of
Proposition 2.1 , there exists an f e 3¢(z) < a¢(x+) , which
necessarily satisfies 0 ¢ f(|y;|) ¢ f(27) =0 for i =
1,...,n . This shows that the family of the w*-compact sets
of the form

20(x") o {£ ¢ E'; £(y) = 0},
indexed by y ¢ E satisfying x+A|y| = 0 , has the finite
intersection property. Hence the above family has nonvoid
intersection, which proves the first part of iii) together with

the fact x A x =0 and the first part of ii) .

Remark 2.5. Let ¢O be a continuous half-norm on a

Banach space X . Then it is well-known that

(2.3) max{f(y) ; £ eBQO(X)}

iig (2 (x+ey)-24(x)) /€

%}8 (og(x)-05(x=ey))/e

(2.4) min{ f(y) ; f 68¢0(X)]

hold for x ,y € X (see e.g.,Moreau [10],(10.15)). Accordingly

it follows that a linear operator A in X is @O-dissipative

-9 -
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if and only if
(2.5) min {f(Ax) ; £ eaQO(x) }] <0 for any xe D(A)
holds ([ 2 ]JTheorem 3.1). Combining [2 ] Theorem 2.5, (2.3) and
(2.4), we know that for a densely defined linear operator A in
X , (2.5) 1is equivalent to
(2.6) max {f(Ax) ; £ eg@o(x) } <0 for any x e D(A)
Thus, for a Banach lattice E with canonical half-norm ¢,
given a functional v : Ex E -+ R satisfying
(%) min{f(y); £ ca0(x)} € v(x,y) ¢ max{f(y); fe 30(x)]
for any x, y ¢ E , then a densely defined linear operator A
in E is dispersive if and only if v(x,Ax) < 0 for any x e
D(A) . This explains the former results in Phillips [14] ,
Hasegawa [ 6 ] and Sato [15] , since it is not difficult to see
that all the functionals, which are used by the above authors to
characterize the generators of positive semigroups, satisfy (¥).
We note that Sato was aware of essentially the same fact ({16]
Remark 2.1.).
Sato's functional o(x,y) in [15] 1is of particular

interest to us:
o(x,y)= inf{r(x,(y+k)v(-bx)); beR, , k + x } (x ¢ E),

where t(u,v) = liT ( lfutev]] = ljul] )/e for u,v € E .

(To make things fit in with above remark, we should extend the
definition of o(x,y) by putting o(x,y)=0(x+,y) for x ¢ E.)
By Remark 3.3 in Sato [16], ¢g(x,y) 1is related to the set

F(x):= 3ao(x)n{f € E*; f(z)=0 if =z . x+} appearing in

- 10 -



proposition 2.3. iii):

o(x,y) = sup{f(y); £ e F(x)}

Another immediate consequence of [ 2 ] Theorem 2.5 concerns
the addition of operators: Let X be a Banach space with a
continuous half-norm @0 and let A, B be densely defined
¢O-dissipative operators in X . Then the operator sum A+B

(with domain D(A+B) = D(A)nD(B) and (A+B)u:= Au+Bu for u «

D(A+B)) is also ¢,-dissipative.

The second half of Arendt-Chernoff-Kato [ 2] is devoted to
treat the special case in which the underlying ordered Banach
space has a positive cone with nonempty interior. The Banach

lattice version of their result reads as follows.

Theorem D.(special case of [ 2] Theorem 5.3) Suppose that
E is a Banach lattice whose positive cone has nonempty interior
and A 1is a densely defined linear operator in E . Then A
is the generator of a positive Co-semigoup on E if and only
if A satisfies the following two conditions:
(P) If «x eD(A)nE+ and fe Ei such that £f(x)=0 ,
then f(Ax) 2 0 .
(m) There exists arbitrarily large real A  such that

(x=- A)D(A) = E .

The condition (P) in Theorem D was introduced by

- 11 -



Evans and Hanche-Olsen[ 4 ], in which they showed that a bounded
linear operator A on an ordered Banach space X generates a
positive semigroup if and only if A satisfies (P) provided
the positive cone of X has the nearest point property. Since
the positive cone of a Banach lattice has the nearest point
property as remarked in the end of the first paragraph of this
section, their theory is applicable to operators on Banach
lattices. Nevertheless we present here a proof of Banach lattice

version of their result by using the theory of dispersiveness.

