goooboooogn
O 5470 19850 58-78

58

Algebraic Specification Method of Programming Languages

* * *
Hidehiko KITA , Toshiki SAKABE and Yasuyoshi INAGAKI

* Department of Electrical Engineering, Faculty of Engineering,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464 JAPAN

1. Introduction

The purposes of formal specification of prqgramming
languages are to Vestablish the ﬁathematical foﬁndations for
specificétion and verification of program, proofs of compiler
correctness and automatic compilef generations.

The formal specification of a programﬁing language
consists of a syntactic specification and a semantic one. Our
understanding of the former has nowv reached practicalb level.
We ére now abie td automatically construct reasonably gobd
lexical and syntactic analyzers for most programming languages
directly from a defining grammar.

As for the latter, although many specification method
have been proposed they are unsatisfactory as compared with
that of syntax. For example, attribute grammar is suitable for
the purpose of compiler generation in the sense that
automatically constructing the compiler for a given attribute
grammar 1is not so difficult. But usually in the attribute
grammar approach the semantic domain is not explicitly
described, and it 1is not suitable for program verification.

Axiomatic semantics has been proposed mainly for the purpose of

-1-

program verifications, and it 1is not suitable for compiler
generation. Denotational semantics is powerful and formal, but
the semantic domain is intractable to discuss its
implementation, since it it given as the solution of recursive
equations on domains. 7

In the‘ algebraic specification methods initially

(3) (9)

proposed ‘by ADJ-group and Mosses ’ respectiyely. The
syntactic domainband the semantic domain are given as algebras,
and the meaning of program is given by homomorphism from the
syntactic domain to the semantic domain. This approach eﬁabies
us to capture these domains asrabstract data types and to apply
the theory of abstract data ‘types to the specification of
programming languages. So, the algebraic soecification method
is a promising approach to program verification, compiler
correctnese problem and automatic compiler generation.

Among several algebraic specification methods, Mosses
have proposed automatic compiler generation based on the idea
that the compiler is the composition of the semantic mapping
and the implementation of the semantic domain. In his
approach, Mosses have considered. semantic domain and target
language as abstract data types, but, although his abstract
data types are extended and differ from the ordinary ones,
‘their formalization is not established. And we can not apply
the reéulte whicﬁ we have already obtained in the theory of
abstract data types. |

In this paper we try to overcome these defects and we

propose a new algebraic specification method of programming

-2-

60

language by strictly using the ordinary abstract data types for
the specification of semantic domain. That is, we use only the
equational 1logic so that the semantic domain should be
precisely specified in purely algebraic way.

We apply our method and succeed 1in specifying the
programming language PL/O, which Wirth(11) used as an
illustrative example to explain the structure of compiler in
his book. PL/0 is simple but has fundamental features of
programming language. This experience shows that our
specification method has enough power and formality for our
purpose.

The rest of this paper is organized as follows. Section
2 introduces fundamental algebraic notions and notations which
will be used throughout this paper. Sections 3 to 6 describe
our specification method of programming languages. Finally,
section 7 describes how we can specify the language PL/0 by

using our specification method.

2. I-algebra

This section introduces the concepts and notations
concerning many-sorted algebra, which will be used throughout

(2)

this paper. We will use ADJ-like notations .

[Def. 2.1] A signature y is a pair <S,F> of S, a set
of sorts and F, an operator symbol domain, which is an indexed

*
family of sets <F Here S denotes the set of all

> * .
w,s weS ,seS

-3-

61

sequences constructed from the elements of S. Assume that if

wiw' or s¢s' then F, o and F ., _, are disjoint. We call feF

14 ’s 14

an operator symbol with arity w and sort s.

[Def. 2.21 Let % =<S,F> be a signature. A y-algebra A

consists from a set AS for each sort s S and a function fA:AS

1
Xooa X AS -> AS for each operator symbol feF PW=S, .S . Here
n

we call As the carrier of A of sort s. If n=0, i.e., feF

W,S

g,s’

then fA is considered to be an element of As, where ¢ 1is the

empty sequence.

