goooboooogn
O 5470 19850 1-22

TOWARDS OBJECT ORIENTED CONCURRENT PROGRAMMING

Akinori Yonezawa and Hiroyuki Matsuda

Department of Information ‘Science
Tokyo Institute of Technology
Ookayama Meguro-ku, Tokyo 152

Contents

1. Introduction
2. A Model of Computation
3. Types of Message Passings and Continuations
4. Defining and Creating Objects’
4,1 Defining Objects
4.2 Creating Objects
5. Parallelism and Synchronization
5.1 Parallel Constructs
5.2 Synchronization Mechanisms
6. Distributed Problem Solving ‘
6.1 A Problem Solving Organization
6.2 Alarm Clocks
6.3 Interruption
7. Inheritance Mechanisms
8. Concluding Remarks
8.1 Programming Environments and Implementation
8.2 Comparison to Other Work
8.3 Other Examples
Acknowledgements
References
Appendix I Semantics of Now Type Message Passing
Appendix I1 Semantics of Future Type Message Passing

&o

1., Introduction

Objects in the object oriented programming are conceptual entities which model
the functions and knowledge of "things'" that appear in problem domains. The
fundamental aim in the object oriented programming is to make the structure of
a solution as natural as possible by representing it as interactions of objects.

Currently proposed formalisms for object oriented programming confine themselves
in the sequential world. This is too restrictive. Parallelism is ubiquitous in
our problem domains. Behaviors of computer systems, human information process-
ing systems, corporative organizations, scientific societies etc. are results of
highly concurrent (independent, cooperative or contentious) activities of their
components., To model and study such systems, or to solve problems or design
systems by the metaphore of such systems, it is necessary to create adequate
formalisms in which various concurrent activities and interactions of "objects"
can be naturally expressed and which are executable as computer programs.

Our present work is to propose such a formalism. The problem domains to which
we 1intend to apply our formalism include problem solving and planning in AT,
building expert systems, modeling human cognitive processes, designing real-time
systems and operating systems, and designing and constructing office information
systems.

2. A Model of Computation

The framework of our present work is based on the Actor computation model pro-
posed by C. Hewitt [HE73][HE77] in early 70's. In this model, computations are
performed by concurrent message passing among procedural objects called actors.
Actors model conceptual or physical entities which appear in problem domains.
Messages specify requests, inquiries or replies.

Fach actor has its own processing power and it may have its local memory. An
actor 1is always 1in one of two modes, active or inactive and it becomes active
when it receives a message. Each actor has its own description which determines
what messages it can accept and what computations it performs. Upon receiving a
message, an actor can make simple decisions, send messages to actors (including
itself), create new actors and change its local memory according to its descrip-
tion. After performing the described computation, an actor becomes inactive
until it receives the next message.

Though message passings in a system of actors may take place concurrently, we
assume message arrivals at an actor be linearly ordered. No two messages cannot
arrive at the same actor simultaneously and a single message queue sorted in the
arrival order is assumed for each actor. When a message arrives at an actor, if
the actor is not active and no messages are in the queue, then the message is
received by the actor. If the actor is active or messages are in the queue, the
message is put at the end of the queue.

There are two classes of actors, ''serialized" actors and '"unserialized" actors.
A serialized actor 1is activated by one message at a time. While a serialized
actor is being activated by a message, it is locked and cannot receive the next
message. We do not assume this property for unserialized actors. In the subse-
quent discussion we focus our attention on serialized actors.

FEach actor has its own local clock (frame of time reference) which is in accor-
dance to the advancement of its local computation. In general, local clocks
associated with different actors may not agree. No wuniform global clock is
assumed.

The above account of the actor computation model is a very intuitive one. For

those who are interested in its mathematical foundation, please look into the
two reports [CL81] and [AG84].

3. Types of Message Passings and Continuations

To study the versatility of the actor model of computation, we modeled and
described various parallel or real-time systems using a simple set of notations.
In the course of this process, we made a simple assumption on the message
arrival and found it sometimes necessary to distinguish three types of message
passings which are not included in the original Actor model of computation.

[Assumption]

When two messages are sent to an actor T by the same actor A, the time order-
ing of the two message transmissions (according to A's clock) must be
preserved in the time ordering of the two message arrivals (according to T's
clock). :

This assumption was not included in the original actor model of
computation[HB77](1), but without this, we cannot, for example, model a computer
terminal or displaying device as an actor which receives lines of characters as
messages that are sent by an actor modeling an output handling program in an
operating system,

['"Past" Type Message Passings]

Suppose an actor A is being activated and it sends a message M to an actor T.
Then A does not wait for M to be received by T. Tt just continues its compu-
tation after the transmission of M (provided that the transmission of M is
not the last action during the current activation of A).

