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The action of Hecke operators on theta series

By Hiroyuki Yoshida

Introduction

Let S be a 2n x 2n positive definite symmetric matrix
with rational coefficients. Let Sl,"' ,Sc be a complete set of
representatives of the classes in the genus of §S. For a positive

integer m, put

x&gm)(z) = ;E::: exp(27CJ—lTrace(thixz)), z & H

m}
XéM2n,m<Z)

where Hm denotes the Siegel upper half space of degree m and
M2n,m(z) denotes the set of all 2n x m matrices with integral
coefficients. As well known, ﬁlgm)(z) defines a Siegel modular
form of weight n of a certain level. To determine the action of
Hecke operators on 19§m)(z) is one of classical problems concerning
theta series.

In the present paper, we shall treat this problem from the
point of view of the Weil representation. lIn ~§1, we shall express
theta series in terms of Weil representations and shall show, as
Theorems 1.6 and 1.7, that it can be reduced to a local problem
(1.23). In the succeeding sections, §.2 and _§3, we shall solve
the local problems concerning T(p) and T(S)(pz) respectively
(cf. (1.28) and (1.32) for the definitions of these operators which
are generators of the Hecke ring). The main results are formulated

as Theorems 2.1, 3.7, 3.8 and 3.10. The line of such method of

3
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investigation was suggested in our‘previous work [ﬁé} where only
the case m = n = 2 was treated; we shallrcarry out the program
more systematically in this paper.

Two works should be mentioned here in the relation with our
results. Freitag [5} has given a simplé formula for the action of
T(p) on {%§m) (cf. Proposition 1.9). His method of proof, which
employs the theory of singular Siegel modular forms, is different
from ours. Also our results are sharper in the sense that not only
they are not restricted to the level 1 case but also they give
explicit relations with automorphic forms on the orthogonal groups.
In the case m = n, we can give a simple formula (cf. Proposition 1.1
for the action of T(S)(pz) on {}gm) in a similar fashion as;[Sjl.

The paper of Rallis [7] is closely related to our results on
T(S)(pz) proved in §3. In fact, it seéms that one is equivalent
to the other modulo some explicit computation of “the Satake
transform” of T(S)(pz). However we should not dispence with §3
because of the following reasons, The proofs‘in %2 and §3vare
similar in spirit and it is aesthetically unsatisfactory to restrict
only to the case T(p); furthermore our method of proof, which is
different from [7] , seems to be applicable,'with'rather small
number of modifications, to the case where the dimension of the

quadratic space is odd.



R0

Notation. If S 1is an associative ring with a unit, s* denotes
the group of all invertible elements of S. Let R be a commutative
ring with a unit. We denote by Mm n(R) the set of all m x n-

b

matrices with entries in R. Let I be an ideal of R and A = (aij)’

B = (bij)é;Mm’n(R). We denote A= B mod I when aijzz bij mod I
for all 1=i<m, 1<j<n. We abbreviate Mm,m(R) to Mm(R) and
set GLm(R) = Mm(R)X. If Aé&Mm(R), 0 (A) stands for the trace of
A. The diagonai matrix with diagonal elements a1, 29,7, 2y is
denoted by diag [al’aZ""’aﬁj
By GSp(m) and Sp(m), we denote the group of symplectic

similitudes and the symplectic group of degree m respectively. We
assume that the group of R-valued points GSp(m)R (resp. Sp(m)R) ’
of GSp(m) (resp. Sp(m)) is given explicitly by GSp(m)R = {_g‘

g& GL, (R), ‘gwg = m(g)w, m(g)éRx} (resp. Sp(m)p = {g \ g € GL, (R),

' 0 1

thg = W} ). Here w = ( m m) » Op and 1m are the zero
—1m 0m

and the unit matrix of size m respectively. We usually denote

a b .
gé&GSp(m)R as g = (’c d> with m X m-matrices a, b, c, d.

The Siegel upper half space of degree m 1is denoted by Hm' We set
e(z) = exp(2’7‘c,,/-1z) for zé&C.

Let k be a field and G -be an algebraic group defined over k.
The group of all k-rational points of G 1is denoted by Gk' When

k is an algebraic number field, GA denotes the adelization of G.

5
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For a place v of k, G may be abbreviated to GV. When k = Q,

k
v

o< denotes the infinite place.

The finite field with q elements 1s denoted by Fq. Among
the orthogonal groups associated to 2n-dimensional regular quadratic
spaces over Fq, there are two isomorphism classes over Fq. We
denote by Ol(2n,Fq) (resp. 0_1(2n,Fq)), the group of all Fq—rationa]
points of the orthogonal group when the Witt index of the quadratic

space is n (resp. n-1).

If X 4is a locally compact abelian group, S(X) denotes the

space of all Schwarz-Bruhat functions on X,
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§ 1. Theta series and Hecke operators

In this section, we shall express theta series in terms of

the Welil representation and consequently we shall show that the

action of Hecke operators on theta series can be explicitly localized,
Let G (resp./53 denote the symplectic group Sp(m) (resp.

the group of symplectic similituderGSp(m)) of degree m. Let Z

denote the center of /EZ Let N be a positive integer and W be

a character of finite order of Q}g/QX whose conductor divides N.

For every prime number p, we define an open compact subgroup Kp

n ~ n~
(resp. K. ) of G (resp. G~ ) and a representation M_ (resp. M )
p Qp p p

Q
~ b
of Kp (resp. Kp) as follows.

2

A
= GSp(m)Z ; let Mp(resp. MD)‘

If pA/N, we set Kp = Sp(m)Z , K
P p B

p
be the trivial representation of Kp(resp. Kp).

If p \N, we set

Kp:%(i Z)“P(m)z tczo mod pip} ,
D

/}\{/ = %(i z> &GSp(m)Zp] c=0 mod pr} ,

p
Lp
where p denotes the highest power of p which divides N, We set
a b
Mp(k) = QJp(det a) for k = ( c d)E%Kp,
Mp(k) = cup(det a) for k = c d éEKp

Let ¢ be an irreducible rational representation of GLm(C).

For the infinite place 0O of Q, we set

Ko = %(j :) < Sp(m)R} ;

T
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and define a representation M., of K., by

a b
Mm((_b a>) = 0 (a + by-1).

land nr

We set K00= Ko > MOO M, -

I

We note that K _2 U(m,C), the unitary
group of degree m, and it is a maximal compact subgroup of G =
. . . [‘:‘ . .

Sp(m)R as being the stabilizer of ,-1 1m€:Hm.

We put K = TT-KV and define a representation M of X Dby

v
~ -1 o~ ~ :

M= @M, ; similarly we set K= |[[K , M= @M . Let W be the

v ‘ v v

~~

representation space of M and M.

Now let Aif)(N,CU) denote the vector space consisting of
all W-valued continuous functions F on GA which satisfy the following
condition (A).
(A)  F(Y gk) = F(g)M(k) for any b/éGQ, gE€G,, kEK.

