goooboooogn
O 5470 19850 79-111

79

MULTIVERSION CONCURRENCY CONTROL SCHEME

FOR A DISTRIBUTED DATABASE SYSTEM

Shojiro Muro Tadashi Mizutani Toshiharu Hase%?wa
% ., = o I~ e
Z BB Ep Ko E T Kl ze
Kyoto Univ. IBM Japan Kyoto Univ.

FAKE BA1BM G AR %

Abstract

A new multiversion concurrency control scheme for a dis-
tributed database systeh is proposed in this paper. In our data-
base model, two versions (not copies) of each data object are
allocated in different sites in the system. Different from usual
distributed database systems with redundant copies, these two
versions are not concurrently updated, but only one of them is
updated for an update request. Since two versions are,accessible
for each read request and concurrent updates of two versions are
not necessary, our scheme allows increased concurrency. The con-
trol algorithm is based on both timestamp mechanism énd locking
mechanism with two different modes, and it grants a. version for
every read request without causing inconsistency. Transactions
with write requests which would cause inconsistency are aborted.
It is proved that the new concurrency control scheme works cor-
rectly; namely, it preserves consistency without any deadlock and

livelock among operations of the transactions in the system.

'S. Muro and T. Hasegawa are with the Department of Applled
Mathematics and Physics, Faculty of Engineering, Kyoto Univer-
sity, Kyoto 606, Japan.

T. Mizutani was with the Department of Applied Mathematics and

Physics, Faculty of Engineering, Kyoto University, Kyoto 606,
Japan. He is now with IBM Japan, Ltd.

-1-

80

1. Introduction

in usual database systems (abbreviated DBS), many users
access shared data concurrently. Unless some kind of discipline
is imposed on users’ transactions, aata in the system may be

modified in an unintended way. Concurrency control is the activ-

ity of synchronizing read and write operations issued by concur-
rently executed transactions on a shared database and to realize

a high level of concurrency without causing inconsistency due to

undesirable interactions among transactions [ESWA-76]. Particu-
larly, the purpose of concurrency control is to produce an execu-
tion of operations with the same effect as a serial (noninter-

leaved) one. Such executions are called serializable (see, e.qg.,

[PAPA-79], [IBAR-83], [BRZ0O-84]). Many schemes for concurrency
control, most of which are based on serializability theory, have
been proposed in this decade for both of centralized DBS and
distributed database system (abbreviated DDBS) models (e.g., see
the references of the paper [BERN-811]).

Recently, multiversion concurrency control schemes have been

investigated in many papers to achieve serializability by sup-
porting multiple versions of the data objects (see, e.g., [REED-
781, [BAYE-80al], [BAYE-80b]l, [STEA-81], [BERN-83], [PAPA-84],
[MURO-841). The main idea of the multiversion concurrency control
scheme is as follows:

Bach write operation on a data object, say, X does not
overwrite the old value of X by the new one, but to produces é
new version of X, If subsequently another transaction reads X,
it selects one of the versions of X to be read. Since write

operations do not overwrite each other, and since read operations

81

can read any version, a high level of parallelisms is achieved in

controlling the order of read and write operations in spite of

additional bookkeeping.

Different from centralized DBS’s, concurrency control for
DDBS’s is in a state of extreme turbulence. Although many concur-
rency control schemes have been proposed for DDBS s, they are
usually complex and hard to understand (see the survey paper
[BERN-811]). As what makes the problem hard, we list up the fol-
lowing two factors:

(F1) Users may concurrently access data object stored in many
different sites in a system.

(F2) A concurrency control mechanism at one site cannot instan-
taneously know about interactions at other site, which
mainly comes from the communication delay between sites.

One of the most critical consistency problems of DDBS’s is con-

current writing for multiple (redundant) copies of a data object,

which is caused by (F2).

Multiversion concurrency control schemes have already been
proposed for an environment with distributed systems (e.qg.,
[REED-78], [BAYE-80b], [STEA-81], [BERN-831, [PAPA-84]). However,
in the models of these papers, versions of each object are not
allocated in different sites but considered for éach object in a
site.

In this paper, we propose a multiversion concurrency control
algorithm for a new type of DDBS’s (we call this algorithm DMV),
where not the copies but the versions of each data object are
allocated in different sites in the system. In particular, as the

first step to consider such model, the most simple model is

82

examined; namely, there are two versions (the new one and the old
one) for each data object and they are allocated at different
sites (note that, in case of updating, there exist three versions
temporarily). A read (write) request from a site first access to
the nearer site with a version of the object from (to) which it
reads (writes), respectively, where 'nearer" means shorter dis-
tance, cheaper communication cost, and so forth. If the request
can not be granted at the nearer site, then it is sent to the
other site with another version of that object. The advantages of
our model are as follows:

(A1) High reliability.

Each object is located at two different sites.

(A2) Rapid access to data object.
Read and write requests first access to the nearer site,
and may be granted at that site.

(A3) Increased concurrency.

Since there are two (or temporally three versions) for each
object, read requests which have arrived "too late" from
the view point of serializability can also be granted. In
fact, read requests are never rejected in our scheme.

(A4) Simple updating.