(1) In computer networks of large scale such as ARPA
net, this assumption is not necessarily guaranteed due
to complex routing algorithms which take into account
of node failure and load balance.

W

We call this type of message passings "past'" type because sending a message fin-
ishes before it causes the intented effects to the message receiving actor. Let
us denote a past type message passing by the following notation.

[T <= M] (1)

The past type corresponds to the situation where one requests or commands some-
one to do some task and simultaneously he proceeds his own task without waiting
for the requested task to be completed. This type of message passings substan-
tially idincrease concurrency of activities within a system. (Past type message
passings can further be divided into two kinds which may reflect two different
implementation strategies. In one kind, an actor which transmits a message does
not continue its computation until the arrival of the message is assured, while
in the other kind, the actor continues its computation as soon as the message
leaves the actor. Of course the latter kind allows higher concurrency than the
former one, but may sacrifice the robustness against various unexpected errors
in the system's components.) ’

["Now" Type Message Passings]

When an actor A sends a message M to an actor T, A waits for not only M to
be received by T, but also waits for T to return some information to A. If T
does not return anything, A waits until T's current activation caused by M
ends.

This is similar to ordinary function/procedure calls, but it differs in that T's
activation does not have to end with sending some information back to A. T con-
tinues its computation during the same activation caused by receiving M. - A now
type message passing is denoted by

[T <==M] : (2)

Returning information from T to A may serve as an acknowledgement of receiving
the message (or request) as well as reporting the result of a requested task.
Thus the message sending actor A is able to know that his message was surely
received by the actor though he may waste time in waiting. The returned informa-
tion (certain values or signals) is denoted by the same notation as the message
passing. Namely, (2) denotes not merely an action of sending M to T by a now
type message passing, but also denotes the information returned by T. If the
activation of T ends without returning any information, we assume, by conven-
tion, (2) denotes some special value (e.g. nil).

Now type message passings provide a quite convenient means to synchronize con-
current activities performed by independent actors when it is used together with
the parallel construct that will be discussed in a later section. (It should be
warned that recursive now type message passings cause local deadlock.)

["Future" Type Message Passings]

Suppose an actor A sends a message M to an actor T expecting a certain
requested result to be returned from T. But A does not need the result

immediately. In this situation, A does not have to wait for T to return the
result after the transmission of M. It continues its computation immediately.
Later on when A needs that result, it checks A's internal memory area that
was specified at the time of the transmission of M. If the result is ready,
it is used. Otherwise A waits there until the result is obtained

A future type message passing is denoted by
[x := [T <= M]] (3)

where x is the specified memory area (or a variable). A system's concurrency is
increased by the use of future type message passings. If the now type were used
instead of future type, A has to waste time by waiting for the currently
unnecessary result to be produced. Future time message passings have been incor-
porated in previous actor based programming languages [LI81][FU84].

In the above discussion, the contents of a message was left vague. We should
make it clear, in order to make a more precise account of how various informa-
tion flows among actors through message passings. A message consists of two
parts, an RR-part and a C-part. An RR-part which stands for a request/reply part
tells the message receiving actor about the contents of a request or it is used
to carry a reply, answer or result of a requested task.

When a message is sent by a ''past'" type message passing to request an actor to
do some task, it 1is sometimes useful for the message sending actor to have a
means to specify a destination actor where the result of the requested task
should be sent. We call this destination actor a "continuation”". A C-part
which stands for a continuation-part provides this means. (Without an explicit
indication of the destination, only thing one can do is either to have the actor
which carries out the requested task keep the result within in itself, or to
have the result sent to some default actor.) In our notational convention, a
message is expressed by a pair whose first and second parts are separated by a
period. The first part and second part correspond to its RR-part and C-part,
respectively, Namely, it is of the form

[<RR-part> . <C-part>].

When the C-part of a message need not be specified, it is left blanked. In this
case the message is a Lisp singleton list of the following form

[<RR-part>]

where the period after <RR-part> is omitted. In fact, the C-parts of messages
sent by '"now" or "future" types must be void, because the destination to which
the result is supposed to be sent is predetermined. Namely, a '"future" type
message passing itself specifies an internal memory (or a variable) of the mes-
sage sending actor. For the case of "now'" type, we can view this type of mes-
sage passings as a special case of "past" type message passings with a certain
continuation attached. Since we need some more notational conventions (or
rather a Jlanguage) to describe the definition of this continuation, the actual
definition is given in the Appendix. (The following section is a prerequisite

<o

for the Appendix.)