[Def. 2.3] Let % =<S,F> be a signature. Define T[] to

be a smallest indexed family of sets <T[z]s> satisfying the

seS
following two conditions:

(1) For each seS, F€ is included in T[Z]S, i.e., T[Z]S

4

DF ’
€,5
(2) If fer yW=S, .8 and tiET[z]S for i=1,...,n then

'S i

f(t1,...,tn)ET[z]S.

[Def. 2.4] For signature y =<S,F>, we define the jy-term

algebra T as follows:
(1) For each sort seS, we define Ts = T[z]s, that is the
carrier of sort s is the set of F-terms of sort s.

(2) If feF S then szf.

€y

(3) 1f fer’S,w=s1...sn¢E:and tiET[Z]si for i=1,...,n

| then fT(t1,...,tn) = f(ty,...0t))

We will often use‘the'notatioﬁfT[z] instead of T in order

to indicate the signature 7 explicitly.

3. Algebraic Approach to Specification of

Programming Languages

The - formal specification of a programming language
consists of two parts. The one is a syntactic specification
which defines the set of well-formed programs. The -other is a
semantic specification which gives a meaning for each well-formed
program.

In this paper, we take algebraic approach to
specification of programming languages. That is, we strictly
consider the syntactic and semantic domains as algebras and
specify the meaning by defining a mapping from the syntactic
domain to the semantic one. This approach allows us to capture
these domains as abstract data types and to directly apply the
theory of abstract data types to specification of programming
languages.

Our specification is consisted of three parts, i.e.,

specifications of syntactic domain, semantic domain and semantic

mapping.

Here we adopt the following definition:

[Def. 3.1] The specification of a language is a triple <

G, D, T'> where G 1is a specification of a syntactic domain (a

63

context-free grammar), p is a specification of a semantic domain
(a specification of an abstract data type), T is a specification

of a semantic mapping (a" set of semantic equations).

In the following three sections, we discuss how to
specify the syntactic domain, the semantic domain, and the

semantic mapping.

4., Specification of Syntactic Domains

Context-free grammar has been the formally required
syntactic specification of programming - languages since the
publication of the Algol 60 report. The associated theory of
context—free languages has become so well understood that we ére
now able to automatically construct reasonably good lexical and
syntactic analyzers for most programming languages directly from
defining grammars. We naturally decide to wuse context-free

grammars to define the specifications of syntactic domains.

[Def. 4'1], The specification of a syntactic domain is an
unambiguous ‘context-free grammar G=<V,VT,P,SO>, where V and VT
are disjoint finite sets of nonterminal and terminal symbols,.
respectively, and S0 is a distinct symbol of V called the start

symbol. P is the set of productions, the form of which 1s 1in

% .
p:N->a where NeV,ae(VUVT) , and p is the label of production.

An unambiguous context-free grammar defines the syntactic

domain as a term algebra: Consider a context-free grammar

G=<V,V,,P,S.> and define the signature G=<V,P'> as follows. We

T' 0

consider the set of nonterminal symbols as the set of sorts. P'
is the operator symbol domain defined by P'=<P'w,s>wev*,sev ,
where le,s={p | p:N->a€P, s=N, w=nt(a)}, and nt:(VUVT)*—>V* is a
function such that nt(d) denotes the sequence of nonterminal
symbols obtained from o by replacing all terminal . symbols
occurring in ¢ by the empty sequence. That is, we consider the
production p:N->a as an operator symbol with arity w=nt(q) and
sort s=N. |

According to the definition 2.4, the signature G defines

the term algebra T[G]}, which constitutes the syntactic domain.

[Def. 4.2] For a context-free grammar G, the
specification of a syntactic domain, the term algebra T[G] is the

syntactic domain. It will often denoted by L(G).

An element of the carriers of the term algebra T[G] is a
G-term, and it can be considered to the usual derivation tree in
the 1:1 manner. In this context,the carrier of sort N corresponds

to the set of derivation trees with the root node labeled by N.