~
Similarly let Ag?)(N,uJ) denote the vector space consisting of
all W-valued continuous functions F on‘ak which satisfy the following
NS "~
conditions (A) and (B).
(A) F( Ygk) = F(g)M(k) for any }’c’:GQ, géfé/, kXK.
o )

A’ g‘EGA.
Here we have regarded @ as a character of ZA through the isomorphism

(B) F(zg) = w™(=z)F(g) for any zEZ

~ X
Zpy= Q

. R : ~ .
Lemma 1.1. Let Res denote the restriction map from Ag?)(N,uJ)

to A(m)(N,QJ). Then Res 1s an isomorphiém.
— o [lonfiiaiudiosnd A — —

- N X ' X _ X TT X X
Proof. Let Z,, = {z 12m\zeR+}sz. By Q) = Q -{pl Z5-By
we get
(1.1) G,

A = GQGAZM ng
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Hence Res is injective: For FE?A%?)(N,QJ), put

~/ N~ o~ I
(1.2)  F(¥ezk) = F(g)M(k), YV E€Gy, g€Gy, 2€2,, , ké];TKp

c . ~ . ~(m) _ : .
Then it is easy to verify that FC.AG_ (N,®w ). Hence Res is

surjective. This completes the proof.

We are going to define the classical spaces of Siegel modular

forms and investigate their relation with A%?)(N,Q)). We put

) a b ~
(1.3) JU_(g,z) = g (cz + d) for g = ( c d><% Gop » 2CH
~ ~ . .
where Gx» = -{g<&Gﬁa\ m(g) >0} . We have the cond;tlon of automorphic

3 3 . ;N
factor: Jo_(glgz,Z) = Jo_(gl,gZZ)JO_(gz,Z), 815 89€ G, z€H . Set

| a b
'™ = %Y= (. d)é Sp(m),,

For a€ Z, (a,N) = 1, put

(1.4) W (a) | w_(a)
(0}

p|N P B

Then ¢ _ is a Dirichlet character modulo N. Let G_(T (™), w )

CEOHmdN}

denote the space of aiivébntinuous functions f on Hm which satisfy

feontinuous funetions f on
(©  £(F(2) = W (det a)E(2)I_(¥,2)7 T (i-valued

a b
for any ¥ = (c d) E_Fém)(N), z €H_. Let Go_(f(()m)(N),Wo)

denote the space of all functions in —6;117ém)(N),Q/0) which are
holomorphic on Hm\/%cuspé} . As well known, the holomorphy at cusps

is automatically satisfied if m22.

(m) . ~ ~o_
Take F&Am (N,&wW). For gEGoo, define g(:GA by gy 1
if v X oo , /é/w= g. Set
Ay . -1 G
(1.5) S(gil) = F(g)Jov_(g,l) , 8€E G, ,

where 1 = Af—lllm and &fis the contragredient representation of ¢

1
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t -1

(g) = (g ) for g€ aGL (C).

Lemma 1.2. Let f? be the correspondence F—>f defined by

(1.5). Then ¥ is an isomorphism A (N,w)=TGT ™ w),w 1.
—_= = = o o (o] (o}

Since this lemma should be well known, we omit the proof.

Now we are going to define Hecke operators. Assume pA/N;

~

so we have ‘K = GSp(m) . Take ax&fr and let %{aﬁf = \J g.%f
p Zy Q PP FERE A ¥
be a coset decomposition. For Féfzg@)(N,u)), we put
1.6 % a8 )F S (s
(1.6) (( p2 p) )(g) = - F(ggy), 8€G,.
‘_ . N o~ /{\/(m)
Then it is clear that (KpaKp)Fc AG_.(N,Q)). Assume a =
dl dm €1 ®mn

diag [p T L,Pp ,p T, D J with non-negative integers di’ e,

7
(1£i<m) such that di + e; = u, m(a) = pu. By the strong approximati

theorem, we see easily that a coset decomposition
T®maT®ay = 0 T @y
o Mal Py = U T
i=1
gives rise the coset decomposition
: d
Vad =1 _lN
K a K = . K
p b ;31 4 i p

By rather formal manipulations(cf.[ié],'§6), we find:

Lemma 1.3. The assumptions being as above, let f?‘gg‘the same

as in Lemma 1.2. In view of Lemma 1.1, use the same letter ¥ for
1

the isomorphism A ™ (N,w )= G Ty, w h  for the sake of

% ~ ~ - /
simplicity. Put £ = Y(F), £ = T(®a 1’k’p)F). Let k be the

integer such that G‘Gi'lm) = (xkvidentity for c{éCX. Then we have

d
£¥(z) = p/2 21 Woldet a)T(¥y2)i (8;,2), zeHy,
1=

10
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4 ay; bi)
where (i = c. d. 5
i i

This Lemma shows that the Hecke operators !Kﬁak;. essentially
coincide with the classical Hecke operators (cf. Andrianov fl] ) when
interpreted in terms of the isomorphism !Ké?)(N,u))QéfagfIﬂgm)(N),alglx

Now let us consider theta series., Let SiiMzn(Q) be a positive
definite symmetric matrix and H (resp. %3 denote the orthogonal
group (resp. the group of orthogonal similitudes). Set V = M2n,1(Q)’

QIX) = tXSX for x€V, X =M (Q) and we identify X with Ve,

2n,m
We choose a character “Y of QA/Q so that \Vxxx) = e(x), X€R,
\Pp(x) = e(-Fr(x)), Xé_Qp for every p, where Fr(x) denotes the
fractional part of x. Then, associated with S iand “YV (resp.”% ),
we have the local (resp. global) Weil representation ’TCV (resp. IT )
of GV (resp. GA) realized on S(XV) (resp. S(XA)), where v is a
place of Q (cf. [15], §2). Let W be the chéracter of ‘Qz/QX which
corresponds to Q(A/Y:IKEEEE“E) by class field theory. Let L bé an
integral lattice on V and K' be the stabilizer éf L in HA.‘Wé have
K' = UKI'J = K}, with K = %héHQp\ hL, = Lp} and K = H, where
Lp =L &, Zp; Let T be a finite dimensional representation of Kl on
the vector space Wt suqh that C is unitary with respect to an inner
product { , >T on W, . Define a representation P of Kt hy P (x)
A
(1.7) P (¥hnk) = Y(n) P (k) for any ¥€H,, heHA', kKEKY,

=T(k,) for k€K', Let ¥ be a W%rvaluéd function on H, which satisfies

Let P(x) be a WTJ® W-valued polynomial function on X,  which
satisfies

(1.8) P& !x) = P(x)( P(k) ® 1) for any k€KY , x€X,,

(1.9) P(xa) = P(x)(1 ® (g (a)det(a)™™)) for any x€X, , a€ GLy, (R)-

We set

11



229

f,(x) = exp(-2Tw ("xSx))P(x) € S(X,) @ W,_®W for x¢X,,

fp = the characteristic function of L§<ES(XP),
£ = U £, €E8X) W@V .
For v,, vo€&W_ and wEW, put <v1®w, Vo> = <V1’ V2>CW;

extend this pairing to the map of WT:® W x WT, to W, which is
C-linear(resp. C-anti-linear) with respect to the first(resp. second)

argument. We put

¢ | _
(1.10) Do) = 5 20 oo™, §m) a.