We can avoid complicated concurrent updating of redundant
copies of an object by updating a version of the object.
(A1) is due to that versions are distributed and this is also a
typical advantage of DDBS’s. (A3) is obtained from the idea of
concurrency control mechanism. of multiversion stated above. kA4)
as well as the advantages of write requests of (A2) are provided

by introducing the new model of multiversion DDBS’s in this

paper, andﬁthese overcome the problem of concurrent updating
redundant copies.

The concurrency control scheme for the proposed model is
pased on timestamp mechanism (see, e.g., [LAMP-78], [THOM-791])
and locking mechanism with two different modes which are based on
a-lock and c-lock of [BAYE-80al, and it grants a version for
every read request without causing inconsistency. Transactioné
issuing write requests which would cause inconsistency are
aborted. It is proved that the new concurrency control scheme
works correctly, i.e, it preserves consistency without any dead-
lock and livelock of operations of the transactions in the

system.

2.The Model

In this section, we describe a DDBS model assumed in this

paper.

2.1. Distribution of data objects
In our system model, data objects are distributed as
follows:

1. All logical data objects are named X, Y, ..., and so on. These

are distributed among the sites Sqr «eer Sy in a computer
network, where we assume that there are N sites in a systen.

2, Normally each logical data object X has two physical versions

(see Remark 2.1); namely, old version Xp and new version Xy,
and these are allocated to different two sites in the system.

A site with XN (XO) is called the new site (o0ld site) of X,

respectively.

84

3. Each site has a catalog for all objects, which keeps the
information con-cerning sites to which two versions of each

object are allocated. Thus each site knows the nearer site and

farther site of each object.

4. At each site S;, a special process called local controller is

equipped, which is responsible for the synchronization of the
events in the system. It is main study of this paper to
specify the algorithm executed by this controller, and this is
described in section 4. A local controller consists of two

components transaction manager (TM) and a lock manager (LM).

5. Any two local controllers can communicate via message ex-
changing. Assume that if a site sends more than two messages
to another site, these messages are received by the destina-
tion site in the order that they are sent by the original
site.

6. Transaction T issued from site S; is controlled by the local
controller of the S;. Site S; is called the home site of T. If
transaction T requires a data object which is not at S;, say,
X, its request message is sent to the nearer site S. with a

J
version of X, and the local controller of S, deals with this

J
request according to the concurrency control algorithm. If the
request message is granted at site S., then the acknowledging
message is sent back to site S;; otherwise, the request mes-

sage is further sent to site Sy with a version of X (S, is the

farther site for S; concerning the data object X).

Fig.1 shows an example of our DDBS model. Different from
usual DDBS’s with redundant copies, in our system, all the

physical data objects of a logical data do not have the same data

-6~

values and need not be updated concurrently. This overcomes the
most complicated problem of the concurrency control in DDBS’s,

i.e., concurrent updating of redundant copies.

Remark 2.1. As will be discussed in section 4, every data

object has temporarily three versions. One more version is called

the newest version and denoted by XNN® [1

2.2. Lock modes

Our concurrency control is mainly due to locking mechanisms.
Transactions only use write-locks with two different modes called
a-lock (analyze-lock) and c-lock (commit-lock). Idea of a-lock
and c-lock was first introduced by Bayer, et al. [BAYE-80al (seé
Remark 2.2). The a-lock is an exclusive write-lock for newest
versions of objects. If a newest version of a data object, say,
Xyy is a-locked, then neither read nor write operation can
~access Xyy. On the other hand, if Xyny is c-locked, any read
operation can access Xyy, though no write operation can access
Xyne The c-lock is employed in this paper in order to keep the
number of versions of eack object at most three.

When a write request for an object X is received by its home
site, 1its a-lock on object X must be granted. If alock is
granted, the newest version Xun is created at old site of X, and
then a-lock is coverted into c-lock mode. At this point, object X
has three versions. When the local controller of the old site of
X certifies that any read operation can be granted without
reading the old version Xogr Xp is discarded and the LM of the
controller releases the c-lock on XNN© At the same time, the

hNewest version XNN (new version XN) is renamed the new version XN

(old version'Xo), respectively. To acknowledge the timing to

discard X, so called discard condition (see section 3) is

examined by the local controller of the old site of X.

Remark 2.2 Another lock mode, r-lock(read-lock) was em-
ployed to grant read requests in [BAYE-80a]. In our scheme, every

read request is granted without r-locks. []

2.3. Transaction model

A transaction starts with BEGIN and ends with TERMINATE,
Other steps of a transaction are a sequence of read and write
operations. The read and write operation of transaction T; to an
object X are denoted by R;[X] and W;[X], respectively (subscripts
are often omitted). Each object is accessed by at most one read
and at most one write operation of each transaction., If a trans-
action T; both reads and writes an object X, then R, [X] precedes
W;[X] in T;. This is by the assumption that T; need not read what

it has written. The read set (write set) of T is defined as the

set of objects that T reads (writes), respectively.