4. Defining and Creating of Objects

In order to describe behaviors of actors in more precise and concrete terms, we
need to develop a language. We have tentatively designed and implemented a pro-
gramming language called ABCL (Active object Based Core Language). The purpose
of designing this language is manifold. It is intended to serve as an experimen-
tal programming language to construct software in the framework of object-based
concurrent programming. The kind of the application domain we emphasize includes
the Al fields and we plan to use this language as an executable thought-tool for
developing the paradigm of distributed problems solving[SI81] and cognitive
models. It is also intended to serve as an executable language for modeling and
designing of various parallel or real time systems. Direct derivatives of this
language have been wused to write natural language parsing/understanding
systems[0Y84][MI85] as well as modeling various parallel or real-time systems,
some of which will be mentioned in this paper.

The primary design principles of this language are summerized by the following
two points.

[1] Clear semantics: the semantics of the language should be as close to the
simple underlying computation model as possible.

[2] Practicality: for AI programming, various features of Lisp can be utilized
to exploit efficiency and programming ease as long as the framework of the
object oriented programming is maintained.

The purpose of the present paper is not to introduce the details of the

language, we keep its explanation minimum. For those who are interested in the
language, see the companion paper[YM84].

4.1, Defining Objects

Each actor has a fixed set of message patterns it accepts. To define the
behavior of an actor, we must specify what computations or actions it will per-
form for each such message pattern. The description of computation for each
message pattern is called a "script". If an actor has its local memory, its
computations may be affected by the current contents of such memory. Thus in
order to define an actor with local memory, we must also describe how the
actor's local memory is represented. Representations of local memory are vari-
ables or internal actors which have its own local memory.

To define a (serialized) actor, ABCL uses a notation of the following form.
(state: ...) declares the representation of local memory and initializes it.

[object <object-name>
(state: ...
<representation of memory>

)

(=> [<pattern>] <script>) (4)

(=> [<pattern>] <script>)]

Scripts are basically written in terms of message passings of the three types,
referencing to variables and calculating values or manipulating list structures
using Lisp functions. These actions are performed sequentially unless special
parallel execution constructs are used.

As an illustrative example, let us consider an actor which models the behavior
of a semaphore. A semaphore has a counter to store an integer with a certain
initial value (say 1) and also it has a queue for waiting processes which is
initially empty. We represent the counter as a variable and the queue as an
(internal) actor which behaves as queue. A semaphore accepts two patterns of
messages, [p-op: . C] and [v-op: . C] which corresponds to the P-operation and
V-operation. In ABCL, symbols ending with a colon in messages or message pat-
terns are constants, whereas symbols starting with a capital letter are pattern
variable which bind components of incoming messages. (p-op: and v-op: are con-
stant. C is a pattern variable which binds the C-part, namely the continuation
of an incoming matching message.)

Using the notation (4), a definition of the semaphore actor is shown below.

[object aSemaphore

(state: [counter := 1] ; := means assignment.
[process _q = [CreateQ <== [new:]]]) ; = means binding.
(=> [p-op: . C] <script for P-operation>)
(=> [v-op: . C] <script for V-operation>)]

Note that a "now" type message passing is used to create a queue actor and it is
bound to a symbol process gq.

4.2. Creating Actors

CreateQ in the above example is an actor which creates and returns a new actor
which behaves as a queue. We assume it is defined elsewhere. CreateQ can be
viewed as a class of queues and the created queue actor as an instance of the
queue class if we use the terminology of AI or SmallTalk[GB83]. In ABCL, rather
complicated notions such as classes and meta-classes are unified as the notion
of actors, which allows us to manipulate classes and meta-classes as objects.

~

Actors which create and return an actor are often defined in the following
fashion.

[object CreateSomething
(=> [<initial-information> . <continuation)]

[<continuation) <= [[object .o ; a newly created actor is
(=>[...] ...) ; sent to <continuation>
(=> [eee])]
nil]]

)]

Namely, a message whose RR-part is a newly created actor defined by [object
....] and whose C-part is nil is sent to <continuation>. Creating a new actor
and sending it back to the continuation is one of typical situations where a
message with its C-part being nil is sent to the original continuation. (By the
original continuation, we mean the continuation (namely the C-part of a message)
that causes this typical message transmission.) A simple abbreviated notation in
ABCL expresses this scheme of message transmission.