HO\H, — x€X,

Here dh denotes the invariant measure on HQ\HA which is derived
a4
by Weil's relation from the Haar measure dh on HA such that

S‘ ﬁE‘= 1. Let p be a prime. Put B(x,y) = Q(x + y) - Q(x) - Q(y)
K‘

=0
v *p
x,y€V, L. = %xer \ B(x,y)€ Z, for all yel X . Let (p ®)

P D p
be the Zp—module generated by \Q(x)\ Xérﬁ;§ . We see that .Qp is
a non-negative integer and is equal to zero for almost all p. We
set N = TT P p .

p

Lemma 1.4.(ct.[13), $2) If r_ satisfies')

a b '
CIREPINNNE N E UV FENREE IO =
a b :
(—b a) & X, , then we have @SfoéAgE})(N,w),

Va4

Hereafter we shall assume (1.11). Let fEf be the extension of

Eﬁ? to Aé?)(N,aJ) guaranteed by Lemma 1.1. When there is no" fear

1) When P is a constant function on X, , this condition is

satisfied with o(g) = det(g)?, g€GL_(C) (c£.[13], Lemma 2.2).

12
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¢ = =
of confusion, we shall abbreviate §f(resp. Qf) to @i_.(resp.@f).

. ny o7 Vot
We shall analyse the action of Hecke operators KpaK aE-GQ f\M(zm,Zp)

p p

with a non-negative

S~

for pK’N on §§f' We may assume m(a) = u

integer u. Let k/ g5 K be a coset decomposition such that

p p
m(gi) = p% for every 1i.
First let us consider the case where u is even. Put u = 2t
-t % -t ~
and set z = p ’IZmG:GQ’ zp =D '12m€'GQp . Then we have

~

Dreey) = By(zey) = (W (TN Bz ge,)

= w (™) j <2 (Ti(gz,g)1) (b1 %), ¢ (h))> dn

H@ﬁA xeX

Hence if we put

1.12 !
( ) D

]
M

=
7\
N
[e]e]
N’
Hh

I

(1.13) £
then we get
~ o~ 7 t
(KK )P (e) = w (") Dy () for geg,.

‘ "o (m)
Since 7Ep(k)fp = fp for kG;Kp, we see that §§f,éiAq_ (N,w).
Therefore we get
(1.14) (K 2K )P () = W ™) Bpi(e) tor gedy,

—

where §§ is the unique extension of ) to 'X1m)(N w )
fl -f' » o s b
guaranteed by Lemma 1.1.

Next let us consider the case where u is odd. Put u = 2t + 1,
-t -t 0

p -1 0 ~ p -1 \ o~
v o= ( m €°G V = ( m )E&G .
-t-1 Q’ P -t-1 Q
. 0 1. p

13
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1
m

0
Y R _
Assume geGA satisfies g = 1 and ( _1‘1 ) gq§Gq), where

0 bp
ge denotes the finite part'of g; Then we get (use (K3 and (ﬁS)

$o(eg) = Pp(Ver)

_ 1 0

= w (pmt) $ ('.. )1’ "5’1’ l/ g"l’ o b ( m ) g )

o f | p-i 0 p—¥ lm oo 0
= w_(p" <Z{ﬂ_ (T () x T (V. gt

° H.\H X €X vip, 0 v v p- p1°p

QYA Q
1 0
x T, ( ( Om RN >00 gm)foo}(h—lx), ¢ (ny>an .
m

Therefore if we put

. ! = T DT
(1.15) £ Zl; L (Vg i,
(1.16) £ = };1 f,x 1),
vIp
then we obtain
~ g w mt § i 1m 0 >
(1.17)  (K.aK ) D) (g) = O"H P ¢ ( _ g),
p-p—f ° £ 0o p L 1 /e

Va4 ;
for geEGA such that g = 1, m(gb) = p. .
-1 * %
We have Kf' = £+ fo k& UV KV . Let M resp. M
e have T (k)f, = £ T pp P p (Tesp. M)

be the trivial representation of ypK b’;1 (resp. J/QE; V;I) and set

p
— ~ .
K*=HKx-UKU’1,K*=H’f{xyffu’l,
vip ¥ PP P vip ¥ PP p
* ) * ~% ~ Vot 3
M = @ M@®M , M = & M_@M
vip v p vXp v p

Then we get

Po(rex) = P, (e (k) for any ye Gy, BEG,, kK€K,

By modifying Lemma 1.1 in the obvious manner, we see that Q?f, can

14
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o

~
be extended to the unique function §§f, on,GA which satisfies
= = Nk Ik
Dorew) = B, (W () for any re'§,, g€y, kX,
7~ = ~
Qoizg) = w2 P, (g) for any zez,, geT,.

We obtain

o~ oA~ mt = lm 0
(1.18)  ((K ak )P )(g) = w_(p" )P, ( _ g)

TpTp £ o f 1

0 p 1 /oo
m
for gé>GA, gf = 1.
For b€H , let K'bK' = K'h, = kj h.K' be coset
Qp - P P 3 bJ 3 J p

decompositionsz). Put

(1.18) ((KébKé)fp)(x)

%:fp(hjx), xe X,
(1.19)  ((K3bK!)P)(h) %ﬂp(hhj), heH,.

' b A ; Z = 1 - }
Then (K' bK1){f also satisfies (1.7).We put K} = heHQp\th = L.

For b€H, , let K'bK' = \J K'h, = k}h.K' be coset decompositions.
Q P p . P J . J P
D J J
Put
1.20 KbK )£ >\ £ (h X
. ' = . X .
( ) (( P p) p)(X) j\ o83 ), X€ D
X be 111 in ¥,, i.e. © = J[X x E,_. Let T
Let K be the stabilizer of L in A2 1-€. K" = J Kp x H_. Le

—_

be a representation of H,,such that L\H«>=f7f and put ,P(k)’= C (kg -

~
for ke X'. Identifying the center of H_ with R*, we have the canonical

N [

direct product decomposition H,, = Rf X H&J.'We’assume that T is
trivial on Rf—part. If Y’ is a function on'ﬁ; which satisfies

2) Sihée H is a unimodular group, we can take %hj} so that

%

it forms a‘complete set of representatives for bothkleft cosets and

right cosets.

15



(1.21) P (¥nk) = §(n) F(x) for any YEH,, neH,, kek,

we put

/V‘ ~, ~ o ~ —_,\/
(1.22)  ((K;bK)F)(h) };____’,*F(hhj), he,.

Remark 1.5. We can verify without difficulty that the map

o~ I R s
m: Ké(\b 1K'b ——%’Zz is surjective for any be¢ HQ since pJ/N.

.p ; 1Y
Hence, if b& H, , the coset decompositions K bK' = \J K h. = h.K'
Q ’ : J cJ P
p J J
give rise coset decompositions pbK' = \j K h = h X! Therefore

- /\/ :
we get K' bK')f K'bK')f d K'bK H, = (X'bK' if
get (X' bK1)E = (KipK)f  an (<pp>‘f’>|A (pp”’?

A~
Y is the restriction of ¥ which satisfies (1.21).

In the succeeding sections, we shall prove the local relations
of the following type.

1.23 K'b, K')T €C, b GE{
(1.23) Z,o.(p}lp)p,cjL By Sl -

Theorem 1.6. Let the notation and the assumptions be the same

as above. Assume that u is even -and that (1.23) holds with EQG:HQ

D
Then we have
%’ | z”/%"
<K'aK'>§ w (™87,
where ¢' = Zc (Kl')bLKp)(P
Proof. Let KprKp =»kg Kphik = \% hﬁka be coset depompésltlon

Put

/\EL(%) = Z S < % (it,(g)f)( vx), ‘f)(h)>dh, géGA‘.