Proposition 2.6. Suppose A 1is a bounded linear operator

on a Banach lattice E . Then A generates a positive semi-

rou ’etAi
g P | 'tZO

(P) in Theorem D

if and only if A satisfies the condition

Proof. First we show that A - ||Al is dispersive if A
satisfies (P) . Let & be the canonical half norm on E .
Then for any x ¢ E there exists an f ¢ 3¢(x) such that
£(y)=0 if y . x (Proposition 2.3.iii)). Then

£CCA - [1All)x) = £(ax") - £(axT) - Al £(x)
£(ax’) - [lall lIx"]l <o
since f(Ax ) > 0 by f(x )

1N

0 and (P) . This implies
o(x = t(A - [|A[Px) 2 o(x) - t£((A - ||A]] )x) 2 o(x) for any

t >0, hence A -||A]] 1is dispersive. Therefore
et(A-“AH ) 2 0 for t 20 by Corollary C , and hence
otA - ot llAll gtCa - f1all)

The necessity of (P) is obtained by differentiating the
function t = f(etAx) at t =0 for x e E, J/

- 12 -



§3. Kato's inequality for the generator of a positive CO-

semigroup

To formulate Kato's inequality for generators of positive
Co-semigroups, we need the notion of "signum operators". Let
E be a'o—order complete Banach lattice and let u ¢ E . Then

there exists a unique bounded linear operator 'sgn u'" on E

satisfying
(3.1) | (sgn w)v| ¢ |v] v ¢ E,
(3.2) (sgn u)v = 0 if wu.v ,
(3.3) (sgn u)u = |u]

If the band projection (Schaefer [17],p.61) onto the band
generated by v € E_ is denoted by PV ,
sgn u = Pu+ - Pu- .
For the details of the definition of signum operators, we
refer the reader to Nagel-Uhlig [11].
Now a bounded linear operator B on E 1is said to satisfy

Kato's inequality if
(K) Vu e E Blu| 2 (sgn u)Bu

holds. We give here an alternative proof of Theorem 4.1 of [11]

by using the results in §2.

- 13 -



Proposition 3.1.(Theorem 4.1. in [11]) Let A be a

bounded linear operator on a o-order complete Banach lattice E

tA}

Then {e is a positive Co—semigroup if and only if

t20
A satisfies (K):

(K) Vu e E  Alu]

w

(sgn u)Au .

1\

Proof. Suppose etA 0 for t 2 0 . Then for any ue¢ E

and t > O

tA A
|ul

tAuI 2 (sgn u)et u ,

e 2 |e

hence
(etA - I)|u] 2 (sgn u)(etA - Tu
Dividing the above inequality by t and letting t tend
to 0 , we obtain (K).
Conversely let A satisfy (K) and u ¢ E . Then Au” 3
(sgn u )Au  , which implies (I - (sgn u ))Au 2 O.

On the other hand, by Proposition 2.3. iii) , there exists
an f ¢ a¢(u)> which satisfies f(v). =0 if viu , where ¢
denotes the canonical half-norm on E . For such an f ,

f(Au") = £((I - (sgn u ))Au ) + f((sgn u-)Aﬁ_) 2 0
holds by the above remark and u L (sgn u )Au . Hence
£((A - [|A]] )u) = £(Aau™) - ||A]| £CuT) - £(AUT) s O .
Thus A - ||A|| is dispersive by Remark 2.5 , therefore

etA o ot Al JtCa [l ) g positive by Theorem A in

§2 .//

Next we recall the notion of Yosida approximation of the

- 14 -



generator of a Co-semigroup. Let A Dbe the generator of a

Co

-semigroup {Tt}tZO on a Banach space X . Then R(A,A):=

()‘-A)-1 exists for sufficiently large A€¢IR , and the operator

A.:= X AR(xr,A) =X2R(X,A) - A is called the Yosida approxi-

A

mation of A-. It is well known that Ttu = lim e

tA)\u

A+

holds for.any u ¢ E and t 2 0 (Pazy[13],Theorem 5.5).

Proposition 3.2, Let {Tt}th be a C,-semigroup on a

o-order complete Banach lattice E with generator A . Then

the following are equivalent.

(i) {Tt}tZO is a positive semigroup.

(ii) For 1arge AeR , the Yosida approximation A,
satisfies Kato's inequality:
(K) Axlu| > (sgn u)Alu u ¢E .

(iii) For any h >0 , the operator A(h):= (Th—I)/h

satisfies Kato's inequality:

(K) A(h)|u] > (sgn u)A(h)u u ¢ E .