(=> [<request>] ... !<expression> ...),
which is equivalent to

(=> [<request> . <continuation>]
+.. [<continuation> <= [<expression)> . nil]] ...).

5. Parallelism and Synchronization

5.1 Parallelism

Using the abbreviated notation explained in the previous section, the actor
which creates and returns a semaphore actor is defined in Figure 1.

[object CreateSemaphore
(=> [init: N]

![object ; definition of a semaphore actor begins.
(state:
[counter := N]
[process q = [CreateQ <== [new:]]])

(=> [p_op: . C]

[counter := (subl counter)]
(case (> 0 counter)
(is t ; 1f counter is negative
[process q <= [enqueue: C])
(otherwise

[C <= [go:]D))

(=> [v_op: . C]

[counter := (addl counter)]
(case [process q <== [dequeue:]]
(is nil . ; 1f process q is empty
[C <= [go:]]) L
(is FrontProcess ; the head of process q is bound to FrontProcess

{ [FrontProcess <= [go:]],
ns [C <= [go:]]})

Figure 1. Defining a Semaphore Actor

In the script for v-op:, (addl counter) is an invocation of a lisp function addl
and the result updates the contents of counter. When process g actor is empty,
a [go:] message is sent to the continuation which is bound to C; otherwise the
first process that has been waiting is removed from the queue and [go:] mes-
sages are sent to this process and the continuation simultaneously. (Notice that
processes are modeled as actors.) As noted earlier, a script is usually executed
sequentially. But when a special construct denoted by

{El, ..., Ek }

is executed, the executions of El,...,FEk start simultaneously. The execution of
this construct, which we call a parallel construct, does not end until the exe-
cutions of all the components El,...,Ek do not end. When the components of a
parallel comnstruct are all past type message passings, the degree of parallelism
caused among the message receiving actors is not much greater than the degree of
parallelism caused by the sequential execution of the components because time
cost of a message transmission is very small. But if a parallel construct con-
tains now type message passings, the possibility of exploitation of parallelism
among the message receiving actors is very high.

10

After having explained parallel constructs, it is an appropriate time to review
the basic types of parallelism provided by ABCL.

[1] concurrent activations of independent actors.
[2] parallelism caused by past type message passings.

[3] parallelism caused by parallel constructs.

5.2. Synchroniztion

Parallel constructs are also powerful in synchronizing the behaviors of actors
because the semantics of a parallel construct requires that its execution com-
pletes only when the executions of all the components complete. When a parallel
construct contains a now type message passing in a script, all the intended
activations of the message receiving actors must be completed before going on to
the execution of the rest of the script after the parallel construct. (Note that
we need no synchronization if all the components of a parallel construct are
past type message passings.)

For example, suppose the movements of a robot arm are actuated by three step
motors, each being responsible for the movement along different
coordinates[KS84] and for each motor there is an actor operating it. In order to
pick wup something by the fingers attached to the arm, the control program sends
signals to the three actors in parallel, and it must wait until the rotations of
all the three motors stop. See a fragment of the program below.

e e

{ [motorX <== [step: 10011,
[motorY <== [step: 150]],
[motorZ <== [step: -30]] }

<command to pick up>

e

We conclude this section to remind one that ABCL provides the following four
basic mechanisms for synchronization.

[1] serialized actor: the activation of a serialized actor takes place one at a
time and a single first-come-first-served message queue is associated with

each actor.

[2] now type message passing: it does not end until a certain result is
returned or the activation of the receiving actor comes to end.

[3] future type message passing: when the specified variable is referred to,
the execution is suspended if the contents is not updated yet.

[4]1 parallel construct: as discussed above.

11

Although we have shown an implementation (or modeling) of semaphores in terms of
the actor paradigm, we think semaphores are too primitive and unstructured as a
basic synchronization mechanism. Thus we have no intention of wusing semaphore
actors to synchronize behaviors of actors. Our experience of writing programs
which require various types of synchronization suggests that combinations of the
four mechanisms listed above seem sufficiently powerful for dealing our current
problems.