X
Q . o

By (1. 17) and (1. 23), we get
gl
((’fpagp@?(g) = w e™H P, (o) = cuo<p“’u/2).§cl ¥, (& tor geg,
|6
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ince

v, @ = g (20 (metym” x),th ) dn,
JHQNH  xeXy

e obtain

N~ o~ (P
(KK )P y(e) = w 0™/HF (&) for geq,.

t
ﬂfﬁ EEAiS)(N,uJ), we get the conclusion by Lemma 1.1.

Theorem 1.7. Let the notation be the same as above. Assume that

is odd and that (1.23) holds with b € HQ such that m(?i) = p.

b — —
———

ssume furthermore that there exists a 3’E-HQ such that m(Yy) =

S X . . . .
nd that the map m: gi 7721, is surjective for every prime ( .

hen, if %7 is the restriction of a function gr which satisfies

1.21), we have

o~ EP 2 1)/2. 3¢
KK NPy = p™/2 o "1/

(0]
here T = T = ‘@ bv = e
here 74 ZL’CL(KprKp)(F ;P v }HA.
Proof. Let X'b. XK' = |/X'h h, X' b t decompositi
P 5 D \{ )Z,k \é Lk D e cose ecompositions
ith m(hik) = p for every k. Take any gEEGA such that gy T 1

1/2 o
nd put gt = ( m 1/2 \> g, By (1,18) and (1.23), we get
0} : 1 00

®aE By = w @12 BT, (g - w, M) ST e,
z

'here

Y, g = gH . Z<Z (M(g)21(hy b7 x), P(h))> dn,

Q\ A xeX

'e have

Y, e = 2. S < ety b7y ™), P (1)) an
k HQ\HA x X, |

17
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- Zk\ g <Z (Te(g)£)(h™ix), P (&f‘lhhkk)> dh.

\ZKHA Lk XéX

Take TGH so that m(g)V = p if v X p, m(y )p = 1. Then we have

XHA ik—H? for any | and k. As
T, (g = j {20 (Mennm ™, Z‘f(h )y dn
'HQ\HAY x€X
we get '
((K K )§ e = wo<pm<u‘1)/2)§ (L mennan, 9rmpa

Q\H? x €Xg

By our assumption, we may assume Evé K"7 if v is a finite place

\of Q and goo = pl/z- 12n' Then changing the variable h to ho s
we ‘see
(R 2% )® ) (e)
(K2R D@ ¢) (g
= w (/2 § C2L o, o, ¢ ) an.
HQ\HA x€ XQ
We have
1/2
' -1 -1 ’ p’o.1 0
(TC_(81)%.0) (3o B ®) = (T " 1z >wgdo>fm)<y>
m
P/ 2(TC, (g,01,0) (p*/ ™/ 3(_(g h‘ )(x),
where we put y = p—l/zx. Therefore we obtain
~ ~ ’igtp
((KjaK )P ¢)(8)
= p™/2 w (D2 f (20 mena™, ¢rmd

H\H xé‘:X
pmn/2 wo(pm(u—l)/2)§‘f; ()

if ge GA’ gp = 1. Since @KP éA(m)(N,ou), we get the formula of

Theorem 1.7 by using G = GQGOOK and Lemma 1.1.

8



Now we shall clarify the implication of the above Theorems for

heta series in classical context. Let

C
1.24 = / '
) H A i&_/l HthK

e a double coset decomposition. We set L; = hiL, e, = [EgN h,K'h7' .
et ¥ be as in Lemma 1.2 and put £ = §F(§§I). Then f €

'¥;(Ivém)(N),QJo) and we get (cf.[}i],j 2)

, e ;
1.25) f(z) = Z,( Z m P(x)e(ﬁ‘(thxz)), QP(hiNeQ .
i=1 "xeL;

Remark 1.8. (i) If 2\n and det Sé:(QX)z, then the map
¥ /ﬁQ———> QF is surjective (cf. Eichler (4], Satz 23.6). In this
ase, the Y required in Theorem 1.6 always exists.
ii) If L is a maximal lattice, then m:/f% —*’?Zg is surjective

or eve?y_ﬂ. (cf. Eichler[@], Satz 11.2).

iii) If the two conditions on L stated above hold, then the

anonical map Hd\HA/K' )VEQKEA/ﬁj is bijective (cf.[ié), Lemma 3.5).

/\/
n this case, Y always extends to ¥ as assumed in Theorem 1.7.

We assume that L satisfies two conditions stated in Remark 1.8.

. main theorem of Freitag(5)(4.5) can be proved by Theorem 1.7
.ombined with Theorem 2.1 which shall be proved ih the next section.
'or the sake of simplicity, we shall consider the case of theta
jeries without spherical functions. Note that the lattices L;

1§;i§;c) defined above make a complete set of representatives of
o 2n

.lasses of lattices on V in the genus of L. Let ¢i} Li = Z

)¢ an isomorphism and define the symmetric matrix"si bys)

. , . 2
3) We consider an element of Z n as a column vector.

19
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(1.26) TP (8 P (v = @), ver,.

We put

(1.27) /U‘L_flm)(z)= Zm e(o (YxSxz)) = >, e(7 ("x8,x2)).
xe L] xEM, (Z)

Let p be a prime number and set

d
(1.28)  T(p)F{™(z) =L§1 Sy, z)det(c,z + 4)™™ , z€H_,
| | L
where '™ wyaiag[1,-,1,p,---,p) ™) = v rMany,

* * B
\Y=( >
Fe QL qe

Proposition 1.9. The notation and the assumptions being as above,

let c be the constant as in Theorem 2.1 with q = p. Assume pj/N.

Then we have

| . |
T(p) ${™) = o7t > 3@ /e,
J:

. _ t _ &
with O<ij(p) = \gXGEMzn(Z)l XSiX,— ij} .
Proof. Let ﬁP be the map as in Lemmas 1.2 and 1.3 and (f be

~n
the characteristic function of HthK’. Take bézHQ (\ManZp) such
p

that m(b) = p; put Q' = (KI")bKI‘)')\f. We have (cf.(1.25))
7 N
G

/\I'(QS(E) = «9§m)_/ei. Since « = 1, the action of the center of G,

on §(P is trivial. Take aé/é/ N M, (Z ) such that m(a) = p.
f SO , TQ, 'T2mp
Then, by Lemma 1.3, Theorems 1.7 and 2.1, we have
I, C:@. | mn/2 “ o (m) mn/2 -1Ap N/?‘
T (&K o) = p™/ rp) ${™ /ey = 2" 2 T Y (B .
Hence we get

o (m)
CF (/e di™

v

il
|

(1.20)  T(@)F™ = e te.
j

20



Therefore it is sufficient to show
1.30 . .(p) = e. P'(n
(- ) OCIJP _eiKF(j).

r ~ -
Let K'bK!' = Ub‘ K' be a coset decomposition. Put
p b L AP

Bij‘ = 3( b, | hyb, € Eth’IZ'}

Then we have ,(;DJ'(hJ.) = \B

i’} Put
J

_ t _ |
Si; = %XéMzn(Z)‘ XS;X = psj} .