5. Specification of Semantic Domains

In this paper, we take the semantic domain to be an

abstract ‘data type and adopt the algebraic approach to the
(3) (9) (5),(6),(7),

specification. ADJ , Mosses and other authors

-7-

(10) have already tried the algebraic approach to the
specification of programming languages. These approaches (except

(10),

for Pair contain some informal treatments in specifying
semantic domain. This causes some difficulties to the formal
development of the the semantics of languages. This also make it
dgifficult to construct the compilers automatically from the
specification.

To overcome this point, we have the idea that the

semantic domain should be strictly an abstract data type and it

should be interpreted through only equational logic.

We begin with introducing the concept of the equational

logic. Let ¥ =<S,F> be a signature and V=<V >

s’ses be a family of

sets of variables. Equational logic has only one logical symbol

~ , called the equality symbol and it consists of thé set of
equations or equivalently axibms and the set of inference rules.
An equation is a sequence gan where g and n are j(V)-terms of the
same sort. An equation over jF(V/)-terms will often be called the

r-axiom. The set of inference rules consists of the following

five rules.

(1) Reflexitivity Foexg
(2) Symmetry ~n knzi
(3) Transitivity Exn,nNal Feac

(V) denotes a signature <S,F'> where F' is an operator symbol

domain <F' such that F' =F uv if w=g and

> *
W,S weS ,seS’ w,s w,s”"'s

F' =F otherwise.
W,5 W,S

(4) Substitution gxn |- Elg/vianit/v]
(5) Replacement‘ Em |¥>c[€/V]k:C[ﬂ/V]

~

where £,n and ¢ are Z(V)-terms and &[n1/v1 ,...,ﬂn/vn] denotes
the term obtained from & by simultaneously replacing all vi's
occurring in & by ny for i=1,...,n. For a set of g-axioms y4, if

equation Exn is deducible from 4 by applying inference ruies

then we write A4 |- &£€xn.

A set of y-axioms 4 defines an algebra which is the

meaning given by 4 . We explain this in the following.

First, we define the congruence relation = over the term
algebra T[(y] by:

For any terms t and t' in T[z]s,'t =, t' iff A} txt' .

Next, construct the quotient algebra T[X]/= of the term

|

For a signature y=<S,F>, a y-congruence = on a r-algebra A is

a family $Z5%g¢s of equivalence relations =, on As for s¢S, such

that if feFS c..s_,s ! ai’bieAs.' aiss.bi for i=1,...,n then
1 n i i

fA(a1,...,an) = fA(b1’°"'bn)

For aEAS, let [a]S (or [a]) denote the zs—equivalence class of

A, l[al = ({DbeA [azsb }.

For a Jjy-congruence = on a I -algebra A, the quotient ‘algebra
A/z is a y-algebra defined as follows.

(1) For each sort se€S, the carrier (A/z)S is the set of

1"
1

eguivalence classes of AS.

(2) If fEF and [ai]e(A/E)S for i=1,...,n , then

...5_,8 .
1 n’ i

67

algebra T[y] by congruence relation = . Then the quotient
algebra T[Z;/E is the‘imitial algebra of the class Ang,A of 2—
algebras Which satisfies the set of y-axioms A. That is, for any
algebrar A€Alg , , there exiéts the wunique homomorphism from

YA
T{x]1/= to A.

From the above observation, we give the following

definitions.

[Def. 5.1]1 A specification of a semantic domain is -a
triple p=<Z,V,4>, where L is a signatdre <S,F>, V is a family of
variable sets <Vs>ses' and A is a set of y-axioms.

The meaning of the specification p, i.e., the semantic

domain specified by) is the guotient algebra T[Z]/= . It will

be often denoted by SD()).

6. Specification of Semantic Mappings

We are ready to define the semantic mépping from the
syntactic domain. to the semantic domain. Here, we use the
primitive recursive schemes to specify the semantic mapping,
which can be proved to determine the unique semantic mapping.

[Def. 6.1] Let G=<V,V,,P,S.,> be a specification of a

0

syntactic: domain aﬁd D=<Z,V,4> be a specification of a semantic

Tl

fy/=(laglseaaslag]) = [f(ag, .02)],

-10-

66

domain.