Proof. (i)=>(ii): As remarked in the introduction, R(),A)

is positive for large Ae¢R . Hence for such » and u €E ,

AZR()\,A)|UI - Aul

Axlul
A2 R(A,A)ul - Alul

Inv

12 (sgn u)R(A,A)u - A(sgn u)u

v

(sgn u)AAu .

(ii)=>(i):By Proposition 3.1 , the assumption (ii) implies

- 15 -



tA

that e"'A 2 0 for large 2.
s=lim etAx= T
A+ t

(i) =(iii) :The relation

shows the positivity of e

Hence T

tA(h)

t is positive since

ctA(R) exp(tTh/h)e_(t/h)

ywhich implies (K) for A(h) by

the same argument used in the "(i)=(ii)" part.

(iii)=>(i): Again by Proposition 3.1 , (iii) implies the

positivity of etA(h) for any
Tt 20 by the fact Tt = g=-lim
h+0

3.17.).//
By using Proposition 3.2
Theorem 3.3. Let {Tt}th
on an o-order complete Banach

Then the following weak Kato's
(WK) Vu eD(A)VE D(A")nE]
where A"

{Tehiyo
reflexive, then
(WK') VueD(A) VEe D(A”)nE;

ats

holds, where A"

Proof. Let Y be the closure of D(Ax)

N

A" is the part of A" in Y,

p(a*) = (£ ¢ D(A™) ; A"f ¢ Y] and A'f =

£ e p(ah)

in the sense of Phillips (Pazy [13],p.39). If E

h >0 and t 2 0 . Hence

etA(h) (Davies [ 3 ],Theorem

we get the following

be a positive Co-semigroup
lattice E with generator A .
inequality holds:

y<[ul,A+f> 2 <(sgn u)Au,f>,

denotes the generator of the dual semigroup of

designates the adjoint of A .

is
<|u],AKf> 2 <(sgn u)Au,f>
in E Then
i.e.,
%
Af for

. Therefore it is easy to see that the Yosida

- 16 -



approximation (A+)A of A" has the following simple
relation with the Yosida approximation of A :
(A+)A= (AA)*|Y (for large A € R)

Therefore Proposition 3.2 implies
(3.4) VueE VEeYnE, <Jul,(A") £> 2 <(sgn u)Au,f>

for sufficiently large A . If u e D(A) and fe D(A+), then
lim Ay = Au and  Lin (A"),f = A"f = A"f hold. Thus
(3.4) implies (WK) .

If E is reflexive, then (WK') holds since A% = A

in this case (Pazy[13],Corollary 10.6).//

The following is an immediate corollary to Theorem 3.3.

* Corollary 3.4. Let E = LP( rR™) (1gp<= , n € N) and let
{Tt}t>0 be a positive Co—semigroup on E with generator A.
Suppo;e A satisfies D(A) nD(A+) 5 Co(R™ and A is
given as a differential operator on Co( R"):

Au(x) = I aa(x)Dau(x) (u e CH(R™M),

Where a = (al,az,oo- ,an) iS a multi-index ’ lalz al

a a ' P, o}
* eee +a, D¥= (3/08x)) l--(a/axn)“n, and a_ e C™ (R").
Then A satisfies the distributional,original,Kato's
inequality(see Definition 4.1 below):

(k') Yu ¢ CH(R™M Alu] 2 (sgn u)Au

Remark 3.5. We note that if CR( R"™) 1is a core of A ,

the assumption D(A+) 5 Co( R") in Proposition 3.4 follows

- 17 -



from the rest of the assumptions.

Remark 3.6. For a g-order complete complex Banach lattice
E , the generator A of a positive Co-semigroup {Tt}th

on E satisfies the following inequality:
VueD(A) YEeD(AT)n E, <lul,ATE> 2 <Re((sgn u)Au),f> .

The proof is quite similar to that of Theorem 3.3.

Another application of the Yosida approximation gives the

following

Proposition 3.7. Let {Tt} be a positive C,-semi-

t20
group on a Banach lattice E with generator A . Then for any

u € D(A) n E, » (Au)” belongs to the band generated by u .

Proof. For large enough xe¢ R , x > 0 , let A; be the
Yosida approximation of A . Then A, + )\ = A2R(x,A) 2 0 .

Suppose u e D(A)n E, and v ¢ E such that wu.1v.

Then Aju + 2u 2 0 implies (Axu)_ < MAu , hence

0 < (Axu)— Alv] s (au)alv] =0 .
Together with the fact lim Aju = Au , we obtain
A+

(Au)” L v , which concludes the proof. //

Remark 3.8. Ay+u may be positive for some n < A. See [9]

and [11].
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§4. Kato's inequality for differential operators

Let IN be the set of all positive integers. In this

section we shall use the multi-index notation:

n
o = (a1, ---~--,an) with |a|=i£1 @y, a; € Wy {o} ;

p* = pj'Dy2-- Dz“, D, =8/3x; (1s4isn).