Any write operation to an object must a-lock the object
before it is executed. We assume that a transaction T sends the
lock mode conversion messages to convert all of its a-locks on
its write set into c-locks when T terminates its execution
(i.e., T is committed). This is to avoid cascading [BAYE-80a] or

domino effect [RUSS-80]. Since it is intricate to cope with

cascading in decentralized systems, the newest version, say, Xyy
is not accessible for any read operation until the controller of
the site with Xyy receives the lock mode convertion message for

Xyn- After the conversion, the LM of the controller of the site

87

with the objects c-locked examines the.discard condition of all
the'objects c-locked, and if the discard condition of an object
is satisfied, then the c-lock on the newest version of this
object is released. Consequently, transactions observe the 2PL
(2-phase locking) mecha-nism if we don’t distinguish between a-
lock and c-lock. Fig.2 shows a configuration of execution of a
transaction T. T is called active before it is committed, énd T
is called inactive after it is committed. A transaction is not
aborted after it becomes inactive and never be backed up due to
inconsistency and dead lock. Finally, if all of the operations of
a transaction T are processed successfully within a finite time,
we say that T is committed within a finite time after it is

initiated.

Remark 2.3. The conversion of a-lock into c-lock corre-

sponds to the release of usual exclusive write-lock in (r,x)-
protocol [BAYE-82], since any read operation can read the newest
version after the conversion. If we neglect the time delay for
converting all a-locks into célocks, the lock mechanism corre-

sponds to strictly 2PL [BAYE-80al]. []

2.4. State transition of the object .

Each object X has the following three states according to
the writing rule concerning the object X described above:
D1. The normal state with two versions (Xg and Xy): X is neither
a-locked nor c-locked, and any read request for X can read
“either Xy or Xy.
b2, X is’a—locked by a transaction and the newest version Xyy is

. created: There are three versions of X, but XNN is not acces-

88

sible. Any read request for X can read either X5 or Xy.
D3. a-lock on X has been converted to c-lock: Xyy can be acces-
sible to any read request. Any read request for X can read

one of the three versions.

In each state, the version read by a read operation is
decided by the concuurency control algorithm discussed later.
Fig.3 shows the state transition diagram of object X.

A transaction can a-lock an object X in state D1. In state
D2, if the update transaction is aborted, then XNN is discarded
and the state goes back to D1. In state D3, if the discard
condition for the dbject X is satisfied, then X5 can be dis-
carded, c-lock on X is released, and the state goes back to D1.
When the state goes back frova3 to D1, Xyn (XN) in state D3
becomes newly XN (XO) in state D1, respectively. Therefore, the
0ld site and the new site of object X aiternate with each other

after the release of c-lock on X.

3. Consistency and Timestamp Mechanism

In this section, first, we give the notion of consistency,
and then introduce the timestamp mechanism for achieving the

consistency in our DDBS.

3.1. Consistency

If a transaction T is executed, then the user issuing trans-
action T can get a "view" of the database by its read operation.
Also, the transaction T can change the state of the database by

its write operation. A concurrency control algorithm must pre-

serve consistency of a database (see, e.g., [ESWA-76], [ULLM-

-10-

83

80]). Under an assumption that each transaction keeps consistency
of the database if it is executed independently, a role of con-
currency control algorithm is to schedule operations of concur-
rently executing transactions such that (the database)/(the
users) observe an execution with the same effect as some serial
(noninterleaved) execution of the operations (see, e.q., [BRZO-
84], [ROSE-84]). 1In this péper, the algorithm works so that both
database and users observe an execution with the same effect as a

serial one.

Definition 3.1. For a set of transactions which have been

executed so far in the system under a concurrency control algo-
rithm, the concurrency control algorithm is said to preserve

consistency if the database and the users observe a execution of

the operations issued by the transactions as if the transactions

were executed sequentially. []

Definition 3.2. A concurrency control algorithm is said to

be correct if it preserves consistency and each transaction is
either committed or aborted within a finite time after its ini-

tiation. I[1

3.2. Timestamp mechanism

To develop a correct on-line concurency control algorithm,

so called the dependency graph (abbreviated DG) are often used to

represent dependency relation among the concurrently executing
transactions concerning their execution order (see, e.g., [PAPA-
791, [IBAR-83], [MURO-84]). Dependency relations are obtained by
conflict relations of transactions’ operations (see [PAPA-79],

[IBAR-83] for the definition of "conflict"). Concurrency control

-11-

90

algorithms employing the DG usually achieve their correctness by
keeping the DG acyclic.

A concurrency control scheme based on the DG might be
realized as follows in our database model: Suppose that a read or
write request are received by their home sites in the system. If
no conflict occurs with any request of other transactions, then
that request is granted immediately; otherwise, a decision
whether‘the controller grants the request or not is done by the
. following program:
add an arc(s) to DG.
if no cycle is caused
then < action G >

else < ‘action R >
£i

In the program, action G (action R) means to grant (reject) the
request, respectivély. If action R is performed, arcs in DG are
removed to reflect the rejection of the request. |

In an environment of centralized DBS, ﬁpdation of the DG is
easy since one central controller can capture all events in the
DBS easily and rapidly. However, in the DDBS’s, it is hard for
the local controller of each site to reflect in its DG all of the
new information concerning the dependency of all transactions in
the system, since it requires too many messages to be exchanged
and too long message transmission delay. In [BAYE-80b] and [SUGI-
84], algorithms to detect cycles by merging necessary information
from distributed DG'graphs are proposed, and several complicated
situations occurred in these algorithms are revealed. Thus, in
order to resolve the above complicated problems, we employ the
timestamp mechanism to decide a seriaiization order of trans-

actions in advance. When the BEGIN of each transaction is re-

-12-

91

ceived by a local controller, a timestamp (TS) is provided from
the local controller which is unigque number in the entire net-
work. This timestamp order gives a serialization order of the
execution of transactions. That is, whenever two transactions T;
and Tj access one object, the access order must be consistent
with the timestamp order of the two transactions; otherwise,
backup is necessary. Thus, the following algorithm is applied to
any pair of operations accessing the same object:

if TS(T;) < TS(T.)