A specification of a semantic mapping T is a guadruple
<D,M,X,R> where Dv is a function D:V->S which associates
nonterminal symbols with sorts of the semantic domain, M is a set

of function variables M arity(MN)=NeV, sort(MN)=D(N)eS , X is

N
a family of variables sets on the syntactic domain <XN>Nev , and
R is a sets of semantic equations {Rpl peP}.
A'semantic equation R_ for production pé€P is of
P N1...Nn,N

the form

Mo pP(xyreearx)) = gl MN1(Xy MYqe eee s MNn(x My,]
where X is a variable with sort(XN) for i=1,...n, vy
, i
variables on the semantic domain, sort(yi)=D(XN) for i=1,...,n,

i

and ¢ is a z({y1,...,yn})—term.

Note that the class of set of semantic equations is a

(4)

subclass of primitive recursive schemes used by Courcelle .

It is natural that the semantic mapping determined by the
specification T 'is defined to be the solution of the semantic

equations R.

Let T'=<D,M,X,R> be a specification of a semantic mapping
and A Dbe a y-algebra. The solution of the semantic equations R

over the y-algebra A 1is the indexed family of functions

A A

M =<M N:T[G]N->A such that for any semantic equation

D(N)>N6V

Rp(pePNr“N 'N) and tieT[G]y for i=1,...,n,
n i
A A
MN(P(t1,---tn)) = gA(M N1(t1)y eee /M Nn(tn)) .

-11-

65

Here, &, is the derived operation of & over A.

Since the specification of semantic mapping is a
primitive recursive scheme, we can easily prove the following

(8);

result

[Proposition 6.1] For any y-algebra A, the semantic

equations R has the unique solution Vel

Now we can define a semantic mapping.

[Def. 6.2] Let I'=<D,M,X,R> be the specification of a
semantic mapping and SD(7)) be a semantic domain.

The semantic mapping sem(r) is the solution of the set of

semantic equations R over the semantic domain SD(D).

The next corollary is immediately obtained from

For a Z({y1,...,yn})—term g with sort(yi)=si for i=1,...,n,

we define a mapping &A:ASN ees X AS —>AS called the derived
1 n :
operation of § over A as follows:

If a:(a1,...an)€AS1X...XASn then
if g=f €
&A if £=f F€

rS

f.(n; ()ye-eyn_ (T))
A 1A mA

if g,-__f(n‘]’...'nm)' fEF

'
m

and nieT[E({y1,...,yn})lsi|f0r i=1,.../m

s1'...s ;s !

-12-

70

Proposition 6.1.

[Corollary 6.2] There exists the unique semantic mapping

sem(T) for the specification of semantic mapping I'.

7. Example

We have tried to give the specification of PL/0, a toy

(11), to show that our

programming language given by Wirth
specification method worké satiéfactorily. PL/0 is, bf course ,
a very simplified language but it has the fundamental features of
the programming languages. It ﬁas declarations of wvariables,
cqnstants and procédures, arithmetic operations over integers ,
assignment, and such the>control structures as sequencing, if-
then , while and procedﬁré call.

The specification of programming language PL/0 is given

by using our method as follows.

(* Specification of the syntactic domain (Excerpts) *)

G =<V, VT' P, SO > |
V = { PROGRAM BLOCK CONST DEF_PART CONST DEF LIST
CONST_DEF VAR_DCL_PART VAR_NAME LIST VAR _NAME
PROC_DCL_PART PROC_DCL _LIST PROC_DCL STATEMENT
STATEMENT LIST CONDITION EXPRESSION TERM FACTOR
IDENT NUMBER NAT_ NUMBER
VT = { . const ; + = var procedure := call
begin end 1if then while do odd <> < >
<= >= 4+ - * [/ () a ... z 0 ... 9 }
P = { p010 : PROGRAM -> BLOCK .