If X¢ Sij,.we see easily that only 1 and p can appear among elementary

divisors of X. Hence SijaX _ pX—le Sji is a bijection, i.e.

|'s Is.i] -
ji
Now we are gcing to define a correspondence from Bij to Sij‘

Vad Va“d
. - . , .
Take b, € Bij' Then hjbjL é/hik with Y€ H., k€ K'. Since

15

x x -
h,, hJ.E—HA and m(k)eTI;(Zp x R, , we get m()y ) = p. We have

h.b,L = ¥L., h,b, LS h.L = L,. Let ( denote the inclusion map of
Jx i’ T3k J J
2n

hjb,L into L. Then the map v —> $,(C (¥ ¢ 71w, vez®™ is
. 2n 2n .
a Z-linear map from Z° to Z°7. We define XE MZn(Z) by

(1.31)  xv = $Lrgiiem, ver®,

For véLi, we have X%i(v) = ¢j(L(3/v)) = %J.(A/(/(v)). By
(1.26), we get
B (s, .(v) = Q) = (L () = placC (rv))

=T e cromwls; diccrey = TR ot lsx i, very.

t

Therefore we get XSjX = pSi, i.e. X¢€ Sji' If X is given, X is

uniquely determined by (1.31). When blé Bij is given, we see that
N - - - -
there are e; choices of Y & HQ which satisfies hjbf, = Yhik with

21
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o, ) . - = ' i
k€K'. It is clear that if hby = Xhik, Bb,, Jhik' with

féfIYQ, k, k' €K', then we have b, K = bQ,K i.e. { ={'. Thus
the image of the "1 to e correspondence” Bijg)pﬁ-’”? XéESji has
the order eilBij{' We shall show that any X< Sji can be obtained
in this manner. Let X¢& Sji and take 3/1 é/ﬁ/Q so that m( )/1) = p.
Then ¢31(X22n) and XlLi are isometric as lattices. Hence we
can find X2C—HQ such that 8/2 )/lLi = ¢J‘.1(Xzzn); put = y, 7.
For a prime number ﬁ,% p, we have (X’Lizi = (szﬂ ; we have
()/Li)p‘gé(Lj)p' Hence we see that )/hik = hjb& holds for some

k €X' and ?L . Tracing back the definition, this shows that X

belongs to the image of the correspondence defined above. Thus

we have

This completes the proof.
Let 0<s<m and set

d
1.32) TOEHIM @) = 3 $My pdet(ez + 4", zen,

L=1 ‘
(m) . 2 2 ~ 1 (m)
h N d l sy 1 27 s 1 tes N
where  I'g™ (Myaiagll, - ,; 3 TS0 DA I -0 S RSP O
m-s S m-s S
d * *
(m)
= ™My, ., Y= ( )
1&%_ Iﬂo L ’a c, dg

Assume m = n. If we combine Theorem 1.6 with Theorem 3.7, we get
the following generalization of Freitag's theorem for the Hecke

operator T(S)(pz).

Proposition 1.10. Let the notation and the assumptions' be

the same as in Proposition 1.9. Set

22
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7

(s), 2. _ H t _ 2 .
C{ij (p7) = XéiMzn(Z) XSiX P Sj’ the elementary divisors
of X are 1, ,1,p,*'’,Dp, p 2 }i
— " \_/"v‘“/
m-s 2s

If m = n, we have

m-s-1

Soé;?)(pz) +p (ps+1—1)&§§+1)(p2

Hm,
e . J

" 2 C

(80 (p?) J{) = pm Z:l
J=

J

The proof is omitted since it is quite similar to that of

Proposition 1.9.

Remark 1.11. A similar result also holds when m % n. To
explain this, we use the notation of 33; there we shall prove

the local relation (1.23) written in the form

An(ni)(x) - 4\); CiL(m,n)Br(l't)(X), x€ X,

where the coefficiehts cii(m,n)’s are explicitly computable.

Then we have

C
TS eHF ™ = o 3T (Tey mma P67V e
J= L

Numerical example 1.12.. Let D Dbe a defite quaternion algebra

over Q which does not ramify except at 3 and ¢o. Let R be a maximal

order of D. When a suitable isomorphism ¢ : R= 24 is fixed,
we have
1 0 3/2 0
" 0 1 0 3/2
N(x) = "¢ (x)S p(x) for x€R with § = 32 o 3 o ]
0] 3/2 0 3

where N(x) denotes the reduced norm of X€ R. For this symmetric

23
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matrix S, we have ¢ = 1. Put

G(z) = > e(o (*x5x2)), z€H, ,
X€M4’2(Z)
- t -
e = HX&M4(Z) ] XSX = s}] ,

— t _
o (p) = HXEMAI(Z) | xsx = pS}, ,
d}s)(pz) = \{XG-M4(Z) 1 tXSX = pZS, the elementary divisors of
' 2 2

X l,“' :1’ sy 2?7 5P, s 77, ‘ )
are S Qw/\r\lp P¥/‘YP\JP }'
2-s 2s 2-s

where p is a prime and 0<s<£2.
Since \Rx} = 12, we easily get e = 2 x 122‘= 288. We have,

when p ¥ 3,

()Y = 20 ()Y

D $ = p 5L(pz—l) + p(p+l)2}19' ;

r %) ¢ = 57 {20%0001) + e Ppo-10f -
(For the proof of these facts, use Lemma 1.3, Theorems 1.6, 1.7,
2.1 and 3.7. The first two of the formulas, in the case p is odd,
are nothing but Theorem 6.1 of [lé]). Hence, by Propositions 1.9

and 1.10, we get

ol (p)/288 = 2(p+l),
ol (2)(p2)/288 = 1,
oL (1) (p?) /288 = (p+1)2,
o9 (p?)/288 = 2p(p+1),

for a prime number p X 3.

24



§ 2. Local relations for T(p)

Let k be a non-archimedean local field whose characteristic
is not 2, O be the ring of integers and W be a prime element of k.
ut q = lO/@fO‘.Let G = Sp(m), 8’= GSp(m), and H (resp.{ﬁ3
lenote the orthogonal group (resp. the group of orthogonal similitudes)
vith respect to a symmetric matrix Séern(k), det S % 0. Set
I = M2n,l(k) and define a quadratic form Q 'on V by Q(x) = thx,
¢€V. Let | | denote the normalized absolute value of k and "V be
v non-trivial additive character of k. Let U be the Weil representation
»f Gk realized on S(Mzn,m(k))‘ For the sake of completeness, let

1s recall that U is characterized by the following properties.

1 by, _ . —
'2.1) 'I’TK(O 1)}9(x) = ﬁ’(v(bthx))@(x),

a 0]

2.2) frc(( ta_l>>§(x) = W(det a) |det a|" P (xa),

0
o)

2o ([ J)Ew® - r & w

lere P esu (k)); w is the trivial character if (-1)"det S

2n,m
e(kx)2 and is the character of k> which corresponds to the
juadratic extension k('A/(—l)ndet s) if (-1)%det s &&¥)2; ¥ is

1 complex number of absolute value 1 which depends only on S, “P
ind m; Qé* is the Fourier transform of §§ with respect to the self

2n,m(k)’
Hereafter we assume that SE&Mzn(O), det S€0* and that “} is

lual measure on M

.. ' . .. -1
:rivial on O and is non-trivial on <4 0. Furthermore we assume

:hat the residual characteristic of k is not 2 (c¢f. Remark 2.7 when

b1y

] is even). Put
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with a fixed 9€ 0% - (0%)2. As well known, we can find X € GLy, (0)

t

such that XSX = S or Sg . For our purpose, we shall lose

1

no generality by assuming S = S1 or Sg . If S = Sl’ we shall

call H ‘"split type'; otherwise '"non-split type'". We put £ = W Ew).
Then we have ¢ = 1l(resp. -1) if H is of split type(resp. non-split

type).