then < action G 3

else < action R »
£i

TS(*) denotes the timestamp of the transaction in the program. In
this timestamp mechanism, by comparing two timestamps, the deci-
sion of execution order can be made easily and immediately with-
out Sending messages to other sites. As compared with the mecha-
nism employing the DG, this rapidity is a great advantage in
actual systems. Howevér, cdncurrency decreases; namely, due to
the total order among transactions imposed ahead of time, more
transactions aborted unnecessarily. This is the price paid for
simplicity and the reality of the concurrency control proposed in
this paper (as for the importance of simple mechanism in DDBS’s,
see, e.g., [BERN-811]).
Concerning timestamp mechanism, we assume the following:

Assumptions on timestamps

1. Each transaction is assigned a timestamp at its home site when
BEGIN of the transaction is received.

2. Each timestamp is unique.

3. At each site, values of timestamps are‘increasing, that is,

if BEGIN of Tj is received after Ty at the same site, then

-13-

TS(Ti)<TS(Tj) holds.

4. Once a timestamp is assigned, its TS is not updated nor
deleted.

5. The timestamps of read and write operations of transaction T
is the same as that of T.

The uniqueness of assumption 2 can be achieved as follows
[THOM-79]. When BEGIN of a transaction is received by its home
site, the TM of a local controller at the site assigns a time-
stamp to the transaction, where the timestamp consists of the
higher bits (=the local clock time) and the lower bits (=unique
TM identifier). The TM does't agree to assign another timestamp
until the clock time proceeds to the next tick. Note that clocks
at different sites are not required to set the same time. By
these mechanisms, each timestamp is unique in the sYstem, and the

assumption 3 is also realized.

4, Concurrency Control

In this section, we describe the outline of our concurrency
control algorithm DMV and the mechanism of TM and LM of a local
contfoller to realize the algorithm DMV. Readers who are inter-
ested in the detailed algorithm, please refer to the appendix of

[MIZU-84].

4.1. Outline of the algorithm DMV

The basic discipline of the algorithm DMV is to synchronize
all of the events in the system to be consistent with the time-
stamp order. Fig.4 shows a snapshot of the state of an object X

concerning timestamps. For convenience, the timestamps of the

-14-

93

transactions which wrote X5, Xy, and Xyy are denoted by TS(X,),
TS(XN), and.'TS(XNN), respectively. TS(XO)<TS(XN)<TS(XNN) must be
satisfied since the algorithm DMV synchonize all of the requests

in the system in the timestamp order.

4.1.1. Execution of read reqguest

First, we consider how a read request for X of a transaction
T is executed by the algorithm DMV according to the state of

object X, i.e., D1, D2, and D3.

[The algorithm in state D1]
Case 1. If TS(XO)<TS(T)<TS(XN), then the request reads the
value of Xo-
Case 2. If TS(XN)<TS(T), then the request reads the value of
XN‘
Note that TS(XO)<TS(T) is guaranteed by the discard condition

described later.

[The algorithm in state D2]
Case 1. If TS(Xp)<TS(T)<TS(Xy), then the request reads the
value of Xg,.
Case 2. If TS(XY)<TS(T)<TS(Xyy), then the the request reads
the value of Xy. |
Case 3. If TS(Xyy)<TS(T), then let the request to wait until
the a-lock to the object X is converted to the c-lock
or the transaction with a-locking is aborted.
If we let the fead request satisfying TS(Xyy)<TS(T) read Xy, it
forces the transaction a-locking to be backed up, since otherwise
the execution order of T and the transaction a—loéking results in

the reverse of the timestamp order. Thus, in such a case, we let

-15- -

94

the read request of transaction T wait until the state of object

X becomes D1 or D3.

[The algorithm in state D3]
Case 1. If TS(XO)<TS(T)<TS(XN), then the request reads the
value of Xgj.
Case 2. If TS(XN)<TS(T)<TS(XNN), then the request reads the
| value of Xy.

Case 3. If TS(Xyy)<TS(T), then the request reads the value of
XN~

In the above algorithm, if the elected version of X for a
read request is not in the site where the request first accessed,
then this request is transmitted to the other site where the
requesting version exists. To make these decisions immediately in
distributed control, two sites with the same object inform with
each other the version numbers of the object if the new version

is created or aborted.

4.1.2. Execution of write request

Next, we describe how a write request of transaction T to
object X is executed by the algorithm. Because of the locking
mechanism, a write request is granted only if the state of object

X is in D1.

[The algorithm in state D1]
Case 1. If TS(XN)<TS(T) and max-R(XN)<TS(T) hold, where max-
R(XN) means the maximum timestamp of the transactions

which have read Xy, then a-lock for object for object

X is granted to transaction T, and T creates the

-16-

newest version Xyy with the version number TS(T).
Case 2. If the condition of caseOl1 is not satisfied, the write
request by Tyy is rejected.
Note that if max-R(Xy)>TS(Xy) holds if there exists a least one
transaction which reads Xy.
Now, assume that a transaction T writes XNN,and the state of
object X is in state D2 or D3. If another transaction T' with
write request to X is generated in the system, then this request

is coped with as follows:

[The algorithm in state D2]
Case 1. If TS(T)<TS(T'), then the request of T' waits for the
release of a-lock from transaction T.