We conéider‘the formal differential operator of order m

(4.1) A= T oa (x)D",
Ialém

where aa(x)'s are assumed to be real valued functions in

C(RrY) .

Definition 4.1. A formal differential operator A of the
form (4.1) is said to satisfy Kato's inequality if for any
u € d?(]Rn) ,the inequality
‘(4-2) Alu]l z (sgn u)Au
holds in the sense of distribution, i.e., for any ¢ € C?GR“)

with ¢ 2 0 ,

S]Rn A*@(x)lu(x)l dx 2!£mn¢(x)(sgn u(x))Au(x)dx

ate

holds, where A" denotes the formal adjoint of A .

In what follows we denote by P@R") and D' (®R")
the space of all test functions (with the Schwartz topology) and

distributions on R" , respectively, and consider that
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D(R"™) is contained in D'(R") .

First we prepare some facts about the change of variables
of distributions. Although these facts seem to be definitely
known, we state them with proofs for later referemnces.

For the time being, we use two‘ R''s , ﬁR; and ﬁB; ,
and let H :ZR: »> R; be a fixed non-singular linear
mapping. Namely y = H(x):= Cx (x efRE) , where
C = (cij) is an n x n matrix with real entries and det H =
det C # 0 . Then H induces an isomorphism
¢ e UGR?) — poH € DGRZ)

For T e D'GRQ) define T e D'GRS) by

(4.3) < %,@ >1= < T,peH > for 9e¢ GR?) .

Under these notations we have the following

Lemma 4.2. The mapping T T is a linear isomorphisr

from D'GBQ)‘ to D'OR?) satisfying
n

) = Z.c.. aTl/ay.
(a)  (8T/ax,) sE1%51 ai/ayJ ’
(b) (aT)” = (aeH )T for a < CT(RY) ,
(c) Tz20 if and only if T 2 O .
‘ . . 1 n ~ 1 n
If in particular T € LlOCGRx) , then T ¢ LlocORy)

and is given by T = |det H|_1 (ToH_l) .

Proof. It is obvious that the mapping T~ T becomes a
linear isomorphism with property (c). Let T ¢ 9'GR2) and
n
@ € DGRy) . Then we have

<(8T/axi)~,@ > = <aT/8xy, gol> = - < T,(3/8x,)(9oH)>

- 20 -
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(PR,

n .
= - < T cC..30p/3y.)°eH >
’(jil ii Q/ YJ)
n
=-<T .. 3p/3y. >
’ j£1c31 ¢ yJ
= < E 8%/3 >
j'=1 C_]l yJ ’ (P
This is nothing but (a). Furthermore, let a € C°(RY) and

o € DGRE) . Then we obtain (b):
<(aT)"™, p> = <aT,gp°H> = < T,((aoH-1)¢)°H>

= < T, (aOH_l)@>

<(acH™ )T, ¢>

The last assertion is clear. //

The formal differential operator A of the form (4.1) is
considered to be a linear operator from D'GRE) into itself.
The effect of the chénge of variables on A 1is given by the

following

Corollary 4.3. Let A be the formal differential operator
of the form (4.1), and let TF+ T be the mapping defined before
Lemma 4.2. Then the linear operator

T €D'(]R;) > (AT)"ep'(]Rry‘) (Te p'(R)))
is given by the action of the following formal differential

operator

=g

(4.4) A = I (aaoH")
|§m

i.e., (AT) = AT holds for T « D' ®Y)

n . ) .
Cca . :

i
Proof. Repeated applications of Lemma 4.2 (a) and (b)
prove the assertion. //
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Moreover we have

Proposition 4.4. Let A Dbe the formal differential operator
of the form (4.1) and let A be the one given by (4.4), which
is obtained from A by the change of variables y = H(x) = Cx ,
C = (cij)(det C#0). Then A satisfies the Kato's inequali-

ty if and only if A does.

Proof. By using Lemma 4.2 , we can show that for wue DGRZ)
(Alu| - (sgn u) Au)”
-1 ~ -1 N N -1
= |det H] [A |uel 7|~ (sgn(ueH 7))A(ueH 7)]

Hence the assertion follows from Lemma 4.2 (c) . //
The main theorem in this section is stated as follows.