We identify M (k) with V™ and denote it by X. Set

2n,m
R Va4 Vet
L = M2n 1(O), which is a lattice on V. For ge&Gk(resp. hé:Hk), let
b

m(g)(resp. m(h)) denote the multiplicator of g(resp. h). Put

’C\%JO = %gé"f};{(\MZm(O) ! m(g)& OX} (= GSp(m)y),
H, = {hé?fk.f\Mzn(m | m(h) éoX} .

~
Clearly HO is the stabilizer of L in ﬁg. Put GO = Gk{\ﬁa (= Sp(m)o);

-

HO = ka\Ho . For a positive integer N, put
N, _ n : N x
T ™) = ggéGkﬂMzm(O)' n(g)e w0},
N fand N.x
Te(ar™) = %herFm5n(0)]nmh)e€v 0 }.
Let T@(@f} = \j giGO’ m(gi) =W  be a right coset decomposition
i
and set

(2.4) A (x) = 25 (TU(Vg)D)(x), xEXK,
1

‘ 1 0 ~
where YV = { m -1 )é’@;{ Similarly let T/I;I/(W) = U Hoh. be
0o <« 1 3 J
a left coset decomposition and set

26
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(2.5) B_(x) = ;%:f(hjx),>ﬁ3X. 4)

Our purpose in this section is to prove the following Theorem

which gives the local relation (1.23) for the double coset T@(@f).

Theorem 2.1. (a) If H is of split type, we have Bm(x) =

cmAm(X) , XEX with

2 n-m-1
2q(—m -m+2mn ) /2 W (q,(L + 1) if m+1<{ n,
=1
(n2-n)/2
c = 2q i mHl =n,
m 2
q(n -n)/2 if m=n,
2 m-n
D (qﬂ + 17t if m>n.
L=1

(b) If H is of non-split type, we have A (x) = 0, x€X for n<m.

Before proceeding to the proof, we shall make several preliminary
considerations on the nature of AIn and Bm‘ First we shall give
an explicit expression of Am. By the Iwasawa decomposition,
o~

representatives 'g. of right G.-cosets in T%{GYN) can be taken
i o) G

A B

in the form ( : N t _;) . Then it is easy to see that we can
0 w A

choose . %gi} explicitly in the fqllowing way. For AEEGLm(k) and

B, B'é:Mm(O), we write B= B' mod A if and only if A_l(B - B")

€M_(0). For non—negative integers ‘il""’(xm’ let R(til,"’,C{m)

4) When H is of non-split type, Tx(®) = ¢ and B_ 1is not

defined.

|
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(resp. L(o(l,"‘, dﬂn)) denote a complete set of representatives of
right(resp. left) GLm(O)—cosets in

: ol o+ o o+ o 4 00r 0L
GL, (0) diaglert,wr 1 2, oo b2 mj GL_(0).

b

If we let A run over R(Oél,'*',Cim), 011 +1X2 +"'+<¥m§;N and
let B run over a complete set of representatives of BE:Mm(O)
such that A-lB is symmetric under the equivalence relation =mod A,

Nt

A B
then give the desired set of representatives.
o @ ty!

Therefore, by (2.1) and (2.2), we get

(2.6) A_(x) = DL 2> (o (Btatxsx)) x £(xA) x w (det A)
A B mod A

x |det a|®
where A extends over R(&y,"'" ,OCm), O(izO(léiSm),
o (% <
BT +dm_1.

Lemma 2.2. Am(x) and Bm(x) are invariant under the

transformation x —> hxk + t, where hé&HO, kE.GLm(O), te 1™,

Proof. The assertion for Bm(x) is obvious by the definition
(2.5); we shall prove the assertion for Am(x). Take any‘§§ € S(X),
geGk, he Hk and put ’f(x) = @(hx), x& X, Then we get easily
(Te()P ) (hx) = (Tt (g)¥)(x), x€X by using (2.1)~ (2.3) (i.e.
the actions of Hk and of Gk on S(X) commute). Hence Am(x) is
invariant under X-+f> hx, hGEHO. By (2.1) ~ (2.3), we see easily
that “r(g)tf = £ for gé.Go (cf.Lli], Lemma 2.1). Hence we have
(2.7) T(g)A = A for any ge VGou‘l

k 0
by (2.4). Taking g = ( o tk"‘> s ké-GLm(O), we get Am(xk) = Am(x)

2%
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)

x& X. To show the invariance of Am under x—>x + t for tE‘Lm,
we use (2.6). It suffices to prove '\AS/(O‘(BtAtXSX))f(XA)v is invariant
under x —> X + t. We may assume XAC L™. Then we have |
G’(BtAt(x + t)S(x + t)) - G"(BtAthx)E O; hence we get

Vo (B%at(x + t)s(x + t)) = "f/(O"(BtAtXSX)); it is clear that

f(xA) = £((x + t)A). This completes the proof.

Lemma 2.3. (a) If x& (@ 'L)", we have A (x) = B_(x) = O.
(b) Assume x¢€ (@”-IL)m. It t(*a’x)S(@rx)é@O mod ‘@w~, we have
Am(x) = Bm(x) = 0.

Proof. Assume Bm(x) X 0. Then, for some bé'/ffk(\ M2n(0) such

that m(b) =@ , we have bxelL™. Since b T = @ !sTtbse oM, (0),

e

-
we get x€ (- 'L)®. Since we have T(b@rx)S(b@x) = w(‘@rx)S(x)
=0 modﬁr’z, we get t(@’X)S(fcu/x)E 0 mod- W
Next assume Am(x) X 0. By (2.6), we have xAec L™ for some 4.
Then we can easily get xé& (@’_IL)m. By (2.1) and (2.7), we have
V(o @bt

for any bE Mm(O) which is symmetric. Hence we get thxefm:

xSx) )Am(x) = Am(x)

1
M (0),

i.e. t(/CO‘/X)S(’WX):—_—E 0 mod w. This completes the proof.
Hereafter we shall write x = (x;,--- ,x ) with x;€ v(1£LiLm).

Lemma 2.4. We assume x =0, mz2 and put x' = (Xy,7r Xy 1)

_ m-n '
Then we have A (x) = (1 + €q A _;(x").