Case 2. If TS(T')<TS(T), then T' is aborted.

[The algorithm in state D3]

Case 1. If TS(T)<TS(T') and max—R(XNN)<TS(T'), then the re-
quest of T' waits for the release of a-lock from
transaction T, where max—R(XNN) is defined similarly
to max-R(Xy).

Case 2. If the condition of case 1 is not satisfied, then T'

is aborted.

In the algorithm DMV, when a transaction T releases its a-
lock, a-lock is next granted to the transaction with the minimum
timestamp among those currently waiting for the release of a-

lock.

4.1.3. Discard condition

Finally, we discuss the discard condition. In state D3, if

-17-

95

it is acknowl-dged that no read request with a timestamp less
than TS(XN) will be generated in in future,‘then c-lock of XNN is
released and the state of object X goes back to D1. Now, we shall
make clear the condition necessary for the above acknowledgement,
Assume that an active transaction T X has the minimum timestamp
among those which are active in the system. Then, define MINAC by
MINAC=TS(T*). From the assumptions on timestamps, the valués of
timestamps are monotone increasing with respect their issuing
time. Thus, if TS(XN)<MINAC is satisfied, there exists a version
for any read request of active transactions in the system even if
Xo is discarded. Thus, we call this condition TS(Xy)<MINAC the

discard condition of object X.

4.2 Configuration of version

It is important to consider the physical configuration of a
version for realizing the algorithm (see Fig.5). A version has a
name of the object and a value. In addition, "writer", '"readers",
"max-reader", '"relative version number" are also stored as parts
of data of a version. "writer" is a timestamp of a transaction
which wrote it, this timestamp value is the key indéx of each
version. Similarly, "readers" are the timestamps of transactions
which have read the version. "max-reader" is the maximum value
of timestamps in "readersh. While "readers" are empty, "max-
reader" is set to the value equal to "writer". "relative version
number" stores the relative version number among the versions of
that object; namely, when the version is created, it is set to
"NN", and each time the old version of that object is discarded,

it is converted to "N", and then to "O".

-18-

4.3. Local controller

To realize the algorithm DMV, LM and TM of local controller

C; of site S; use several buffers, logs, and flags. We shall

describe their mechanisms.

4.3.1 Transaction manager (TM)

A TM of Ci has the active transaction list (ATL) which is a
list of active transactions at Si' The minimum value of time-
stamps of the transactions in the ATL at Si‘is denoted by MIN;. A

T™™M of Ci has also transaction log’s (TL’s) which record the

operations of the transactions whose home sites are S;. For a
transaction‘Tk with home site S;, if a request of Ty is sent to
another site, then this event is recorded in the TL of T, to-
gether with the name of site to which the request is sent. When
the reply for the request of Ty is sent back to S;, this event is
alsp recorded in the TL of T}, together with the name of site at
which the version is read or written by Typ. In particular, for a
read requesf; the writer of the version read by this request is
also recorded. The TL is referred to when the transaction is

aborted.

4,3.2. Lock manager (LM)

A LM of C; keeps and updates the values of MIN4, ..., MINy

in a buffer. This buffer is called the minac board of site i and

is denoted by MB;. MBi(k) denotes the value of MINkﬁin the MB; .

Suppose\that at site Sj, the transaction with timestamp MINj

becomés inactive or is aborted. Then the value of MINj

dated, and the new value of MINj is informed to all other sites.

In case that no active transaction is at Sj, the Cj reads the

is up-

-19-

98

local clock time and creates the timestamp which is set to the
new value of MINj. Cj repeats this process periodically until an

active transaction with home site Sjis generated. The minimum
value of MB; is denoted by MINAC;. MINACy (k=1, ..., N) has the
same value in the network except for the time interval of message
delays. Thus subscripts are often omitted so far as no confusion
occurs. The MINAC is the minimum timestamp of the currently
active transactions throughout the system.

For each object at S;, a flag and buffers are maintained by

the LM. The mode flag for X is denoted by MF(X) which exhibits

the lock mode on X. That is, MF(X)=¢d or a or c. The information

board for X is a buffer and is denoted by IBy which keeps the
timestamps of the transactions that wrote the existing versions
of X; namely, the IBy consists of three indices. If an object X
is in state D1, then the IBX(NN) is empty. When Xp is discarded
in state D3, the IBy is shifted; namely, IBX(N) and IBy(O) are
newly set to old IBy(NN) and IBy(N), respectively, and IBy(NN)
becomes empty. The information of these MF(X) and IBy is for
dealing with reéd and write requests for X. Assume tﬂét X is
located at two sites Si and Sj. Then, MF(X)’s and IBy’s at the
two sites are the same except for the time intervals of message
delay between S; and Sj.

Further for each object at S;, two more buffers are prepared‘

by the LM to keep waiting requests. These are the readers’

buffer (RB) and writers’ buffer (WB). The RB (WB) which keeps

the waiting read (write) requests for X is denoted by RBy (WBX),
respectively. The write requests in each WB are sorted in the

timestamp by the LM.