-13-~

S

0

p020 :

p030
p040
p050
p060
p070

p080
p090
p100
p110
p120

p130
p140
p150
p160
p170

p180
p190
p200
p210
p220
p230
p240
p250

®s 60 00 80 00 s s e

p260
p270

}

= PROGRAM

BLOCK

CONST DEF_PART
CONST DEF_PART
CONST DEF_LIST
CONST DEF_LIST

CONST DEF

VAR_DCL_PART
VAR_DCL_PART
VAR_NAME_LIST
VAR_NAME_LIST

VAR NAME

PROC_DCL_PART
PROC_DCL_PART
PROC_DCL_LIST
PROC_DCL_LIST

PROC_DCL

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT

. STATEMENT
STATEMENT LIST
STATEMENT LIST

CONDITION

CONDITION

71

CONST DEF_PART

VAR" DCL_PART
PROC_DCL_PART
STATEMENT

->
->
->

->
-2
->
->

->
->

const CONST_DEF_LIST ;

CONST DEF

CONST DEF , CONST_DEF LIST
IDENT = NUMBER

var VAR_NAME_LIST ;

VAR NAME =
VAR_NAME , VAR_NAME_LIST
IDENT ,

PROC_DCL_LIST ;

PROC_DCL.
PROC_DCL ;
procedure IDENT ;

PROC_DCL_LIST
BLOCK

IDENT := EXPRESSION

call IDENT

begin STATEMENT_LIST end

if CONDITION then STATEMENT
while CONDITION do STATEMENT

STATEMENT
STATEMENT ; STATEMENT_ LIST
odd EXPRESSION

EXPRESSION = EXPRESSION

(* Specification of the semantic domain (Excerpts) *)

<

Z, V, A>
S, F >
{ STATE STATE-STATE STATE-INT STATE-BOOL
STATE-STATE-STATE STATE-ATTR ATTR ... }
[INIT STATE : -> STATE
ADD_ID, UPDATE : STATE ID ATTR -> STATE
RETRIEVE : STATE ID -> ATTR

-14-

1%

<

ENTER_BLOCK, LEAVE_ BLOCK
STATE -> STATE
-> STATE-STATE
STATE-STATE STATE -> STATE

I_STATE-STATE
APPLY STATE
IF_STATE D
STATE-BOOL STATE-STATE STATE-STATE
-> STATE-STATE
ITERATE : STATE-BOOL STATE-STATE
-> STATE-STATE
STATE-STATE STATE-STATE
-> STATE-STATE
ADD_ID D : STATE-STATE ID ATTR
-> STATE-STATE
ENTER_BLOCK D, LEAVE_BLOCK_D
: STATE-STATE -> STATE-STATE
UPDATE_D : STATE-STATE ID STATE-ATTR
-> STATE-STATE

COMPOSITION

{ s0, s1, s2, s3 } > ces

{ RETRIEVE(INIT_STATE(), id0)

X UNDEF_ATTR()

'RETRIEVE(ENTER_BLOCK(state0O), id0)

% RETRIEVE(state0, ido0)
RETRIEVE(ADD ID(state0,id0,attr0), idl)
& IF_ATTR(
EQUAL_ID(id0,id1),
attro,
RETRIEVE(state0,id1))

UPDATE(INIT STATE(), id0, attr0)
i~ INIT STATE()
UPDATE(ENTER_BLOCK(state0O), idO, attr0)
~ UPDATE(state0O, id0, attr0)
UPDATE(ADD ID(state0,id0,attr0), id1, attrl)
% IF_STATE(
EQUAL_ID(ido0,id1),
ADD_ID(state0,id0,attr1),
ADD_ID(UPDATE(state0,id1,attr1),
ido, attr10))

LEAVE_BLOCK(INIT_STATE())
% INIT _STATE()
LEAVE_BLOCK(ENTER_BLOCK(state0))
2 statel '
LEAVE_ BLOCK(ADD~ID(StateO,ido,attr0))
% LEAVE BLOCK(state0)

APPLY STATE(I_STATE-STATE(), state()
~ state0
APPLY_STATE(IF_STATE_D(state—boolO, ‘
state-state(l,state-statel),

-15-

statel)
~x IF_STATE(
APPLY_STATE BOOL(state-bool0,state0),
APPLY STATE(state-state0,state0),
APPLY STATE(state-state?l,state0))
APPLY STATE(ITERATE(state-bool0,state-statel),
statel)
% IF_STATE(
APPLY_ STATE_ BOOL(state-bool0O.state0),
APPLY STATE(
COMPOSITION (
ITERATE(state-bool0,state-statel),
state-statel),
statel),
statel)
APPLY STATE(COMPOSITION(state-stateO,
state-statel),
state0)
X APPLY_STATE(
state-state0, '
APPLY_ STATE(state-statel, state0))
APPLY_STATE(ADD_ID D(state-state0,id0O,attr0),
state0)
~ ADD_ID(APPLY_ STATE(state-state0,state0),
ido,
attr0) }