' 0
Proof. By the Iwasawa decomposition, we may set A = (Cl a)
_ 1

~1
-1 A'1 0
with Alé- Mm—l(o)" ac€0. We have A = -1 -1 -1 ’
-a “"c,A a

29



( A1 O> < A1 O:> _ ( 1 0>
c a c a/ = -1, ,
1 1 a (cl—cl) 1

Since @fA_le.Mm(O), we may take either a =1 or a =@ If a = 1,

' rank(A1 mod ™)
we may assume c; = 0. If a =™, there are ¢

B,. . B
choices of c¢,. We put B = ( 11 12 with B.,,€ M (0).
1 le B22 11 m-1

By (2.6), we get

(2.8)  Ay0 = >0 2 Y(oB i txsx)) x £((x'ay,0))
A

B mod A
x w(det A;) x |det Al\n x w(a) x |a|”
. Bll 0
First assume a = 1. Then we see immediately that B = ( 0 O) mod A

Therefore there is a one to one correspondence between equivalence

classes B mod Al and B mod A. Next assume a =W . We have

11
-1 -1
1. A17Byq A17Byg
A "B = o lealn. . s lp T B
€181 B11 TW Bgq — W €147 Big 22
We must have’ﬁfA_lB = t(-c ATlB. . + B ). Put x = -c ATiB . + B
1 °12 11 P11 217" 181 P11 21"

Then 'x must belong to AI%GTMm_l 1(0). Hence there are

m—l—rank(A1 modw’)

q choices for BZl‘ Clearly there are q choices
for 822. Summing up, when B11 mod A1 is given, there are
) m-l-rank(A, mod®@)
rank(Al mod @) X q 1 X q = qm possibilities for

q
B mod A. Therefore, by (2.8), we get

B mod A

ta gy ,
a0 = 25 S0 Y@y Trsx)) x £((x1A,00)
1 11 1

X w(det A;) x |det A

30
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where Al extends over R(cLl,'se ,OLm_l), d_iE;O(lgéiéém—l),

o+ oL
m

1 < 1. This proves our Lemma.

-1

Lemma 2.5. We assume xéE(Or—lL)m and t(ﬁfx)S@w’x)EE 0 mod T,

For k&GL_(0), put xk = (y;, "¢ ,¥,), yieiV(lééiéém) and assume

2
ym&:L for any k. Then Am(x) = Eim q(m +m—2mn)/2.

Droof. We use (2.6). Suppose that xAE€ L™ for some A €&

R({ g, 7, ), A ,Z0(1£1i<m), o<l + .. F O(mél. Put A = (a;,).

We have x.a + e+ xmaiméiL. If 0(1 = 0, there are some i, j

17i1
such that aijég 0 mod@wW ; so we can find k = (kij)G:GLm(O) such

that kmL = aﬁL

have yme.L. This is a contradiction. Therefore =xA€ L™ if and

, 1< 1< m. Then, for y = (¥1,77 ,¥,) = xk, we

only if A< R(1,0, ,0). In this case, we may assume A =

diag [@7;':1,ﬁxﬂ . We have

B = Em ™ 2 Y(o(Btatasx)).
B mod A

Since ‘xSxew 'M_(0), we have "} (o=(B'A"xSx)) = 1. By definition,

there are qm(m+1)/2

-equivalence classes for B mod A. This completes

the proof.

Lemma 2.6. Let the assumptions on X be the same as in

Lemma 2.5. We assume further that H is of split type. Then

1 if m = n,
B (x) = 2 if m+l = n,
m
n-m-1 3
2 T (¢~ + 1) if m+1< n.
L=1

31
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—_—

Proof. Put V = L/U'L and Q(x mod@wl) = Q(x) mod® for
x& L. Then (?;_5) defines a regular quadratic space over Fq =
O/w 0. Let ‘H denote the group of Fq—rational points of the
orthogonal group associated with (51-65. With a suitable basis of

. _ _ o 0 1
V, we may assume Q(x) thx, XeEV, S = ( 1 O#)é_Mz (F ). Put
n n-a

Xy =4D’Xi modwlL&eV, x = (xl,w-,xm

that §i,v'r ;§g are linearly independent over Fq and that

). Our assumptionson x imply
'35% = «
Note that m=<n must be satisfied for the existence of such x.

Let ve&V be a non-zero isotropic vector. Then it can easily

be shown that hv = t(1 0-+- 0) for some heH, By induction

on m, we can find h€H and 'EQ&GLm(Fq) so that y = (§i,-'-,§%)

= hxk satisfies '§1 = t(1 0 --- O),‘§é = t(O 1 0:--0), +-., 3@1=

‘0.0 1 0-..0); put =z, = ‘(" 0. 0), Zg T

to w™ 0.0y, .., z_ = "0 0 @' 0-..0). Here the

j-th coordinate of yi(resp. zi) is l(resp.“@f_l) if j =41 and

0 if j ¥ i. Since the reduction map

¢ @ Hy ——> H, Y (h) = h mod @

is surjective, thereexist he&H,, k€GL_(0) and teL” such that

O)
z = hxk + t, z = (zl,-~ ,zm). Hence, by Lemma 2.2, we may assume

xX. = 7 1< i<m
i i( = “g )'
1 0

. . ) o~ I~
Put ig = ( On 4U"1n> . As is well known, mﬁcar) = HOT§HO-

' | o ~ i Vs . X
A left coset decomposition HO = kg/(ﬁb(\t§ Ho\§)<ij gives rise
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r~ N
the coset decomposition /EéiiHO = \JIEG\EOCJ. The canonical map
J

-1 ‘ ~ 107 Y ,
Hoﬂ§ HOE\HO e HO{\§ HOS\HO is bijective. Put

ee fon (2 e

Then the reduction map ¢ induces a bijection Hofjtg_lHofg\ﬁo

a, b, c, déMn(Fq), b = O}

_— B\ﬁ: By definition, we see the following: For & = (O{ij)eiHO,
T o« x€L™ if and only if o(ij;:.o mod®@ for 1£Li<n, 1<Lji<m.
Therefore we have '

(2.9) B (x) = lFlv/]Bl , where

N
AN

J

al.

Now we are going to compute lF}. For x, yéfVl put <:X, y> =

m
= = H = i <
(2.10) F {g (_gij)éH ‘gij 0, 1£i<n, 1

tﬁgy. We write g& F as g = (xl,'“ ,in) with column vectors

x;€V. Then g€&H if and only if <xi, xj> =0 for [i - j| X n,
= i < i .
<:xi, Xi+n>> 1 for 1LiL£n. First we choose Xy, , X, SO

that they are linearly independent and that all the first n-coordinates

of X150, X are 0. The number of choices of such vectors is
equal to (qn - l)(qn - q)- (qn - qm_l). Let F be the number
of vectors X14n " 0 Epin which satisfy

{ Rygps ®y> = V45, 1£4,35m,

(2.11)
- <. .
< Xi+n: Xj+n> O: lzlrJénL
e have
m-1 [
(2.12) |F] = (" - D@ -~ @ -d"HF x |0oj(2-2mF) ,
assuming F 1is independent of the choice of Xy,r0, Xpe To compute
i v v , = P
F, choose a basis u,, » Ugy of V sq that uy xi(l,_légm),
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{uy, uj>> =0 if |i - j| % n, {uy, ui+£> =1 (1<i<n). Let

—

W be the subspace of V spanned by u T, u

m+1’ n’ un+m+1?" ’ u2n'