~-20-

93

5. Correctness of the Algorithm

In this section, the correctness of the algorithm DMV is

proved.

Theorem 5.1. The algorithm DMV preserves consistency.

Proof. Let T={Tq, ..., Tm} be the set of transactions which
havetbeen executed in the system so far by the algorithm DMV,
excluding those aborted. Then, it is 6byious that, as for the
committed transactions, both of the database and the users
- observe the execution of these transactions which are equivalent
to a serial execution of them consistent with the timestamp

order. , (Q.E.D.)

Theorem 5.2. No.deadlock occurs by the algorithm DMV.

Proof. The following two cases are considered for a request

to wait for its execution.
Case 1. A write request waiting for its a-lock to be granted.

A write request of T; for an object X has to wait if X is

already a-locked or c-locked by T., and TS(Ti)>TS(Tj).
Case 2. A read request waiting for an a-lock to be converted.

A read request for an object X by Ti has to wait if X is

a-locked by T., and TS(Ti)>TS(TjL

If we write the waits for graph with nodes of transactions and

arcs representing "wait for" relation (see, e.g., [GRAY-78]1,
[KING-73]), the arc from T, to Tj is added to the gfaph only if
TS(Ti)>TS(Tj) holds in both of above two cases. Thus, the waits
for gfaph is acyclic and it was proved that no dead lock occurs

if the wait for graph is acyclic (see, e.g., [GRAY-78], [KING-

731). (Q.E.D.)

- =21-

100

Next, we shall show that no livelock occurs in the system.
Lemma 5.1. The value of MIN; is monotonously increasing.
Proof. The value of MIN,; is the minimum timestamp of the

*
active transactions at S;. Assume that T is a transaction with

ie

timestamp MIN;.

First, it is easy from the assumptions on the timestamps to
see that MIN; is not updated as long as T is active. Thus, MIN;
is updated when T* becomes inactive or is aborted. At this point,
as for the updation of MIN;, the following two cases are con-
sidered:

Case 1. If there exist active transactions at Sir the new value
of MIN; becomes the timestamp of a transaction T' with
the minimum timestamp among those. By the assumption on
T*, TS(T')>TS(T*) holds.

Case 2. If no active transaction is at S;, then Cy reads the
local clock time and creates the timestamp (ts) which

becomes the new value of MIN;. In this case also,

ts>TS(T*) holds. C.

i repeats this process until a new

active transaction arises at S;. While the execution of
such process, the values of MIN; are monotonously in-
creasing from the assumption on the mechanism of issuing
timestamps.

Consequently, the lemma is proved. (Q.E.D.)

Lemma 5.2. The value of MINAC is monotonously increasing.
Proof. The value of MINAC is defined to be the minimum value
of MIN;, (i=1, .u,‘N). Since the vélue of MIN; is monotonously
increasising from lemma 5.1, it is obvious that the vélues of

MINAC are also monotonously increasing. (Q.E.D.)

=22~

101

Lemma 5.3. Read and write requests issued by a transaction

whose timestamp is the value of MINAC is executed immediately.

Proof. Let T* be the transaction such that TS(T*)=MINAC,

. * s . . .
that is, T has the minimal timestamp among active transactions

throughout the system. The following two cases in which requests

are forced to wait for their execution are considered.

Case 1.

Case 2.

A write request waiting its a-lock to be granted.

" Assume that a write request of T* for X has to wait

because X is already a-locked or c-locked by a trans-
action T'. This means TS(T*)>TS(TW. If T' is a-locking
X, then T' is active, which contradicts that TS(T*) is
MINAC. If T" is c-locking X, this means that
TS(T')=TS(Xyy)>TS(Xy) and hence TS(T)=MINAC>TS(Xy).
Thus, the discard condition for X is satisfied, which
contradicts that T' c-locking X. Consequently, a write
request by T* is not forced to wait for its execution.

A reqd request waiting an a-lock to be converted.

Assume that a read request of T* for X has to wait be-
cause X is a-locked by a transaction T'. This means T' is
active and TS(T*)>TS(TW is satisfied, which contrédicts
that TS(T*) is MINAC. Thus, a read request by T is not

forced to wait for its execution.

Therefore, the lemma is proved. (Q.E.D.)

Lemma 5.4. A transaction whose timestamp value is the MINAC

is either committed or aborted within a finite time.

Proof. Let T* be a transaction such that TS(T*)=MINAC. From

lemma 5.3, no read and write requests of T wait for their execu-

tion. That is, they are either granted immediately or rejected.

-23-

102

Therefore T* is either committed or aborted within a finite time.

(Q.E.D.)

Lemma 5.5. The values of MINAC are updated monotonously
increasingly within a finite time.
Proof. It is obvious from lemma 5.2 and lemma 5.4.

(Q.E.D.)

Theorem 5.3. Each transaction is either committed or aborted

within a finite time after being initiated.

Proof. Suppose that a transacfion T is now initiated. At
this point, TS(T)>MINAC holds. If TS(T)=MINAC, then from lemma
5.4, T is either committed or aborted within a finite time. Thus,
consider the case TS(T)>MINAC. Assume that T will be neither
committed nor aborted within a finite time. This means T remains
active infinitely. However, from lemma 5.5, TS(T) becomes the
value of MINAC withina finite time, and then T is also committed
or aborted within a finite time, which contradicts the assump-

tion. , (Q.E.D.)