6. Distributed Problem Solving

In this section, we present a simple model of distributed problems solving
described in ABCL in order to show the simplicity and naturalness of our object
oriented concurrent programming paradigm.,

6.1. A Problem Sol#ing Organization

Suppose a high level manager is requested to create a project team to solve a
certain problem within a certain time limit. He first creates a project team of
k problem solvers with different problem solving strategies and then he creates
a project manager who dispatches the same problem to each problems solvers. For
the sake of simplicity, they are assumed to work independently in " parallel. If
one of them has solved the problem, it must report the solution to the project
manager immediately. When the project manager receives a success report, it
then sends a "kill" or "stop" message to all the problem solvers. If nobody
can solve the problem within the time limit, the project manager sends a failure
report to the high 1level manager and commits suicide. This problem solving
organization is easily modeled and expressed by ABCL without any structural dis-
torsions., One 1is dinvited to describe this problem solving organization using
other formalisms mentioned in 8.2,

We first define an actor which create a manager for parallel problems solvers in
Figure 2. This manager corresponds to the project manager. The initial informa-
tion for this actor includes a problem description, a group of problem solvers
(namely, the project team), a time limit and the name of a person to whom the
result should be reported (namely, the high level manager).

12

[object Create Manager for Parallel Problem Solvers
(=> [problem description: PD
solvers: SVS
time limit: N
reported_to: C]

!{object Me ; this actor acts as the project manager.
(state:
[time_keeper = [Create Alarm Clock <== [wake: Me after: N]]])

(=> [solve:]
[SVS <= [broadcast: [solve: PD] . Me]]"
[time _keeper <= [start:]])

(=> [wake:] ;time is up before somebody solves the problem in time
[SVS <= [broadcast: stop:]] ; all the solvers have to stop
[C <= [nobody_solved:]] ; report failure to the high level manager
(suicide)) ; and commits suicide,

(=> [i_solved: solution: S] ; a solver claimed to solve the problem
[SVS <= [broadcast: stop:]]
[C <= [solved: solution: S]]) |)]

Figure 2.

6.2. Alarm Clocks

When a manager actor (the project manager) is created, it creates an alarm clock
called time keeper who knows whom and when to wake. When the manager actor
receives a message [solve:] from the high level manager, it sends to the project
team actor a message that contains the problem description and sets the alarm
clock. After doing these two actions, it sleeps, namely becomes inactive.

The project team is represented as a broadcaster actor which contains a collec-
tion of actors and sends (broadcasts) a received message of the form [broadcast:

...] to each member of the collection. See Figure 3. By sending [add: ...] and
[delete:...] messages, we can add and delete members. Note that a message sent
to the project team may contain an explicit C-part (continuation). This will

specify to whom each problem solver sends a report.

2

13

[object Create Broadcaster

(=> [new:]
1[object ; definition of a broadcaster actor begins.
(state: '
[receivers := nil]) ; a collection of actors to get broadcast.

; it is initially nil
(=> [add: A receiver]
[receivers := (cons A receiver receivers)])

(=> [delete: A receiver]

[receivers := (delete A receiver receivers)])

(=> [broadcast: Message . C]
(do ((1 receivers (cdr 1)))
((null 1))
[(car 1) <= [Message . C]])))])]

Figure 3

A definition of an actor creating alarm clock actors is given .in Figure 4.
Notice that an alarm clock actor sends a [start:] message to itself after a unit
of time is spent and repeats this cycle until a specified number of time units
elapses.

[object Create Alarm Clock ‘ ; Lo create an actor which
(=> [wake: Person after: N] ; wakes up a person after N time units.
1{object Me ; definition of an alarm clock actors begins

(state: [count := 0])
(=> [start:]

(consume_a_unit_ﬁime) ; ‘invoke some procedure to spend a unit time
[count := (addl count)]
(case (> count N)
(is t
[Person <= [wake:]])
(otherwise

[Me <= [start:]])))])]

Figure 4.

When the project manager receives a [wake:] message from the alarm clock, it
sends a [stop:] message to the project team to stop all the problem solvers
because receiving the [wake:] message means nobody could solve the problem
within the time limit. Then it sends a failure report to the high level manager
and kills itself.

r3

14

When the project manager receives an [i-solved:...] message, this means that one
of the problem solvers have succeeded in solving the problem. Thus it sends a
[stop:] message to the project team and make a success report to the high level
manager.

In Figure 5, we give the definition of a typical problem solver actor, Its
local memory is used for a flag to indicate the completion of problem solving
and it is also used for recording the state of progress of problem solving.
When it receives a [solve: ...] message, it tries to solve a specified problem.
When it has solved the problem, it sends the description of the solution to the
continuation that is bound to To_be reported, which should be the project
manager. If the problem is not solved yet, it records the current state of pro-
gress and sends a [go_on:] message to itself,

[object A Problem Solver
(state: [solved := "not_yet"]
[state_of progress := nil])
(=> [solve: Problem Description . To_be reported]

... trying to solve the problem ...