Put

Kap = gy * Bqupgy + olgug + Bty e+ oLu + Bou W we
From ‘<Xl+n’ u£> =0 for 2<i<m, we get 52 = /33 =, = /3m = 0;
from <:X1+n’ u1>> = 1, we get ﬁ%l = 1; from <fx1+n,‘x1+£> = 0,

we get c%l + Q(w) = 0. Thus

X1+n = O(]_ul + u1+n + 0(2112 +..- + O(mum + w, we W, O<1 + Q(w) = 0,
is the condition posed on X14n by (2.11). Therefore the number
of choices of x,,  is q2n—2m X qm—l. Repeating this procedure,
we get
F = (q2n—2m X qm—l) % (q2n—2m - qm—2) - (q2n--2m‘X q°).
Therefore we obtain
-1 -m+1 2n-m-1
(2.13)  |F| = (@® - 1)@®t - 1) 00 (@@ -1y gEREmD)
X lOl(Zn—Zm,Fq),
. _ n(n—l) n n-1 _ }
Since }BI = q (g - 1)(q - 1)<+ (q - 1) and lOl(Zn—Zm,Fq)g
= 2(qp—m - 1)(q2n—2m—2 - 1) - (q2 - 1) q(n—m)(n—m—l) (we understand

iOl(Zn—zm,Fq)] 1 if m = n), we obtain the formula of our

Lemma by (2.9) and (2.10).
Proof of Theorem 2.1. By Lemma 2.3, we may assume xé?(@frlL)m,
Y x)S(@x) =0 mod . Put xk = (yy,7%% » v,) for k&GL (0).
Only two cases can occur.
Case (I) y_&L for any kéGLn;(O).

Case (II) ybesL' for some k€GL (0).
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Proof of (a). For Case (I), m<n must hold and we get
Bm(x) = cmAm(x) by Lemmas 2.5 and 2.6. Suppose that we are in
Case (I1). By Lemma 2.2, we may assume X, = O. When m = 1, we

get A (0) =1+ q'™®

by (2.6). By similar considerations as in
the proof of Lemma 2.6, we immediately get Bl(O) = ‘01(2n,Fq)l/]B\.
Thus we obtain Bl(O) = clAl(O). Now we shall proceed by induction

on m. By lemma 2.4, we have A (x) = (1 + PR

Ty . =
A, 1(x"); B (%)
B _1(x") is clear by definition. Therefore the assertion for the
case m follows from the fact cm_l/cm =1+ q and the inductive
hypothesis for the case m - 1.

Proof of (b). Since we have assumed m_>n, the vectors Xy =

Xy mod-@w-L, - <7, X

R mod@wL are linearly dependent over F_.

q
Thus Case (I) cannot occur. Suppose n=>2. Then, by Lemma 2.4, we
get Am(x) = 0 for m = n. Therefore we obtain Am(x) = 0 for
m>n again by Lemma 2.4. Suppose n = 1. If m = 1, we immediately
get Am(x) =0 by (2.6). Then Am(x) = 0 for m>1 follows

from Lemma 2.4.

Remark 2.7. Let us consider the case where the residual

characteristic of k is 2. We assume

(A1) L = 0% is an integral lattice.

Put
B(x,y) = Q(x + y) - Q(x) - Q(y) = 2%x8y, x, ye V,
Y - {xevis(x,y)eo for all yeL} :

We assume

(A2) ¥ = L.

By (Al) and (A2), we have  7(g)f = £ for gEEGO, where £ is the

characteristic function of L% (cf.[ﬁé}, Lemma 2.1). In particular,
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k(A((—l)n det S) 1is unramified over k. Put S = (sij); we see that

siié;O and 2sij€i0 when i X j. We can also show det 2S¢ 0%,

Now Theorem 2.1 holds true without any change. The proof
)
folyws along the same line as before though we must be more careful

in this case; we shall therefore indicate briefly the places where
the proof must be modified.

Lemma 2.3 (b) must be changed to "If A (X) X0 or B _(x) X
then

(2.14) the diagonal (resp. 2 x non-diagonal) components of

Y x)Star x)e wo L
For the assumption in Lemmas 2.5 and 2.6, we assume (2.14) instead
of ‘trx)s@x)= 0 mod @r.

Concerning the proof of Lemma 2.6, we must be very careful
since we are dealing with the quadratic space (V,7§) over a finite
field of characteristic 2. We shall only indicate the following
point. By choosing suitable basis of V, we may assume that 25. has
one of the following forms which are distinguished each other by

the Arf invariant (cf. Dieudonné[ﬁ], p.34).

(I) 6(3) = }.1314'!1 + Ez §2+n + oo+ }n§2n P
(1D) —Q—(E ) = §1§1+n + §2 §2+n oo # En—lSZn--l * (0(3121 *
2
\En §2n * o{? 2n) ’
where } = (31,' . ’EZn)év and d& Fq does not belong to the

image of the map x —> x2 - x of Fq into Fq. Since W =1 (i.e.

(-1)7 det 25 €(0%)% which is the definition of H to be split type),
we see that the case (II) cannot occur. To prove this, assume
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$;;=0 modw (15i%£2n-2),
= E/\‘ ’C\*/
Sn,n—‘SZn,Zn oL mod & ’
2s. ., =1 mod W (1£i<n),
i,i+n
_ . Sn
2s;;=0 mod w, |i - il X n,

where 8 €0 satisfies /z;(/ modW = X . When n = 1, we can show

-det 283‘;(0:’()2 by noting
(a) 1+ 4m0= (052,
() |1+ 40/(1 + 40N 05| =2 and 1+ 4X &5,
() (1 +w0)? - adlN05H%=9.
. n x.2 . .
In general case, we get easily (-1) det 28 %(o ) by induction

on n. Thus 5 must be of the form (1)5) and the rest of the proof

of Lemma 2.6 can be done quite similarly.

5) In the same way as above, we can show Q is of the form

(I1) if W % 1.

37



(1]

[10]
[11]
[12]

[13]

References

A.N.Andrianov, Euler products corresponding to Siegel modular
forms of genus 2, Uspekhi Math. Nauk 29(1974), 43— 110.
A.N.Andrianov, Action of Hecke operator T(p) on theta series,
Math. Ann. 247(1980), 245— 254.

J.Dieudonné, La géométrie des groupes classiques, Springer-
Verlag, seconde édition, 1963.

M.Eichler, Quadratische Formen und orthogonale Gruppen, Springe
Verlag, Zweite Auflage, 1974.

E.Freitag, Die Wirkung von Heckeoperatoren auf Thetareihen

mit harmonischen Koeffizienten, Math. Ann. 258(1982), 419—440.
R.Howe, @-—series and invariant theory, Proc. of symposia

in pure mathematics 33, 1(1979), 275‘—286.

S.Rallis, Langlands' functoriality and the Weil representation,
amer. J. Math. 104(1982), 469— 515.

I.Satake, Theory of spherical functions on reductive algebraic
groups over p-adic fields, Publ. Math. IHES 18(1963), 229—293.
A.Weil, Sur certains groupes d'opérateurs unitaires, Acta

Math. 111(1964), 143— 211.

A.Weil, Dirichlet series and automorphic forms, Lecture notes
in math. 189, Springer;Verlag, 1971.

H.Yoshida, Weil's representation of the symplectic groups over
finite fields, J. Math. Soc. Japan 31(1979), 399—426.
H.Yoshida, Siegel's modular forms and the arithmetic of
quadratic forms, Inv. Math. 60(1980), 193—248.

H.Yoshida, On Siegel modular forms obtained from theta series,

J. reine angew. Math. 352(1984), 184—219.

38