' Corollary 5.1. No livelock occurs by the algorithm DMV.

Proof. Theorem 5.3 proves this lemma. (Q.E.D.)

Now, we get to the goal.

Theorem 5.4. The algorithm DMV is correct.

Proof. It is straightforward from theorem 5.1 and theorem

5.3. (Q.E.D.)

6. Properties of Algorithm DMV

In this section, several important properties of the algo-

-24-

103

rithm are discussed. First, the favourable property of the algo-

rithm is shown by the following theorem.

Theorem 6.1. Any read request is granted.

Proof. By the discard condition, Xo(MINAC is always satis-
fied for every object X. Since any read request has the timestamp
larger than or equal to the current value of MINAC, there exists

a version to be read by the request. (Q.E.D.)

From theorem 6.1, every read request is granted in our
scheme by the discard condition with some waiting time for its
execution if necessary. A transaction is backed up only if its
write request is rejected. Thus, read requests have higher prio-
rity than write requests in our scheme.

Second, assume that two versions Xp and Xy of object X are
in the system. Then if TS(XN)<MINAC is satisfied, it is meaning-
less to keep X, because no read request for X reads the value of
Xy. However, from reliability point of view, to keep X5 is useful
if Xy is lost by an accident.

Finally, we discuss the locking mode. Our locking mode is so
called a (r,a,c)-protocol [BAYE-80a], though r-lock is not em-
ployed in the algorithm. The "c" means that after the newest
version is committed, it is accessible by other transactions.
Now, let us consider an object X in state D3 and assume that many
read requests are in the system. Then, the probability that one
of these read requests has larger timestamp than the write re-
quests waiting in the WBx might be high. This means that many
Wwrite requests would be rejected and hence many transactions

would be backed up. In order to reduce abortion of transactions,

~-25-

104

these read requests should withold from their execution. The most
extreme way to fealize such mechanism is to prohibit the read
requests from reading the newest version when the object is c-
locked. Such locking mode is called the (r,a,x)-protocol [PEIN-
83] and can be implemented for our MOdel with a slight modifica-
tion of the algorithm DMV, This modified version is rather con-
servative scheme and concurrency of the execution of the opera-
tions is reduced, while the algorithm DMV is rather optimistic.
The interesting comparison of performace of these two locking

modes is discussed in [PEIN-83].

7. Conclusion

A concurrency control schemeyfor a distributed database
system is described.‘Different from the conventional distributed
database models, in this paper, we try to distribute not copies
of objects but versions of them. As the first step of such model,
we consider the simplest model; namely, each object is located at
different two sites, and they are the old version and the new
one. An advantage of such scheme is increase of concufrency
because of multiversion. In addition, updating of objects is
simplified, since versions at different sites need not have the
same value at all.

Taking actual environment into account, we employed time-
stamp mechanism for synchronization, which however reduces the
concurrency of execution of operations due to the total order
among transactions imbosed in advance. Therefore, it will be a
future work to develop the method which uses dynamic timestamp

allocation or time intervals (see, e.g., [BAYE-81], [BAYE-82]),

-26-

105

which is effective to improve concurrency. Abortion of write
operations is useless since it backs up a transaction after a
part of it has already executed. Thus, for our datadase model, to
develop so called "cautious schedule" (see, e.g., [CASA-81],
[KATO-84]1), in which no transaction is backed up once its "begin
operation" is accepted, is also important from the practical
point of view. Finally, it is also an important future work to
consider to extend the above model to a model where more than

two versions of each object are distributed at different sites.

Acknowledgment

The authors wish to thank Professor T. Ibaraki of Toyohashi
University of Technology, Associate Professor N. Katoh of Kobe
University of Commerce, and Dr. S. Masuyama of Kyoto University
for their useful discussions of this work. This work was sup-
ported in part by the Ministry of Education, Science and Culture

of Japan under Scientific Research Grant-in-Aid.

References

[BAYE-80a] Bayer, R., Heller, H., and Reiser, A., "Parallelism
and recovery in database systems'", ACM Trans. Database
Syst., Vol.5, No.2, pp.139-156 (June 1980).

[BAYE-80b] Bayer, R., Elhardt, K., Heller, H. and Reiser, A.,
"Distributed concurrency control in database systems',
In Proc. 6th Int., Conf. on VLDB, pp.275-284 (Oct.
1980).

[BAYE-81] Bayer, R., Elhardt, K., Heigert, J., and Reiser, A.,
"Dynamic timestamp allocation and its applications to
the BEHR-method", Tech. Rep., Technical University
Munich (July 1981).

[BAYE-82] Bayer, R., Elhardt, K., Heigert, J., and Reiser, A.,
"Dynamic time-stamp allocation for transactions in
database systems'", In Distributed Data Bases,
H.-J. Schneider <(ed.), North-Holland, pp.9-20 (1982)

-27-

106

[BERN-811

[BERN-83]

[BRZO-84]

[CASA-81]

[ESWA-761]

[GRAY-78]

[IBAR-83]

[KATO-84]

[KING-73]

[LAMP-78]

[MIZU-84]

[MURO-84]

Bernstein, P.A. and Goodman, N., "Concurrency control
in distributed database systems", ACM Comput. Surv.,
Vol.13, No.2, pp.185-222 (June 1981).