(case solved

(is t :
[To_be reported <= [i_solved: solution: <description of solution>]])
(otherwise
[state of progress := <information for restarting>]

[A_Probléﬁ_Solver <= [go_on:]1)))
(=> [go_on:]
... restart the problem solving using "state of progress"

and then review the progress . ..
(case solved :

(is t

[To_be reported <= [i_solved: solution: <description of solution>]])
(otherwise

[state_of progress := <information of restarting>]

[A Problem Solver <= [go_on:]])))

(=> [stop:] ; [stop:] messages are sent from
(suicide))] ; the broadcaster actor (i.e. the project team)
Figure 5

6.3 .Interruption

Tt is important to send a [go_on:] message to the problem solver actor itself by
a past type message passing. This means that the problems solver temporarily
stops his work. While the problem solver is busy working, the project manager

1 ¥

[UY
an

might have sent a [stop:] message to it via the broadcaster actor and the
[stop:] message might have been put in the arrival message queue of the problem
gsolver. In such a case, the [stop:] message might be put before the [go-on:]
message in the arrival message queue, which implies that the [stop:] message is
received by the problems solver before the [go-on:] message.

In general, when an actor is continuously working or active, there is no chance
of interrupting it by sending messages. If one wishes to interrupt an activa-
tion of an actor, the structure of its behavior must be designed in such a way-
that the actor should review itself the progress of its task after a certain
amount of effort is spent. And if the progress is not sufficient, the actor
sends a restart message to itself by a past type message passing and becomes
inactive. By doing so, we give an interrupt message a chance of being received
by the actor,

The above approach is that the programmer is responsible for making actors
interruptable when designing them. Another approach might be to let a special
message have a privilege to interrupt activations of actors. We did not take
the latter approach because it would obscure the semantics of the language con-
siderably.

Returning to the explanation of our modeling of the original problem, we give
the definition of the high 1level manager actor in Figure 6, which should be
self-explanatory. ‘

[object Higher Manager
(state:
[project_team = [Create Broadcaster <== [new:]]])

(=> [start_a_new_project: Problem time limit: N]
(temporary: a_manager)
.+s creating problem solvers ...
[project_team <= [add: problem solverl]]

[project_team <= [add: problem solverk]]
[a_manager = [Create Manager_ for_ Parallel Problem_ Solvers
: <== [problem description: Problem
solvers: project_team
time limit: N
reported_to: Higher Manager]]])
- [a_manager <= [solve:]]))
(=> [solved: solution: S] vee) sreceiving a success report
(=> [nobody_solved:] cas)] sreceiving a failure report

Figure 6

16

7. Inheritance Mechanisms

Unlike other object oriented languages, the current version of ABCL does not
have language-predefined mechanisms for "inheritance". It is easy to incor-
porate the simple inheritance mechanism of SmallTalk[GR83] into our language.
But we are not convinced whether the single inheritance mechanism is sufficient
enough. At the same time we feel that various features provided by the multi-
inheritance mechanisms of Flavors[WD81] are rather complicated and difficult to
manage, Since ABCL can not only easily simulate currently proposed various
inheritance mechanisms, but also it can create instances of the same class which
have different sets of so called "super classes", we are not urgent to provide
built-in mechanisms of inheritance in our language.

In Figure 7, we give an ABCL definition of a class A whose instances may have
different super classes., (The semantics of ABCL requires that an incoming mes-
sage is matched against the patterns sequentially top to bottom. Thus [Any . C]
can be matched against a message that do not match any previous patterns.) The
reason why this is possible is that "instances", "classes", and "meta-classes"
are uniformly viewed as actors and thus they can be operated in the same manner
as "objects".

[object CreateA
(=> [new: MySuperClass] ; super class is parametrized,
(temporary:
[MySuperClassInstance = [MySuperClass <== [new:]]])

'fobject ; This actor corresponds to an instance of the class A.
(=> [lno] L)
(=> [Any . C]

[MySuperClassInstance <= [Any . C]])])]

VFigure 7

8. Concluding Remarks

In place of conclusions, we will comment on important issues that we have left
undiscussed.

8.1, Programming Environments and Implementation

The first stage of (concurrent) programming in the object oriented style is to
determine, at a certain level of abstraction, what kind of objects are necessary
and natural to have in solving the problem concerned. At this stage, message
passing relations (namely what objects send messages to what objects) are also

76

17

determined.