Theorem 4.5. Let a, be a real-valued function in CmGRn)

for every a with |a| s$m . If the formal differential operator

A ¥ a (x)D* satisfies Kato's inequality, then the order

—Ialgm

m 1is at most 2. Furthermore, Aj:= I aa(x)Da must be
Q = 2

elliptic (including degenerate cases).

Proof. It suffices by translation to show that aa(O) =0
for any o with |a|23. Set k:= max {|al; a (0) # 0 . We
shall show that Kato's inequality can not be satisfied by A if
k 2 3.

Step 1). First we consider a special case. Namely, suppose
that

(4.5) aao(O) #0 for a, = (k,0,..,0) with k 2 3.
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Now let u, be a function in P(R) (i = 1,2) and suppose
that ul(t) = t near the origin and changes the sign only
once, and that wu,(t) =1 near the origin and u, 2 0

Setting
n
u(x):= Ul(xl) I UZ(Xi)

n i=2
we see that u e D(R ) and

(4.6) (Au)(x) = I a (x)Dl u (x ) H D iy (x )
bfsm © =2

Next we calculate (A]ul)(x) . The dlstrlbutional derivative of

|u] can be written as
(0*|u| )(x) = (D% |u,(x,)]) ;; Doiy (x.)
1 1°71 j=p 1 277177
Note that the right-hand side should be regarded as a tensor

product of distributions (see Schwartz [18],Chapter 4,§4,Theorem

7). In more detail,

(sgn ul(xl))D%‘ul(xl) (oy=0, 1)
D%‘Iul(x1)|
.Z(S%al O} + (sgn ul(xl))Dl Ul(Xl) ( a2 2),

(al-z)

where 6{x1=0} is the (a; - 2)-th derivative of Dirac distribu-

tion. Thus we can write down A |u] as

n
CAlul)(x) = 2 Ialz a (x >s§°‘;_§f iy (xp)
122

+ (sgn ul(xl)%afs a (x)Dl uq (xq) Hz D%iuz(xi).
< i=

Therefore it follows from (4.6) that
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(4.7) ( Aju] - (sgn u) Au)(x)

(a1-2) Dy
=2 3 §totT I D.lu .
0122 aa(x) {x1=0]i=2 i 2(x1)

It remains to show that the right-hand side of (4.7) is not

positive as a distribution. But, this is iﬁtuitively obvious.
So, we give a proof for only one of four cases: let k >2 be
even and a, (0) < 0 , where a, is as in (4.5) . Let by
be a functio; in DP@M@) (i=1, 2 ) and suppose that ¢1(t)
= %2 near the origin and Yy 2 O . Next choose b > 0 in
sucﬁ a way that
[-b,b] < {teIR;uz(t)=1}
and suppose that ,(0) =1, ¢, 20 and supp by < [-b,b]
Setting
PO =y (x) T 0y (xp)
i=2
we see that ¢ e D(R") . For a multi-index a with a, 2 2,

we have

(4.8) <aa(x)a§§i;gi 'EzDgiuz(xi), v(x)>
2

(11‘2 ,1-2
= (_1)01 L [al ]j' 'J(Diw)(oaxzy"',yxn)

2=0
x Da‘-z—la (0,x X ) ; p¥iu,(x.) dx,--dx
1 AR A T S A A
If @, > 0 for some i 2 2 , then D?iuz(xi) =0 on
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[-b,b] for such i and hence the integral on the right-hand
side of (4.8) vanishes. This observation implies that

< Alu]l - (sgn u) Au , ¢y >/2 is equal to

e @ [
A ] S R A
><(D0“-2 Ra(al’o’.. ’0))(Q,x2,..,xn)dx2 dx
Since 4,1(”“)(0) =0 (0stsk-3) and ¢1(k-2) = (k-2)!

this can be simplified as

(k-2)!5-.51H2¢2(x )a (O’XZ’ .. ’Xn) dxz... dxn

Taking a sufficiently small b > 0O , we see that the above
integral can not be positive since aq,(0) < O .

Step 2). Let k be the number defined in the first para-
graph of the proof and suppose that aao(O) =0 for ao =

(k,0, .. ,0) with k 2 3 . By a linear transformation. y = H(x)

:= Cx (x ¢ R") , A is transformed into A in (4.4)(Corollary
4.3). The coefficient of (a/Byl)k in A is given by
X (aOLOH ) Hl C1

la|=k
and it does not vanish if we choose the non-singular matrix C

i
suitably. So, we see from Step 1) and Proposition 4.4 that

does not satisfy Kato's inequality if k 2 3 .