Bernstein, P.A. and Goodman, N., "Multiversion concur-
rency control - Theory and algorithms", ACM Trans.

Database Syst., Vol.8, No.4, pp.465-483 (Dec. 1983).

Brzozowski, J.A. and Muro, S., "On serializability",
Tech. Rep. #840012, Dept. of Applied Math. and Phys-
ics, Faculty of Engineering, Kyoto University (July
1984).

Casanova, M.A., "The concurrency control problem for
database systems", In Lecture Notes in Computer Sci-
ence 116, Springer-Verlag, Berlin (1981).

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger,
I.L., "The notions of consistency and predicate locks
in a database system", Comm. ACM, Vol.19, No.11,
pp.624-633 (Nov. 1976).

"Notes on data base operating systems", In
pp.393-481,

Gray, J.N.,
Lecture Notes in Computer Science 60,
Springer-Verlag, Berlin (1978)

Ibaraki, T., Kameda, T., and Minoura, T., "Disjoint-
interval topological sort: a useful concept in seri-
alizability theory", In Proc. 9th Int. Conf. on VLDB,
pp.89-91 (Oct./Nov. 1983).

Katoh, N., Ibaraki, T., and Kameda, T., "Cautious
transaction schedulers with admission control", TR 84-

2, Dept. of Computer Science, Simon Fraser University
(Feb. 1984).
King, P.F. and Collmeyer, A.J., '"Database sharing - an

efficient mechanism for supporting concurrent proc-
esses'", In Proc. National Computer Conference, pp.271-
275 (1973). '

Lamport, L., "Time, clocks, and the ordering of events
in a distributed systems", Comm. ACM, Vol.21, No.7,
pp.558-565 (July 1978).

Mizutani, T., "Multiversion concurrency control scheme
for a distributed database system", Master Thesis,
Dept. of Applied Math. and Physics, Faculty of Engi-
neering, Kyoto University (Feb. 1984).

Muro, S., Kameda, T., and Minoura, T., "Multi-version
concurrency control scheme for a database system", To
appear in J. Comput. Syst. Sci. (1984).

-28-

[PAPA-79]

[PAPA-84]

[PEIN-83]

[REED-78]1

[ROSE-841]

[RUSS-80]

[STEA-81]

{SUGI-84]

[THOM-79]

[ULLM-80]

107

Papadimitriou, C.H., "The serializability of concur-
rent database updates", J. ACM, Vol.26, No.4, pp.631-
653 (Oct. 1979).

Papadimitriou, C.H., and Kanellakis, P.C., "On concur-
rency control by multiple versions", ACM Trans. Data-
base Syst., Vol.9, No.1, pp.89-99 (March 1984).

Peinl, P. and Reuter, A., "Empirical comparison of
database concurrency control schemes", In Proc. 9th
Int. Conf. on VLDB, pp.97-108 (Oct./Nov. 1983).

Reed, D.P., '"Naming and synchronization in a decen-
tralized computer system'", Tech. Rep. MIT/LCS/TR-205,
Dept. of EECS, MIT (Sept. 1978).

Rosenkrantz, D.J., Stearns, R.E., and Lewis II, P.M.,
"Consistency and serializability in concurrent data-
base systems",SIAM J. Comput., Vol.13, No.3, pp.508-
530 (Aug. 1984).

Russel, D.L., "State restoration in systems of commu-
nicating processes", IEEE Trans. Softw. Eng., Vol. SE-
6, No.2, pp.183-194 (March 1980).

Stearns, R.E., and Rosenkrantz, D.J., "Distributed
database concur-rency using before-values'", In Proc.
ACM-SIGMOD, pp.74-83 (April/ May 1981).

Sugihara, T., Kikuno, T., and Yoshida, N., "Deadlock
detection and recovery in distributed database sys-
tems", (in Japanese), The transactions of the insti-
tute of electronics and communication engineers of
Jagan, , Vol.J67-D, No. 1, pp.1-9 (Jan. 1984).

Thomas, R.H., "A solution to the concurrency control
problem for multiple copy databases", In digest of
papers IEEE COMPCON spring, pp.56-62 (Feb./March
1978).

Ullman, J.D., "Principles of database systems'", Com-
puter Science Press (1980).

-29-

108

Fig.1 - An example of distribution of versions in a system.

-30-

109

BEGIN —_
R[X]

a-lock
WiY] (active)

TERMINATE COnVert%--c—lock

, Telease of c-lock
(inactive)

4——-——-———-'-‘;

Fig.2 - The execution of a transaction.

-31-

119

State site Si site Sj lock mode

T D

> 71
a-lock
)
— D . a-lock
2
abort; ¢ :
convert
|
D,
release ° c¢-lock

Fig.3 - The state transition of an object X.

-32-

111

state timestamp
Dl / // ///} ¥ >
Xq N
Dz e B T + >
X0 N SN
D3 77 el + .s -
Xy AN NN

Fig.4 - A snapshot of the state of an object X concerning timestamp.

name | value | writer | readers | max-reader | relative version number

Fig.5 - The configuration of a version.

~33-