Since it is often useful or even necessary to effectively overview the structure
of a solution or result of modeling, those identified objects and message pass-
ing relations should be recored and be retrieved or even manipulated graphi-
cally. For this purpose, we are currently designing and implementing a program-
ming aid system on a SUN-II Workstation with a multi-window system and a stan-
dard pointing device[KA85]. A typical action using this system might be to add
a node to a graph representing message passing relations among objects (where
nodes correspond to objects), point the node by a mouse to get a pop-up menu and
select/perform operations such as editing and compiling for the code of object.

In general, debugging concurrent programs is a rather difficult task. One exam-
ple of debugging aids we are using is a local history option. When this option
is set, for each specified actor, a chronological history of incoming and outgo-
ing messages with states of its local memory recorded. In our implementation,
the local history of each actor is stored in the local memory of each actor and
it can be retrieved and tailored by editing operations to provide various debug-
ging information.

It should be noted that serial versions of ABCL are implemented with a handy
compiler-compiler system developed by the second author[MA84].

8.2. Comparison to Other Work

Our present work is related to a number of previous research activities. To
distinguish our work from them, we will make brief comments on the representa-
tive works.

CSP[HO78] :

Dynamic creation of processes is not allowed. Message passing relations among
processes must be predetermined and cannot be changed. Sending and receiving
must be synchronized (handshake). All these restrictions are not imposed on
ABCL.

Monitors[HO74] :

The property that a monitor procedure can be executed by only one process at
a time 1is similar to that of serialized actors. But the basic mode of com-
munication in programming with monitors is the call/return bilateral communi-
cation, Past type message passings accompanied with continuations in ABCL
give us more flexibility and expressive power. See [Y079] for more complete
discussion on this subject.

Concurrent Prolog[ST83] :

Channel variables must be explicitly merged for an object to receive messages
from more than one object.

18

SmallTalk80[GB83], LOOPS[BS81] :
Very limited primitives for concurrency control are provided. Classes and
meta-classes cannot be treated as objects (i.g. they cannot be sent in mes-

sages).

8.3. Other Examples

A wide variety of small example programs have been written in ABCL and we are
fairly convinced that essential part of ABCL is robust enough to be used in the
intended areas. [Examples we have written include parallel discrete
simulation{Y084a], deamons, blackboard models, production rules, production sys-
tems, robot arm control, mill speed control[MA94], bounded buffers, integer
tables[HO74], simulation of data flow computations, process schedulers etc.
Some of these example programs will be found in [YM84].

Acknowledgements

Almost daily discussions with S. Fukui, K. Mitsui, Y. Kuno, J. Rekimoto, S. Ka-
nada, and I, Ohsawa were stimulating and valuable in fermenting various ideas.
We deeply appreciate them. :

References

[AG84] Agha, G.: Semantic Considerations in the Actor Paradigm of Concurrent
Computation, Draft May (1984).

[BS81] Bobrow, D. and Stefik, M: The LOOPS Manual, Memo KB-VLSI-81-13, Xerox
PARC, (1981).

[BG84] Broda, K. and Gregory, S.: Parlog for Discrete Event Simulation, Proc.
2nd Int. Logic Programming Conf., (1984).

[CL81] Clinger, W.: Foundations of Actor Semantics, Ph.D. Thesis, MIT, (1981),
available as TR-6333 MIT AI Lab.

[FU84] Fukui, S.: An Object Oriented Parallel Language, Proc. Hakone Program-
ming Symposium, (1984), in Japanese.

[GR83] Goldberg, A. and Robson, D.: SmallTalk80 - The Language and its Imple~
mentation - -, Addison Wesley, 1983.

[HB77] Hewitt, C. and Baker, H.: Laws for Parallel Communicating Processes,
IFIP-77, Toronto, (1977).

[HE73]
[HE77]
[HO74]
[HO78]

[KS84]

[KA85]

[LI81]

[MA84]

[MI85]

[MY84]
[0Y84]
[SP81]
[ST83]
[TI84]
[WM81]

[YM84]

Hewitt, C. et al.: A Universal Modular Actor Formalism for Artificial
Intelligence, Proc. Int. Jnt. Conf. on Art. Int., (1973).

Hewitt, C.: Viewing Control Structures as Patterns of Passing Messages,
Artificial Intelligence, Vol. 8, (1977), pp.323-364.