Step 3). Suppose that A satisfies Kato's inequality.
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Then, as was shown above, the principal part of A is given by

A1 1= X aa(x)Da .
la] =2
Since it is known that the first order terms of A satisfis

Kato's equality, i.e., (a/axi)lul = (sgn u)du/dx; as a
~distribution (u e DGRn)), we see that A1 also satisfies
Kato's inequality. We shall show that A, is elliptic at x =0

First note that we can write

n
A, = I a,.(x)D,D.
1 i,5=1 ij i’j

with aij(x) = aji(x) . So by an orthogonal transformation,

1 at x = 0 1is transformed into

n
pX a.(a/ay.)2 , a.: ¢ R(1s3j<mn).
j=1 J J J

Then we can show that aj 2 0 for 1 £ j < n by using

Proposition 4.4 and applying a similar argument as in Step 1)
(equation (4.7) for transformed Ay is again useful). Thus

we are done. //

By combining Corollary 3.4, Remark 3.5 and Theorem 4.5,

we obtain the following

Theorem 4.6. Let {Tt}tZO be a positive Co-semigroup
on LP(R"™) (1sp<w, n ¢ N) with generator A . Suppose
that CJ( R"™) is a core of A and A is given as a differ-

ential operator on co( R™):

Au(x) = I a (x)D%u(x) (u ¢ c?(:m“); meN),
|a|sm @

where aa(x)'s are real valued functions in C7( R"™) . Then
the order of A 1is at most 2, and the principal part of A is

elliptic including degenerate cases.
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yo. m-dispersiveness of second order degenerate elliptic

differential operators on r"

This section is concerned with the quasi-m-dispersiveness
(see §2) of second order degenerate elliptic operators on R".

First let us consider the formaldifferential operator

n n
Au i= - % Di(ay ()Du) + 3

a.(x)D,u + a,(x)u ,
j’ =1 J J_l J J O

-

where ajk , aj and a, are all real-valued functions on

R". Basic assumptions are stated as follows.

() ay cCZ( RY), a e cH(RY), ay ¢ L7(RB™);
the second derivatives of ajk and the first order derivat-
ives of aj are all bounded on TR".
(II) For any x ¢ R"  the matrix (ajk(x)) is positive
semi-definite: for every § eﬁRn-,
n
j,§=1ajk(X) gj Ey 2 0 .

Let A be the maximal operator in real LP = LP@R")
(1<p<e) associated with A i
D(A):= {u « 1P ; Au € LP in the distribution sense},
Au := Au  for wu e D(A) .

Recently Baoswang Wong-Dzung [19] has proved the following

Theorem E. Let A be the operator as above. Then =-A 1is
quasi-m-dispersive in LP (1<p<=) and CJ( R") is a core

of A .
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Now we consider the possibility to relax the condition
ageL”. Let V(x) > 0 be a fuction in Lgoc(imn\{O}) and
set

V_(x):= V(x)[1+eV(x)]™T , € > 0 .
We denote by B the maximal multiplication operator by V(x)
in LP:
Bu(x):= V(x)u(x) for u e D(B):= {u ; V(x)u « LP} .

Then -B is m-dispersive in LP (1<p<~) and the bounded
linear operator |

Bau(x):= Ve(x)u(x) , uelP e> 0
~is related to the Yosida approximation of =-B (in the sense
specified in §3 ) by the equation By/y = '(fB)l (x» > 0).
Note that Be is also written as Be = B(1+eB)-1.

The purpose of this section is to prove the following

Thoerem 5.1. Let A and B be the operators in LP
(1<p<») as above. Assume that v, belongs to Cl(]Rn), and
there exist nonnegative constants ¢, a and b (bs 4(p-1)_1)

such that for any € > 0 and xe R"

n a-k(X) 4 n
(5.1) » —I* DV DV +— I a.(x)D.V
k=l v (x) 3 ° X% Pyt ]t dE

S o+ av (x) + b[Ve(x)]z.

0 .

In the case of 1<p<2 assume further that c¢
If b < 4(p-1)-1 then -(A+B) is also quasi-m-
dispersive in P, If b = 4(p—1)_1 then =-(A+B) is

essentially quasi-m-dispersive on D(A+B):= D(A) n D(B)
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In any case the closure of -(A+B) 1is the generator of a

positive CO—semigrQup on LP
The proof of this theorem is based on the following

Lemma 5.2. Let -A and -B be m-dispersive operators in
real Lp(ﬁmn)r(1<p<W) . Let D be a core of A . Assume
that there exist nonnegative constants ¢, a and b (bsl) such

that for any ue D and € > 0 ,
2
< Au,F(Bgu) > 2 -c ||ull® - a||B_ull|lul| - b [|B.ull

holds, where B_ = B(1+¢B)~ !  and F(B_u) =||B€u|]2-p B u x
B,ulP™? e 19 = (LP)Y ((1/p)+(1/q)=1).