(* Specification of the semantic mapping (Excerpts) *)

' < D, M, X, R>

D:V ->S
D(PROGRAM) = STATE
D(BLOCK) = D(CONST_DEF_PART)
= D(CONST_DEF_LIST) = D(CONST DEF)
= D(VAR_DCL_PART) = D(VAR. LIST)
= D(VAR_NAME) = D(PROC_DCL_PART)
= D(PROC_DCL_LIST) = D(PROC_DCL)
= D(STATEMENT) = D(STATEMENT LIST)

STATE-STATE
D(CONDITION) STATE-BOOL
D(EXPRESSION) = STATE-INT

i

M {MN | NeV,sort(M_N)=D(N),arity(M N)=N}

>
1]

< { x0, xt, x2, x3 } >NeV
{ (* p010 : PROGRAM -> BLOCK . *)
M_PROGRAM(p010(x0))
= APPLY_ STATE (
M_BLOCK(x0),
INIT STATE())

vl
]

-16-

(* p02

0 : BLOCK -> CONST DEF_PART
VAR DCL_PART
PROC_DCL_PART
STATEMENT *)

M _BLOCK(p020(x0,x1,x2,x3))
= COMPOSITION (

M_STATEMENT(x3),
COMPOSITION (
M_PROC_DCL_PART(x2),
COMPOSTTION (: .
M_VAR DCL_PART(x1),
COMPOSITION (
M_CONST DEF_PART(x0),
I_STATE-STATE())

(* p060 : CONST.DEF LIST -> CONST_DEF |,

M_CONST DEF_LIST(p060(x0,x1))

CONST_DEF_LIST *)

= COMPOSITION(

(* p070

M_CONST_DEF LIST(x1),
M_CONST_DEF(x0))

: CONST DEF -> IDENT = NUMBER *)

M CONST DEF(p070(x0,x1))
= ADD_ID_D(

(* p120

I_STATE-STATE(),

M_IDENT(x0),

MAKE_ATTR_CONST(
M_NUMBER(x1)))

: VAR_NAME -> IDENT *)

M_VAR NAME(p120(x0))
= ADD_ID D(

(* p170

I_STATE-STATE(),

M_IDENT(x0),

MAKE_ATTR_VAR(
ZERO()))

: PROC_DCL -> procedure IDENT ;

!

BLOCK B *)

M _PROC_DCL(p170(x0,x1))
= ADD_ID D('

(* p180

I_STATE-STATE(),

M_IDENT(x0),

MAKE_ATTR_PROC (
M_BLOCK(x1)))

: STATEMENT -> IDENT := EXPRESSION ¥*)

M_STATEMENT(p180(x0,x1))
= UPDATE_D(

I_STATE-STATE(),
M_IDENT(x0),
MAKE_ATTR_VAR(

17~

70

M_EXPRESSION(x1)))

(* p190 : STATEMENT -> call IDENT *)
M_STATEMENT(p190(x0))
= LEAVE_BLOCK_D(
APPLY STATE_D(
MAKE_STATE-STATE D(
RETRIEVE D(
I_STATE-STATE(),
M_IDENT(x0))),
ENTER_BLOCK_D(
I _STATE-STATE())))

(* p210 : STATEMENT -> if CONDITION then
STATEMENT *)

M_STATEMENT(p210(x0,x1))

IF_STATE_D(
M_CONDITION(xO0
M_STATEMENT(x1
I_STATE-STATE()

— -
- -

(* p220 : STATEMENT -> while CONDITION do
i STATEMENT *)
= ITERATE(
: M_CONDITION(x0),
M_STATEMENT(VX1))

(* p260 : CONDITION -> odd EXPRESSION *)
M_CONDITION(p260(x0))
= ODDP_D(M_EXPRESSION(x0))

e e
fu——

Finally we should make some words concerning our idea in
writing the above specification : To capture the meaning of
programs, we infroduced the concept of state which 1is the
abstraction of configuration of computation mechanisms. And we
consider that the meaning of a program is the final state after
executing the program. That is, we consider that the meanings of
statements as well as declarations are the functions to change
the states. For example, the assignment statement changes the

state through renewing the value of a variable, and the variable

-18-

declaration also changes the state through entering a new
variable into the name table.