Hoare, C.A.R.: Monitors: An Operating System Structuring Concept, CACM,
Vol. 17, No. 10, (1974), pp.549-557.

Hoare, C.A.R.: Communicating Sequential Processes, CACM. Vol. 21, No.
8., (1978), pp.666-677.

Kerridge, J. M. and Simpson, D.: Three Solutions for a Robot Arm Con-
troller Using Pascal-Plus, Occam and Edison, Software - Practice and
Experience - Vol. 14, (1984), pp.3-15.

Kanada, S: Master Thesis, Dept . of Information Science, Tokyo Insti-
tute of Technology, in preparation.,

Lieberman, H.: A Preview of Act-1, AI-Memo 625, MIT AI Lab., (1981).

Matsuda, H.: A Language Description Language LEAG and its Applications,
Preprint of WGSF, IPSJ, September, (1984), .

Mitsui, K: An Object Oriented Word Expert Parser for Japanese Language,
Master Thesis, Dept. of Information Science, Tokyo Institute of Technol-
ogy, in preparation,

Matsumoto, Y.: Management of Industrial Software Production, Computer
Vol, 17, No. 2, (1984), pp.59-72.

Ohsawa, I. Yonezawa, A.: An Object Oriented Dialog Understanding System,
Preprint of WGNL, IPSJ, July (1984), in Japanese.

Special Issue For Distributed Problem Solving, IEEE Tans. on Systems,
Man and Cybernetics, Vol. SMC-11, No.l, (1981).

Shapiro, E. and Takeuchi, A.: Object Oriented Programming in Concurrent
Prolog, New Generation Computing, Vol. 1, No. 1, (1983).

Tokoro, M. and Ishikawa, Y.: An Object-Oriented Approach to Knowledge
Systems, Proc. Int, Conf. on Fifth Generation Computer Systems, (1984).

Weinreb, D. and Moon, D.: Flavors: Message Passing in the Lisp Machine,
AT-Memo 602, MIT AI Lab., (1981).

Yonezawa, A: An Actor Based Core Language ABCL and Its Example Programs,
Research Report, Dept. of Information Science, Tokyo Institute of Tech-
nology, in preparation.

20

[YO79] Yonezawa, A.: Comments on Monitors and Path-Expressions, J. of Informa-
tion processing, Vol. 1, No. 4, (1979), pp.180-186.

[YO84] Yonezawa, A.: On Object Oriented Programming, Computer Software, Vol. 1,
No. 1, (1984), pp.29-41, in Japanese.

[YO84a] Yonezawa, A.: Parallel Discrete Event Simulation wusing a Concurrent
Object Oriented Language, in preparation,

Appendix I Semantics of Now Type Message Passings

;3 The semantics of now type message passing can be described in terms
;3 of past type message passings and an appropriate continuation,

[object

LI)

=1[...]
ves [T <== [<request>]] ... ;a now type message passing,

sthus the C-part is nil.
<rest of computation))

LR Y]
This is equivalent to

[object

s s e

(=> ['oo] e
[T <= [<request>

[object sthe definition of the continuation begins here.
(=> [Any] sany binds the result to be returned from T.
ees Any ... sthis occurrence of Any corresponds to

sthe occurrence of [T <== [<request>]]
<rest of computation>)]]])

1)

Appendix IT Semantics of Future Type Message Passing

:; Semantics of future type message passing can be described in terms of

.. now type and past type message passings.

’9

[object
(state: ...
[x := <exp>] ssuppose a future variable x is
oo) sdeclared and initialized.
(=> [uno]
[x := [T <= [<request>]]] ;a future type message passing.
;assuming the C-part is nil.

U S) +x is referenced to here.

]

This is semantically equivalent to the following:

[object
(state: ...
[x = [CreateFutureVariable <== [init: <exp>]]]

LI]

21

(=> [oo.]
[x <= [to_be_updated:]]
[T <= [<request)> . x]]
eee [X <== [contents?]] ...) ; this now type message passing
ces] 5 corresponds to the reference to x

where

o
[

[object CreateFutureVariable
(=> [init: Val]

'[object
(state: [contents := Vall]
[updated := t]
[continuation := nil])

(=> [to_be_updated:]
[updated := nil]
[continuation := nil])

(=> [contents? . C]
(case updated

(is t
[C <= [contents]])
(otherwise

[continuation := C])))

(=> [New_value]
[updated := t]
[contents := New_value]
(case (not_null continuation)
(is t
[continuation <= [contents]])))]

)]

|]
|