If b<l1 then =-(A+B) with D(A+B):= D(A) 5 D(B) 1is also
m-dispersive in 1P, If b=1 then -(A+B) is ‘essentially m-

dispersive on D(A+B) .

Proof. Since A and B are m-accretive in LP (by
Corollary C in §2 or Proposition 2.1.), it follows from Lemma
1.4 in Okazawa[12] that A+B is m-accretive [resp. -essen-
tially m-accretive] if b<1 [resp. b=1] . Let C denote A+B
or its closure according as b<l or b=1 . Since -(A+B) is
dispersive (see the last paragraph of Remark 2.4) and the
closure of dispersive operator is also dispersive ([ 2 ],Theorem
2.3), -C 1is also dispersive. Thus we see that -C 1is also

m-dispersive in LP .//
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Proof of Theorem 5.1. In order to apply Lemma 5.2 , we

shall show that for some constant a e IR and b, ¢ appear-

ing in (5.1),
: 2 ¥ ﬁ
(5.2) 4<Au,F(B€u)> 2 =(p-1)(c |ju]|” + a][BeuH]]u” + bllBeu‘ )

holds for any u e C?(]Rn). Since IBeu(x)}p-zBeu(x) =
[VE(X)]p—llu(x)lp-zu(x) , we have

<Au,|B€u(x)|p_2B€u(x)>

= _J;glw(x)lu(x)|P‘2u(x) Dj[ajk(x)Dku] dx

n
z
jrk=1

-2 n
+ g w(x)|u(x)|p u(x) .z a.(x)D.u dx
RD i=1 1] J

+j naO(x)w(x)lu(x)[p dx ,’
R

where we set w(x) = [Vs(x)]p“1 . Suppose p 2 2. Then w,
]ulp-zu eCl(]Rn) and Dj(lu[p-zu) = (p-l)lu]p_zD

.u

J
Dj(|u|p) = plulp-zuDju hold (1gjsn). Therefore by the

integration by parts it follows that
-2
<Au,|B€u|P B€u> - SanaO(x)w(x)|u(x)|p dx
,
= p= ., (x)(D.w)(D, u) dx
S]Rn'”’ OO ICRDICRY

+(p-1)imnw(x)|ulp‘% kilajk(x>(DjU)(DkU) dx

I
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P JR

The sum of the first two terms on the right-hand side is not

less than
-1 ' -1 p D
G101 P R a0 ax

Hence we obtain

<Au,|B u|P7?B u> 2
€ €

-[4(p-1)]'tlﬂ{l%lP j,§=1ajk(X)Dijkw dx

- _l_S. lulP Z ay (x)D w dx
P ]R J—l

- S w(x)luip[——r Z D.a. - ao(x)] dx .
:R

P yoq J

This inequality holds even if 1<p<2 . 1In fact , by replacing
p-2 p-2 2, s 1(p-2)/2

lu(x)| in |B€u| B.u by [lu(x)|“+6 ] ( &

>0 ) and letting 6+ 0 after the integration by parts, we

obtain the above inequality in this case. By a straightforward

calculation we see from (5.1) that

R T e
- . + ——————
p-1) j,§=1‘w(x) DJw KV o (p-1) leaJ X W
22, o an(x) . "
= [V.(x)]P74( & —l————D VDV ot T aj (x)D v.)
€ jrk=1V_(x) Je P j=1
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s e[V (1P + alv_(0) 1P + bV (0P,

where a is the constant appearing in (5.1).

-1

Setting m = sup{p Z DJa (x) - ao(x) i x e R"},

j=1
a = a + l;m(p-l)_1 and using the Holder inequality we
obtain (5.2) for any ue Cg( R"). By Theorem E , there
exists a constant M such that -(A+M) 1is m-dispersive. For

otoots

such an M , we set a = a*+4b/l(p-1)-1 .  Then we have
(5.3) 4<(a+t)u,F(B_w)> 2 =(p=1) (e [lull®+a™ Jlull B ull + b [|Bull?"

for any u e Co( R"). Noting that C3(R") is a core of
A+M (Theorem E.), the conclusion follows from (5.3), Lemma 5.2

and Corollary C in §2. //

Corollary 5.3. Let A and B be as in Theorem 5.1.