Note that we use a conventionally simplified way to treat
the semantic errors in the specification of PL/0. For example, if
update operation is applyed to the 1initial state that 1is the
state where no variables are yet declared, then the result is the
specified to be initial state. But, this should be specified to
be a semantic error. Thus, how to specify and treat the semantic

errors is one of the future problem.

8. Conclusion

In this paper, we have proposed an algebraic method for
specification of programming languages. The semantic domain of
our specification is specified as an abstract data type only by
using the equational logic. This gives us mathematical
foundations for the approcaches to the formal specification,
implementation, verification of programs , the formal proofs of
compiler correctness, and the automatic compiler generations.

As an illustrative example, we have also showed the
specification of programming language PL/0 given by using our
method. It shows that our method works satisfactorily.

There are many future problems. For example, the error
handling problem is one of them. In fact, in our example of PL/0
specification we wused conveniently simplifiedi ways to treat
semantic errors, e.g. we assumed that if a number is divided by

zero then the result value is zero. We are now developing the

-19-

system for automatic compiler generation based on our
specification method. We already have a prototype of the system

but ther are many problems to be solved.

Acknowledgement

The authors wish to express our gratitude to Dr.Namio
HONDA, President of Toyohashi University of Technology and Dr.
Teruo FUKUMURA, Professor of ©Nagoya University for their
encouragements to conduct this work. They also thank their

colleagqgues for their helpful discussions.
References

(1) ADJ (Goguen,J.A.,Thatcher,J.W.,Wagner,E.G.,Wright,J.B.) :
Initial Algebra Semantics and Continuous algebras, J.ACM, Vol.

24, pp. 68-95 (1977).

(2) ADJ (Goguen,J.A.,Thatcher,E.G.,Wright,J.B.) : An Initial
Algebra Approach to the Specification, Correctness and
Implementation of Abstract Data Types,Current Trends in
Programming Methodology; Vol. 4 (Yeh,R.T.,ed.), Prentice-Hall

(1978).

(3) ADJ (J.A.,Thatcher,E.G.,Wagner,E.G.,Wright,J.B.) : More on
Advice on Structuring Compilers and Their Correctness, Theor.

Comput. Sci., Vol. 15, pp. 223-249 (1981).

-20-

(5) Despryroux,J. : An Algebraic Specification of a Pascal

Compiler, SIGPLAN Notice, Vol. 18, No. 12, pp. 34-48 (1983).

(6) Gaudel,M.C. : Specification of Compilers as Abstract Data
Type Representations, Proc. on Workshop on Semantics-Directed
Compiler Generation, Aarhus, in Lecture Notes in Computer Science

94 (1980).

(7) Goguen,J.A. and Parsaye-Ghomi,K. =: Algebraic Denotational
Semantics using Parameterized Abstract Modules, in Lecture Notes

in Computer Science 107, pp. 292-309 (1981).

(8) Kita,H., Sakabe,T. and Inagaki,;Y. : Formal Semantics of
Languages based on Abstract Data Types, Technical Report of Group
on Automata and Languages, IECE of Japan, AL83-23 (1983). (in

Japanese)

(9) Mosses,P. : A Constructive Approach to Compiler Correctness
Proc. of Workshop on Semantics-Directed Compiler Generation,

Aarhus, in Lecture Notes in Computer Science 94 (1980).

(10) Pair,C. : Abstract Data Types and ‘Algebraic Semantics of
Prégramming Languages, Theor. Comput. Sci., Vol. 18, pp. 1-31

(1982).

(11) Wirth,N. =: Algorithms + Data Structure = Programs,

Prentice-Hall (1976).

-21-