Assume instead of (5.1) that V(x) > 0 1is of class Cl('Rn)

and
n k() 4

(5.4) ) —l———~D VDkV + — z a (x)D \Y
i, k=1 V(x) 3 P j=1 1

s b [V(x) + c]?

where ¢ and b (b ¢ 4(p—1)_1) are nonnegative constants.

Then the conclusion of Theorem 5.2 holds.

Proof. Put W(x):= V(x)+c and 'WG(X)== W(X)[1+€W(X)]-1
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for € > 0 . Thenkby a simple calculation it can be shown that
(5.4) implies (5.1) with V. replaced by W, and a=c =0,
whereas with b being the same as in (5.4). Therefore, by
Theorem 5.1, =(A+W) = -(A+V+c) ’is quasi-m-dispersive or
essentially quasi-m-dispersive on - D(A) n D(W) = D(A) o D(V)
according as b < l;(p-l)_1 or b = l;(p—l)_1 . Hence the

corollary is proved.//

Remark 5.4, The last paragraph of Remark 2.4 implies that
the addition problem for m-dispersive operators is reduced to
that of m-accretive operators. Hence there exists a possibility
that the results on m-accretive operators contain the informa-
tion about m-dispersive operators. In fact Okazawa[12] has
implicitly shown that, for example, A - exp(lx]k) (k 2 1)
is essentially m-dispersive on co(R™ in LP (1<p<=),
where A means the Laplacian in LP. For the detail the

reader is referred to [12].

- 33 =



[1]

[2]

[3]

(4]

(5]

(6]

(7]

(8]

(9]

References

Arendt, W., Kato's Inequality: A Characterization of
Generators of Positive Semigroups, Semesterbericht Funktio-
nalanalysis, Tubingen Univ., Wintersemester 83/84.
Arendt,W., Chernoff,P. and Kato,T., A generalization of
dissipativity and positive semigroups, J. Operator Theory,
8(1982),167-180.

Davies, E.B., One parameter semigroups, Academic Press,
London,1980.

Evans, D.E. and Hanche-Olsen, H., The Generators of Positive
Semigroups, J. Func. Analysis, 32(1979),207-212.

Greiner, G., Voigt, J. and Wolff, M., On the spectral bound
of the generators of semigroups of positive operators, J.
Operator Theory, 5(1981),245-256.

Hasegawa, M., On contraction semi-groups and (di)-operators,
J. Math. Soc. Japan, 18(1966),290-302.

Kato, T., Schrodinger ope}ators with singular potentials,
Israel J. Math.,13(1972), 135-148.

Lacey, H.E., The Isometric Theory of Classical Banach Spaces
Grundlehren der mathematischen Wissenschaften, Band 208,
Springer, Berlin-Heiderberg-New York, 1974.

Miyajima, S., A remark on the generator of a uniformly

continuous positive semigroup, TRU Math. 18(1982),43-45.

- 34 -



10°

[10] Moreau, J.J., Fonctionelles convexes, Séminaire sur les
équations aux dérivées partielles, Collége de France, 1966-
1967. :

[11] Nagel, R. and Uhlig, H., An abstract Kato inequality for
generators of positive operator semigroups on Banach
lattices, J. Operator Theory, 6(1981), 113-123.

[12] Okazawa, N., An LP theory for Schrddinger operators
with nonnegative potentials, to appear in J. Math. Soc. Japan.

[13] Pazy, A., Semigroups of linear operators and applications
to partial differential equations, Springer Verlag, New
York, 1983. |

[14] Phillips, R.S., Semigroups of positive contraction opera-
tors, Czechoslovak Math. J.,(87) 12(1962), 294-313.

[15] Sato, K., On the generators of non-negative contraction
semigroups in Banach lattices, J. Math. Soc. Japan. 20
(1968),423-436.

[16] Sato, K., On dispersive operators in Banach lattices, Pac.

J. Math., 33(197Q),429-443.

[17] Schaefer, H.H., Banach lattices and positive operators,
Grundlehren der mathematischen Wissenschaften, Band 215,
Springer Verlag, Berlin-Heiderberg-New York, 1974.

[18] Schwartz, L., Théorie des distribution, Hermann, Paris,
1966.

[19] Wong-Dzung, B., Lp—Theory of degenerate-elliptic and
parabolic operators of second order, Proc. Royal Soc.

Edinburgh, 95A(1983), 95-113.

- 35 -



